Efficient Reinforcement Learning of Navigation
Strategies in an Autonomous Robot

José del R. Millan
Institute for Systems Engineering and Informatics
European Commission. Joint Research Centre
TP 361. 21020 Ispra (VA). ITALY
e-mail: jose.millanQ@cen.jrc.it

Carme Torras
Institut de Cibernética (CSIC-UPC)
Diagonal, 647. 08028 Barcelona. SPAIN
e-mail: torras@ic.upc.es

Abstract—In this paper we propose a reinforcement
learning architecture that allows an autonomous
robot to acquire efficient navigation strategies in
a few trials. Besides fast learning, the architec-
ture has 3 further appealing features. (1) Since
it learns from built-in reflexes, the robot is op-
erational from the very beginning. (2) The robot
improves its performance incrementally as it inter-
acts with an initially unknown environment, and
it ends up learning to avoid collisions even if its
sensors cannot detect the obstacles. This is a def-
inite advantage over non-learning reactive robots.
(3) The robot exhibits high tolerance to noisy sen-
sory data and good generalization abilities. All
these features make this learning robot’s architec-
ture very well suited to real-world applications.
We report experimental results obtained with a
real mobile robot in an indoor environment that
demonstrate the feasibility of this approach.

I. INTRODUCTION

Efficient navigation is critical for antonomons robots
operating in hostile environments, which are usually
unknown the first time robots face them. This paper deals
with the problem of controlling an antonomous mobile
robot so that it reaches efficiently a goal location in an
unknown indoor environment. Instances of tlie problem
where the goal is not inside the perception range of the
robot all the time are also considered.

An usnal approach to this problem is that of reactive
systems (e.g., [1]). However, basic reactive systems
suffer from two shortcomings.  First, they are diffienlt
to program. Second and most iimportant, pure reactive
controllers may generate innefficient trajectories since
they select the next action as a function of the current
sensor readings and the robot’s perception is limited.

To address this second shortcoming, some approaclies

This research has been partially supported by the ESPRIT Basic
Research Action number 7274.

15

combine planning and reaction (e.g., [2, 3}). In contrast
to classical planning that acts on a perfect (or sufficiently
good) model of the environment, these approaches only
require a coarse global map of the environment made
out of landmarks. Then, planning takes place at an
abstract level and all the low level details are handled
by the reactive component as the robot actually moves.
In the case of robots operating in initially unknown
environments, this global map can be built from sensory
data gathered either while travelling to the goal (e.g., [2])
or i1 a previous exploration phase (e.g., [3]).

Global maps are a valuable aid for navigation which
must be used when available. When not, we claim that
the addition of learning capabilities to reactive systems is
sufficient to allow a robot to generate efficient trajectories
after a limited experience. This paper presents experi-
mental results that support this claim: a real autonomous
mobile robot. equipped with low-resolution sensors learns
efficient goal-oriented obstacle-avoidance reactive strate-
giesin a few trials. Moreover, a learning approach like ours
even overcomes the first shortcoming of reactive systems.
As some researclhers have recently shown, the robot pro-
gramming cost is considerably reduced by letting the robot
learn automatically the appropriate navigation strategies
(e.g., [4, 5, 6,7, 8)).

This paper describes the testing of a reinforcement con-
nectionist architecture on a real autonomous mobile robot.
A reinforcement-learning robot learns by doing and does
not require a teacher who proposes correct actions for all
possible situations the robot may find itself in. Instead,
the robot simply tries different actions for every situation
it encounters and selects the most useful ones as measnred
by a reinforcement or performance feedback signal. Rein-
forcement connectionist learning [9, 10, 11] brings four
benefits to antonomous robots. First, this kind of learn-
ing robot, can hnprove its performance continuously and
can adapt itself to new environments. Second, the cou-
nectionist network does not need to represent explicitly



all possible situation-action rules as it shows good gener-
alization capabilities. Third, connectionist networks have
been shown to deal well with noisy input. data, a capability
which is essential for any robot workiug upon information
close to the raw sensory data. Fourtly, connectionist learn-
ing rules are well suited to on-line and real-time learning.

