INTERACTIVE PLANNING USING GRAPHICAL
SIMULATION FOR ROBOT TASK PROGRAMMING

Federico Thomas and Luis Basafiez
Institut de Cibemnética (UPC - CSIC)
Diagonal 647, 2 planta
08028 Barcelona, Spain

ABSTRACT

Any robot programming environment would be greatly enhanced if the tedious process of
specifying a task is performed automatically, allowing the user to state in terms of constraints
the properties the task is supposed to have, without the need to manually adjust locations of
the robot arm or of the workpieces to handle.

In order to reach this goal a robot programming environment should provide a friendly inter-
active way to specify a task and a powerful graphic simulation tool to show its execution, as
well as the ability to interactively modify the program upon the results obtained.

This paper focuses on novel interactive planning aspects, providing some ideas that facilitate
off-line programming of robotic tasks using an interactive graphic system. Some of them have
been already implemented using as a test-bed a graphic simulator developed at the Institut de
Cibernética.

INTRODUCTION

The main goal of robot graphical simulation is to facilitate planning, programming and verifi-
cation of robotic applications by solving, either automatically or with human assistance, some
of the geometric and kinematic problems that arise in those applications.

Artificial Intelligence-based task planning systems, such as the one described in [1], with
very low requirements for human interaction constitute the more promising approach to robot
programming. Nevertheless, while waiting for the actual availability of such a systems, a
realistic approach could be to develop interactive computer graphics tools capable of assisting
the programming of robot tasks [11].

The already commercially available systems (GRASP [5], ROBCAD 3D [5] and some others)
provide useful tools for: (a) robotic cell layout; (b) graphical simulation of robot motions;
(c) automatic detection of collisions; (d) specification of initial values for certain parameters;
and (e) some limited dynamic analysis.

Nevertheless, a number of difficult problems remains unsolved in CAD-based robot pro-
gramming environments. These include: (a) representation and analysis of tolerancing spec-
ifications and other forms of uncertainty; (b) modelling, analysis and verification of robot
programs incorporating sensors; (c) the use of geometric models to represent task constraints
in compliant motion control [12]; (d) automatic updating of robot programs upon modifica-

- = - B e e)

g gl e YT = g

379

tion of objects design data; (e) full automatic planning of collision free motions; (f) symbolic
description of transformations in terms of kinematic constraints; and (g) semantic reference
to subparts of workpieces.

Each of these unsolved problems leads to the corresponding subsystem to be developed for
assisting the programming of robot tasks, until artificial intelligence based task planning sys-
tems be fully implemented.

THE PROGRAMMING ENVIRONMENT

A test-bed environment [13] has been conceived as an useful and practical tool for off-line
programming of robots handling parts in highly cluttered robotic cells. Models of the objects
are created in ROBMOD [3] and translated to the internal representation of the system and
shaded animated hidden-surface-eliminated pictures of the scene are produced.

The package provides key elements for solving most common geometric problems in automatic
programming of assembly robots, including fast intersection detection. It also provides an
interpreter of VAL-II [15], allowing the user to simulate programs written in this language,
and a communications module [6] for terminal emulation of the MK-II PUMA controller and
its teach pendant. This module is also able to obtain information about the state of the robot
and to download robot programs.

The simulation system, written in the C language, is designed to run on any UNIX machine,
except for the representation module and the interface with the user, presently implemented in
SunCore [2] and SunWindows respectively, which are the only machine-dependent elements
of the package.

Additional modules allow the system to incorporate real time information from the actual
robotic cell as supplied by physical sensors. Till now, two such modules has been developed.

The first one makes use of a Matrox based vision system to determine geometric parameters
of parts present in the cell, the model of these parts having been previously defined. Then,
the models are instanced with the measured parameters values and included in the simulation.
The vision system also provides the position and orientation of the parts.

The second module gets 3D parts information by means of structured laser light, in combina-
tion with the Matrox vision system. This module is able to deal with unmodelled parts that,

in this way, can be incorporated in the simulation and taken into account in the programming
of the task.

