In recent years, there has been a growing interest in enabling autonomous social robots to interact with people. However, many questions remain unresolved regarding the social capabilities robots should have in order to perform this interaction in an ever more natural manner. In this paper, we tackle this problem through a comprehensive study of various topics involved in the interaction between a mobile robot and untrained human volunteers for a variety of tasks. In particular, this work presents a framework that enables the robot to proactively approach people and establish friendly interaction. To this end, we provided the robot with several perception and action skills, such as that of detecting people, planning an approach and communicating the intention to initiate a conversation while expressing an emotional status.We also introduce an interactive learning system that uses the person’s volunteered assistance to incrementally improve the robot’s perception skills. As a proof of concept, we focus on the particular task of online face learning and recognition. We conducted real-life experiments with our Tibi robot to validate the framework during the interaction process. Within this study, several surveys and user studies have been realized to reveal the social acceptability of the robot within the context of different tasks.


mobile robots, service robots.

Scientific reference

A. Garrell Zulueta, M. Villamizar, F. Moreno-Noguer and A. Sanfeliu. Teaching robot’s proactive behavior using human assistance. International Journal of Social Robotics, 2017, to appear.