In addition to these benefits, the architecture described
in this paper also overcomes tliree critical limitations of
basic reinforcement connectionist learning tliat prevent its
application to antonomons robots operating in the real
world. The first and most important limitation is that
reinforcement, learning might require an extremely long
time. The main reason is that it is hard to determine
rapidly promising parts of the action space where to
search for suitable reactious. The second limitation lias
to do with the robot’s behavior during learning. Practical
learning robots should be operational at any moment and,
most critically, they should avoid catastroplic failures
such as collisions. Finally, the third Hinitation concerns
the inability of “monolithic” connectionist networks —
i.e., networks where knowledge is distributed over all the
weights— to support incremental learning. In this kind
of standard networks, learning a new rule (or tuning
an existing one) could degrade the kuowledge already
acquired for other sitnations.

An important, assunption of our approach is that the
robot receives a reinforcement signal after performing
every action. Althiongh this assimnption is hard to satisfy
in many reinforcement learning tasks, it is not in the case
of goal-directed tasks since the robot can easily evaluate
its progress towards the goal at any moment. A second
asstiption of our approach is that the goal location is
kuown. In particular, the goal location is specified in
relative cartesian coordinates with respect to the starting
location.

II. EXPERIMENTAL SETUP

The system composed by the robot and the reinforce-
ment contectionist coutroller has been called TESEO. The
pliysical robot is a wheeled cylindrical mobile platforin of
the Nowmad 200 family . It has three independent motors.
The first motor moves the three wheels of the robot to-
gether. The second one steers the wheels togethier. The
third motor rotates the turret of the robot. The robot
has 16 infrared sensors and 16 sonar sensors, from which
distances to the nearest obstacles can be estimmated, and
20 tactile sensors detect collisions. The infrared and sonar
sensors are evenly placed around the perimeter of the tur-
ret. Finally, the robot has a dead-reckoning system that
keeps track of the robot’s position and orientation.

The connectionist controller waps the aurently per-
ceived situation into a spatially continvous action. Tlen,
the controller waits until the robot has finished to perform

16

the corresponding motor command before conputing the
associated reinforcement signal and the next action. We
will describe next what the input, output and reinforce-
ment signals are.

The input to the connectionist network consists of a
vector of 40 components, all of themn real nmumbers in the
interval [}, 1]. The first 32 components correspond to the
infrared and sonar sensor readings. In this case, a valne
close to zero means that the corresponding sensor is de-
tecting a very near obstacle. The remainiug 8 components
are derived from a virtnal sensor that provides the dis-
tance between the current and goal robot locations. This
sensor is based on the dead-reckoning system. The 8 comn-
ponents correspond to a coarse codification of an inverse
exponential function of the virtnal sensor reading. The
main reason for using this codification schemne is that,
since it achieves a sort of interpolation, it offers tliree theo-
retical advantages, namely a greater robustness, » preater
generalization ability and faster learning.

The ontput of the connectionist network consists of a
single component. that controls directly the steering motor
and indirectly the translation and rotation motors. This
component is a real number in the interval [—180,180]
and determines the direction of travel with respect to the
vector connecting the curent and pgoal robot locations.
Once the robot lias steered the commmanded degrees, it
trauslates a fixed distance (10 inches) and, at the saine
tilne, it rotates its turret in order to maintain the front
infrared and sonar sensors oriented toward the goal.

In this way, a relative codification of botli sensor read-
ings and motor commands with respect to the goal di-
rection is always maintained. This codification scheme is
directly responsible for TESEO’s generalization capabili-
ties.

The reinforcement, signal is a real munber in the interval
[—3,0] which 1measures the cost of doing a particular action
in a given situation. The cost of an action is directly
derived from the task definition, which is to reach the
goal along trajectories that are sufficiently short and, at
thie same tiine, have a wide clearance to the obstacles.
Thus actions inewr a cost which depends on both the
step clearance and the step lengtli. Concerning the step
clearance, the robot is constautly updating its sensor
readings while moving. Tlns the step clearance is the
shortest distance 1measured by any of the sensors wlile
performing the actiow.

Finally, TESEO is equipped with a low-level asyncliro-
Hous emergeticy rontine to prevent, collisions. The robot
stops and refracts whenever it detects an obstacle in front
of it which is closer than a safety distance.



III. EXTENSIONS TO BASIC REINFORCEMENT LEARNING

TESEO’s aim is to learn to perform those actions
that optimize the total reinforcement received along the
trajectory to the goal. As mentioned in the Introduction,
TESEO has been designed to overcome 3 limitations of
basic reinforcement learning: slow convergence, lack of
incremental improvement, and failure to be operational
from the very beginning. The following three aspects of
TESEO’s architecture address these limitations.

First, the connectionist controller is a modular network,
each module codifying a set of simnilar reaction rules. That
is, these rules map similar sensory inputs into similar
actions and, in addition, they have similar long-term
consequences. Modularity gnarantees that improvements
in the response to a given sitnation will not negatively
alter other unrelated reactions.

Second, TESEO explores the action space by concentrat-
ing the search around the best actions currently known.
The width of the search is determined by a counter-bused
scheme associated to the modules (see Section IV.B). This
exploration technique allows TESEO to avoid experiencing
irrelevant actions and to minimize the risk of collisions.

Third, instead of learning from scratch, TESEO utilizes
a fixed set of busic reflezes every time its connectionist
controller fails to generalize correctly its previous experi-
ence to the current situation. The connectionist controller
associates the selected reflex with the perceived sitnation
in one step. This new reaction rule is tumed subsequently
through reinforcement learning. Basic reflexes correspond
to previous elemental knowledge abont the task and are
codified as simple reactive behaviors [1]. BEach reflex se-
lects one of the 16 directions corresponding to the current
orientations of the infrared and sonar sensors. We have
chosen this fixed set of directions becanse they are the
most informative for the robot in terins of obstacle detec-
tion. It is worth noting that, except in siluple cases, these
reflexes alone do not generate efficient trajectories; they
just provide acceptable starting points for the reinforce-
ment learning algorithm to search appropriate actions. In-
tegrating learning and reaction in this way allows TESEO to
foens on promising parts of the action space inmnediately
and to be operational from the very beginning.

IV. CONTROLLER ARCHITECTURE

The connectionist controller is a modular two-layer
network (Fig. 1). The first layer consists of units with
localized receptive fields, which we call exemplars, becanse
each of them represents a point of the iuput space and
covers a limited area aromd this point. The second
layer is made of one single stochastic linear wuit, the
output unit. There exists a full counectivity between the
exemplars and the output, nuit,.

17

Action
Unit

Exemplar
Units

Situation

Fig. 1. Controller architecture.

A. Ezemplars

The activation level of an exemplar is a value in the
interval [0, 1], it being 0 if the perceived situation is outside
its receptive field, and 1 if the situation corresponds to
the point where the exemplar is centered. The jth module
consists of the exemplars €], . . ., eJ, and their related links.

All modules respond to each perceived situation, but
only the module owning the exemplar with the maximum
response propagates the activities of its exemplars to the
output unit. If no exemplar “matches” the perceived situ-
ation —i.e., if the input does not fall in the receptive field
of any exemplar—, then the basic reflexes are triggered
and the cirrent situation becomes a new exemplar. Sec-
tion V.A provides more details on this resource-allocating
procedure.

The modules are not predefined, but are created dynam-
ically as TESEO explores its environment. Every module
7 keeps track of four adaptive values. First, the width of
the receptive fields of all the exemplars in this module, d;.
Second, the expected total future reinforcement, b;, that
the robot, will receive if it uses this module for computing
the next action. Third, a counter that records how many
times this module has been used without improving the
robot’s performance, ¢;. Fourth, the prototypical action
the robot shonld normally take whenever the perceived
sitnation is classified into this module, pa;. There are as
many prototypical actions as reflexes. Thus the first one is
the direction of the front infrared and sonar sensors —i.e.,
a deviation of 0 degrees from the vector connecting the

Best Coby Available




pa

5

Module j

Fig. 2. The output unit.

anrent, and goal robot locations—, the second one is 22.5
degrees, and so on. Sections V.A and VLB explain how
puy is initially determined and how it evolves, respectively.

After reacting, the evaluator compnutes the reinforce-
ment signal, z, as specified in Section I1. Then, if the ac-
tion was computed through the modnle 5, the difference
between z and b is used for learning (see Section V.D).
Only the weights of the links associated to the winning
modinle 7 are modified.

B. Output Unit

The output of the connectionist conutroller is a proto-
typical action pa, normally the prototypical action of the
winniug module, plus a certain variation s that depends
on the location of the perceived sitnation in the input, suh-
space dominated by that module (Fig. 2).

In order to find a suitable action for each situation
througl reinforcement learning, TESEO needs to explore
the action space. However, this exploration is not, con-
ducted upon the whole action space, but. only around the
best. actions currently known.  Since each action is the
sumn of two components, pe and s, the exploration mecha-
nism works on each of thein separately. This exploration
mechanisim depends on ¢;, the conter associated to the
winning module.

On the one hand, the exploration mechanism selects
pa from the prototypical actions associated to all the
modules that classify the perceived situation. That is,
if the situation is located in the receptive field of one of
the exemplars of the module 1, then pa,, is a candidate.
Assiming 7 to be the winning module, the selection goes
as follows. If ¢; is not divisible by, say, 3 then pa; is
chiosen.  Otherwise, pa is taken to be the prototypical
action associated to the modile i with the best expected
total future reinforceinent, b,,. The basic idea behind this

18

exploration mechanism is that the winning module could
well benefit from the knowledge of neighboring modules.

On the other hand, the deviation s from pa is computed
throngh a stochastic process in the interval [—45¢,45°].
Thus, TESEO will only explore actions between pa and its
four neighboring prototypical actions (two to the left and
two to the right). The computation of s is done in three
steps.

The first step is to determine the value of the stochastic
process’ parameters. The mean g is a weighted sum of the
activation levels of the exemplars €7, .. .| e of the winning

module:
n

p= E 11)',1([;,

e=1

(1)

where w{, is the weight associated to the link between (:‘L
and the output unit, and u.';; is the activation level of f:’k;.
The variance @ is proportional to ¢;. This follows from
the idea that the most often the module 5 is used withont
improving TESEO's performance, the higher o must be.

In the second step, the nnit caleulates its activation level
I which is a normally distributed random variable:

L= N(p,0). (2)

It the third step, the unit, computes s:

45, if 1> 45,
s=q —45, ifl < —45, (3)
l, otherwise.

V. FIVE LEARNING MECHANISMS

A. Network Growth.

The first learning mechanism makes the controller net-
work grow as a function of the inputs received. Initially,
there exist neither exeruplars nor, consequently, modules
aud the resource-allocating procedure creates them as
they are needed.

As mentioned in Section IV A, if no exemplar “imatches”
the perceived situation, then the basic reflexes are trig-
gered and the errent sitnation becomes a new exemplar.
That is, both represent, the saine poiut of the input, space.
The weight of the liuk from this exemplar to the ont-
put wnit is initially set to zero and evolves subsequently
through reinforceinent, learning.

The new exemplar is added to one of the existing
modules if its receptive field overlaps the receptive fields of
the module’s exemplars and the selected reflex is the sane
as the module’s prototypical action. The first condition
assires that every modile will cover a connected input
sithspace.



If any of the two conditions above is not satisfied,
then the new exemplar is added to a new module. This
module consists initially of the exemplar and its associated
connections. Concerning the four parameters associated
to this new module f, they are initially set to the following
values: dy equals 0.5, ¢y equals ), pay is the selected reflex,
and by is estimated on the basis of the distance from the
next location to the goal and the distance from the next
location to the perceived obstacles in between the robot
and the goal.

B. Tuning Exemplars

The second learning mechanism moves the position of
the exemplars €], . .., €, of the winning modnle 5 in order
to better cover the input subspace dominated by that
module. That is, the coordinates of the k™ exemplar,
v, are updated proportionally to how well they matches
the input coordinates x:

vit+1) = vi(t) +exal(t)x [x(t) - vi®)], (4)
where € is the learning rate. In the experiinents reported
below, the value of e is (.1,

C. Improving Reinforcement Estimates

The third learning mechanism is related to the update
of the future reinforcement estimates b;, and it is based
on temporal difference (TD) methods [12].

Every value b; is an estimate of the total fture
reinforcement TESEO will obtain if it perforins the best
currently known actions that take it from its current
location (whose associated observed situation is classified
into the 5** modnle) to the goal.

Consequently, the value b; of the module j should, after
learning, be equal to the surn of the cost z of reaching the
best next module i plus the value b;!:

by =

= ax (z2)+b;. 5
Arcfll,ﬁm.s( )+ & ( ))
In order to iteratively update the valnes of b;, so that
finally (5) holds for all of themn, we have used the simplest
TD method, i.e. TD(0) (see [12] for details). If the
situation perceived at time ¢ is classified by modnle 7 and,
after performing the computed action, the next situation
belongs to module ¢ and the reinforcement signal —or
cost— is z(t + 1), then:
bi(t+1) =b;(t) +mx* [2(t+ 1) +bi(t) —b;(8)].  (6)
The intensity of the modification is controlled by 1,
which takes the value 0.75 when TESEO beliaves better

1 As described in Section II, z takes negative values. So, mini-
mizing future cost corresponds to maximizing futnre reinforcement.

19

than expected, and 0.075 otherwise. The rationale for
modifying less intensively b; when z{t+1)+b;(t)—b;(t) <0
is that the error in the estimation is probably due to the
selection of an action different from the best currently
known one for the module j.

D. Weight Update

The fourth learning mechanism concerns weight mod-
ification and uses the classical associative search (AS)
[9]. AS uses the estimation given by TD to update the
situation-action mapping, which is codified into the con-
nectionist controller:

wi(t+1) = wh(t)+ax [2(t+1)+b:(t) —b;(1)] * 41 (8), (7)

wliere a is the learning rate, and qﬁi is the eligibility factor.

The eligibility factor of a given weight measures how
influential that weight was in choosing the action. In our
experiments, 45';; is computed in such a manner that the
learning rule corresponds to a gradient ascent mechanism
on the expected reinforcement [11]:

olnN

3,0
Oy,

0 = 0t

#1.(t) = (8)
where N is the normal distribution function in (2). The
weights wi are modified more intensively in case of reward
—i.e., when TESEO behaves better than expected— than
in case of penalty. These two values of « are 0.2 and 0.02,
respectively. The aim here is that TESEO maintains the
best sitnation-action rules known so far, while exploring
other reaction rules.

VI. FOUR LEARNING OPPORTUNITIES

Let us present now the four occasions in which learning
takes place. The first arises during the classification phase,
the next two happen after reacting, and the last one takes
place when reaching the goal.

A

Unexperienced Situation

If the perceived situation is not classified into one of
the existent mocules, then the basic reflexes get control of
the robot, and the resource-allocating procedure creates a
new exemplar which is added either to one of the existing
modhiles or to a new module.

B. Performang within Erpectations

If the perceived sitnation is classified into the module j
and z(t + 1) + bi(t) — b;(t) = k;, where k; is a negative
constant, then (i) the exemplars of that module are tuned
to make them closer to the situation, (44) the weights

Best Copy Available



associated to the connections between the exemnplars and
the output unit are modified using the AS reinforcement,
learning rule, (¢4¢) b; is updated throngh TD(0), and (i)
dj, ¢;, and pa; are adapted.

The adaptive parameters are updated differently in case
of reward than in case of penalty. In case of reward, d; is
increased by 0.1, ¢; is initialized to 0, and if the output of
the action unit, pa + s, is closer to a prototypical action
other than paj, then pa; becomes this new prototypical
action. In case of penalty, ¢; is increased by 1 and d; is
decreased by 0.1 if it is still greater than a threshold &,.

C. Performing rather Badly

If the perceived situation is classified into the module 5
and z(t + 1) 4+ b;(t) — b;(t) < k, then the topology of the
network is slightly altered and d; is decreased by 0.1 if it
is still greater than a threshold &,

If the total future reinforcement computed after react-
ing, z + b;, is considerably worse than the expected one,
b;, this means that the situation was incorrectly classified
and needs to be classified into a different inodule.

The resonrce-allocating procedure creates a new exemn-
plar, €,, that has the same coordinates as the perceived
sitnation, but it does not add it to any module. The next
time this situation will be faced, e, will be the closest
exemplar. Consequently, no module will classify the situ-
ation and the basic reflexes will get control of the robot.
Then, the resource-allocating procedure will add e, either
to one of the existing modules or to a new modnle as de-
scribed in Section VAL

D. Reaching the Goal

Finally, whenever the goal is reached, the valne b; of
every winning module j along the path to the goal is
also npdated in reverse chronological order. Tlns, TESEO
needs to store the pairs (j(¢), z(t + 1)) along the current
path.  This supplementary update only accelerates the
convergence of the b;’s, but, does not. change their steady
values [13].

VII. EXPERIMENTAL RESULTS

TESEO’s performance has been tested on a corridor with
offices at both sides. The task is to generate a short but
safe trajectory from inside an office to a point at the end
of the corridor. TESEO achieves the target location every
tite and it never gets lost or trapped into malicions local
maxitma. The first time it tries to reach the goal it relies
alinost all the time on the basic reflexes. Essentially, the
basic reflexes make TESEO travel in the direction that (2)
is the closest to the enrrent one, (44) is the safest, and (i)
brings TESEO toward the goal. As illnstrated in Fig. 3,
i the first trial, TESEO enters into a dead-end section of

20

®

Fig. 3. The enviromnent and first. trajectory generated for a starting
location within the office. Note that TESEO has some problems in

going through the doorway.

the office (but it does not get trapped into it) and even
it collides against the door frame because its sensors were
not able to detect it. Collisions happened because the
fraine of the door is relatively thin and the incident angles
of the rays drawn from the sensors were too large resulting
in specular reflections.

Thns this simple task offers TESEO the opportunity to
learn three skills. The first one is to smooth out certain
sections of the trajectory generated by the basic reflexes.
The second skill is to be able to avoid dead-ends or, in
genteral, not follow wrong walls. The third and most
critical is to avoid obstacles that its sensors cannot detect.

TESEO learns these three skills very rapidly. It reaches
the goal efficiently and without, colliding after travelling
10 times from the starting location to the desired goal
(Fig. 4). The total length of the first trajectory is
approximately 13 meters while the lengtli of the trajectory
generated after TESEO has learned the suitable sequence
of reactions is abont 10 meters. This experiment was run
several times, obtaining similar results.

Concerning the acquisition of the third skill, TESEO
associates safe actions to malicions sitnations —made
ot of a coarse codification of the distance to the goal
and of uncorrect estimated distances to the obstacles—
imuediately after colliding with unperceived obstacles.
Moreover, due to its noise tolerance and generalization
capabilities (see below), TESEO only hits a few times with
obstacles that its sensors cannot detect before learning to



®

Fig. 4. Trajectory generated after travelling 10 times to the goal.

avoid them. In addition, the learned navigation strategies
have the following features. First, the trajectories are
quite smooth even if the basic reflexes lhiave not been
programmed in this way (it is rather difficult to do it!!)
and the reinforcement signal only penalizes long and
unsafe paths. Second, the acquired reactions are robust
to noisy sensory date. Since sensors are not perfect,
TESEO does not perceive the same sitnations along similar
trajectories. However, it is still able to generate suitable
actions using only its acquired reactions.

Fig. 5 illustrates instances of the reaction rules learned.
For every location considered (little circles) the move to
be taken is depicted. Fig. 5 shows that TESEO generates
solution paths from any starting location inside the room.
This simulation experiment indicates that TESEO exhibits
good generalization abilities, since it can handle many
more situations than those previously perceived.

Once TESEO has learned efficient navigation strategies,
occasional obstacles are put in the way to the goal. TESEO
moves around the obstacles and then it returns to the
original, efficient trajectory. In other experiments, the
goal is changed. TESEO learns also to navigate to this
new goal in a few trials and it is still able to reach the
first goal as efficiently as before.

VIII. RELATED WORK

The robot learning architectiwe described in this paper
shiows some resemnblances with several previous works.
In the case of goal-directed tasks, it is possible to use

21

k&k\\\\\\\'\\\\\\\\\‘ \ !

Fig. 5. Generalization abilities: Situation-action rules applied for a
sample of locations within the office and the first part of the corridor.

the future reinforcement. associated with situation-action
pairs to define a vector field over the environment. Then,
the robot will normally perform the action that follows the
gradient of the vector field. Seen in this way, our approach
is reminiscent of potential field approaches (e.g., [14,
15]). However, our approach differs from them in three
fundamental aspects. First, any potential field algorithm
relies on predetermining a potential function that will
allow the robot to reach the goal efficiently. Contrarily,
a reinforcement approach like ours is adaptive in that it
starts with an initial and inefficient vector field generated
from rough estimates of the future reinforcements and
adapts the field to generate efficient trajectories as it
converges to the correct estimates throngh TD methods.
Second, the kind of vector fields that can arise in our case
are nmch more varied than those defined by a weighted
sum of the potential fields originated by the different
obstacles. Third, most of the potential field approaches
require a global model of the environment while our
approach only needs local information obtained from the
robot’s sensors. There exist also potential field approaches
which only need local workspace models built out of
sensory information (e.g., [14]), but they cannot produce
efficient trajectories.

The benefits of letting the robot learn automatically
the appropriate reaction rules have recently been empha-
sized by several anthors. [4] combines reinforcement con-
nectionist learning and teaching to reduce the learning
timne. In this fratnework, a Inunan teacher shows the robot
several instances of reactive sequences that achieve the
task. Then, the robot learns new reaction rules fromn these

Best Copy Available



examples. The taught reaction rules help reinforcement
learning by biasing the search for suitable actions toward
promising parts of the action space. In our approach, the
basic reflexes play the same guidance role, requiring only
a programmer instead of a teacher..[5] use Kohonen maps
[16] to split the sensory input space into clusters, and then
associate an appropriate action to every cluster throngh
reinforcement learning. Their architecture maps all the
situations of a given cluster to a single action, and classi-
fies sitnations solely by the similarity of their representa-
tions. Our architecture classifies sitnations, first, based on
the similarity of their input representations. But, then, it
also incorporates task-specific information for classifying
based on the similarity of reinforcements received. In this
manner, the input space is split into consistent clusters
since similar future reinforcement corresponds to similar
suitable actions for similar sitnations. [7] integrate induce
tive neural network learning and explanation-based learn-
ing. The domain theory is previously learned by a set of
neural networks, one network for each discrete action the
robot can perforin. Our basic reflexes also represent, prior
knowledge about the task; however, they are mmnch more
elemental and are used in a different way.

Our approach is also related to the Dyna integrated
architectures introduced by [17] and further extended by
[4, 18, 19], among others. Roughly, Dyna uses planning
to speed up the acquisition of reaction rules through
reinforcement, learning. Dyna also learns a global model
of the task on which it plauns.

IX. SUMMARY AND FUTURE WORK

We have described a reinforcement, learning architecture
that makes an antonomons mobile robot rapidly learn ef-
ficient navigation strategies in an nuknown indoor envi-
ronment. Our robot TESEO not only is operational from
the very beginning and improves its performance with ex-
perience, but also learns to avoid collisions even when its
sensors cannot detect the obstacles. This is a definite
advantage over non-learning reactive robots. TESEO also
exhibits incremental learning, high toleratice to noisy sern-
sory data, and good generalization abilities. All tliese fea-
tures make our robot learning architecture very well suited
to real-world applications.

However, the current implementation of our approach
suffers from one main limitation, nawely it requires a
reliable odometry system that keeps track of the robot’s
relative position with respect to the goal.  Currently,
odomtery is totally based on dead-reckoning. In all the
experiments we have carried out so far, dead-reckoning
has proven sufficient, to reach the poal. As long as its
estimation of the position of the robot does not differ
greatly from the actual one, the connectionist controller is
still able to produce correct actions. But, dead-reckoning

22

will probably be insufficient in more complicated missions
requiring long travels and many turns.

Current work focusses on reliable odometry. The goal
is designated by a modulated light beacon and the robot
is equipped with sensors especially designed to detect
that light. Whenever TESEO detects the goal it uses the
beaconing system; otherwise, it relies on dead-reckoning.

REFERENCES

[1) R.A. Brooks, “A robust layered control system for a mobile
robot,” IEEE Journal of Robotics and Automation, vol. 2, pp.
14-23, 1986.

D.P. Miller & M.G. Slack, “Global symbolic maps from local
navigation,” Proc. of the 9th National Conf. on Artificial
Intelligence, pp. TH0-T55, 1991,

JH. Connell, “S8S: A hybrid architecture applied to robot
navigation,” IEEE Int. Conf. on Robotics and Automation,
pp. 2719-2724, 1992,

L.-J. Lin, “Progranuning robots using reinforcement, learning
and teaching,” Proc. of the 9th National Conf. on Artificial
Intelligence, pp. T81-T86, 1991.

K. Berns, R. Dilhmann, & U. Zachmann, “Reinforcement-
learning for the control of an autonomous mobile robot,”
IEEE/RSJT Int. Conf. on Intelligent Robots and Systems, pp.
1808-1815, 1992,

J. del R. Millin & C. Torras, “A reinforcement. connectionist,
approach to robot. path finding in non-maze-like environments,”
Machine Learning, vol. & pp. 363-305, 1092,

T.M. Mitchell & S.B. Thrun, “Explanation-based neural net-
works learning for robot. control,” In C.L. Giles, S.J. Hanson,
and J.D. Cowan (eds.), Advances in Neural Information Pro-
cessing Systems 5, pp. 287-204. San Mateo, CA: Morgan Kaut-
mann, 1903,

J. del R. Millin, “Reinforcement learning of goal-directed
obstacle-avoidance reaction strategies in an autonomons mobile
robot,” Robotics and Autonomous Systemns, in press.

A.G. Barto, R.S. Sutton, & C.W. Anderson, “Neuronlike
elements that can solve difficult learning control problems,”
IEEE Trans. on Systems, Man, and Cybernetics, vol. 13, pp.
835-8406, 1983.

A.G. Barto, R.S. Sutton, & C.J. Watkins, “Learning and se-
quential decision making,” Tech. Report 89-95, Dept. of Com-
puter and Information Science, University of Massachusetts,
Antherst, 1989,

R.J. Williams, “Simple statistical gradient-following algorithins
for connectionist reinforcement learning,” Machine Learning,
vol. &, pp. 229-256, 1992,

R.S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, pp. 9—44, 1U88.

S. Mahadevan & J. Connell, “Automatic programmming of
belavior-based robots using reinforcement. learning,” Artificial
Intelligence, vol. 55, pp. 311-365, 1992,

J. Borenstein, & Y. Koren, “Real-time obstacle avoidance for
fast mobile robots,” IEEE Trans. on Systems, Man, and
Cybernetics, vol. 19, pp. 1179-1187, 1989,

J. Barraquand & J.C. Latombe, “Robot. motion planning:
A distributed representation approach,” The International
Journal of Robotics Research, vol. 10, pp. G28-649, 1091.

T. Kohouen, Self-Organization and Associative Memaory. Sec-.
ond Edition. Berlin: Springer-Verlag, 1988,

R.S. Sutton, “Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming,”
Proc. 1th Int. Conf. on Machine Learning, pp. 216-224, 1990,
L.-J. Lin, “Self-improving reactive agents based on reinforce-
ent learning, planning and teaching”, Machine Learning, vol.
B, pp. 293-321, 1992.

J. Peng & R.J. Williams, “Efficient learning and planuning
within the Dyna framework,” Adaptive Beliwvior, vol. 1, pp.
437-454, 1993.

(2]

3]

[4

[5

©

[7]

[8]

9]

[10}

(1]

(12]

(13]

{14]

(15)

{16)

(17]

18]

{19]