INTERACTIVE PLANNING

In general, in any robotic application some elements (either components of the robot or
workpieces) have to be located in the available workin 8 space following a predefined sequence,
This can be done in an easier way by specifying spatial relationships among the components
instead of giving absolute transformations. To this end, we must be able of referring to these

3a0

JOINTS

B worLp e

Dvirw

JOINT 1 @@
JOINT 2)
somet 3 ()0
TOINT 4 ()
JOINT § G
IRINT & a@

ARM: & Righty
ELBOW: & Doun
WRIST: o Flip

CRIPPER: O Clowe

SPEED
1300 . -
ANGLES

({1 }] | |
DISTANCES

(100}] EENR]

VIREFRAME: & 0£f
INTERSECTIONS: O 011

File: Msim.dat

POINT OF YIIW

-

I

Test-bed environment designed for implementing the interactive planning concepts discussed

herein.

. -

e g P — e .

ey et gt —

——— S ———y " S—— " ——

-

-

C o e o e R

gy "ty T ¢ e, — = g e

381

components and of getting their final location given multiple spatial relationships. We have
built 2 module that accepts a set of geometric relationships between the moving object and a
fixed reference and returns, if possible, the corresponding transformation [4].

Any relationship given by the user must involve an element of the moving body, an element of
the fixed world, and the kind of relation that holds between them. As elements one can take
a point (usually a vertex of a body), a line (an edge), or a plane (a face), and as relationships,

coincidence, parallelism, perpendicularity, or angle formed, in any combination that makes
sense.

The set of relationships given by the user is transformed into a set of purely rotational
constraints and a set of purely translational constraints. Purely rotational constraints are of
two types: parallelism of vectors, and angle formed by two vectors. Perpendicularity is treated
as a particular case of angle formed. Purely translational constraints express the fact that a
point lies on a plane, a line, or another point. The process followed to find the transformation
involves first solving the rotational part, and then the translational one [4]. The system is not
complete, in the sense that it is not able to solve the problem whenever the set of relationships
determines a unique transformation.

It would be also interesting to introduce relationships involving subparts of the workpieces,
such as grooves, holes, etc. This problem is closely related to the topic of feature recognition
and, unfortunately, it is still an open problem [10]. In fact, the number of different processes,
other than graphics, which can be actually performed in solid models is still small [17].

Once the sequence of motions have been specified, one should ensure that they are free of
collisions. There have been many robot simulators in the past that perform some sort of
collision detection. Several of these were designed to perform collision avoidance as well.
References [8], and [9] are good examples of early developments. It is important to have
a system that performs collision detection with the entire arm, each time it moves. In the
implemented system, detection is done by moving the simulated robot small increments along
its trajectory and performing a static collision check at each point using a fast method that
employs a hierarchy of enclosing objects.

The significance of the algorithm used [14] is that it detects intersections between non-convex
polyhedra by simply checking sign changes of some vector triple products, which only involve
vertices of the polyhedra. Therefore, no new geometric entities are constructed, contrary to
the usual way of dealing with non-convex cases.

Collision avoidance implies the more difficult problem of proposing a path around an obstacle
once a potential collision has been detected. The collision avoidance problem can be solved
by using a potential field approach [7] by translating non-intersection constraints into “energy”
functions on the position parameters, non negative functions with zeroes at the goal location.

Spatial relationships can also be formulated in terms of energy functions, mainly those for
which the above mentioned algebraic method is unable to deal with. Then, since energy
functions compose by addition, the solution to a system of constraints is the solution to a
single equation, the sum of the energy terms. This can be seen of an extension of the potential
field approach to path-planning to the more general problem of specifying robot tasks,

382

While conventional algebraic methods return no solution to an overdetermined system, the
energy minimum solution is tolerant to over- and under-determined systems, so it can be
trapped in local minima. The solution proposed in [16] to this problem is again user inter-
action. Since constraints are satisfied by moving through a curve in parameter space using a
numerical method, the constraint solving process can itself be animated, permitting the user
to assist the solver in escaping local energy minima. As already pointed out in [16] such
minima are usually easy to interpret geometrically, then the user can often correct the situation
by manually repositioning a part. In fact, the user can literally push or pull on parts of the
models with the mouse pointer, introducing a time-varying energy term into the equation, to
bump it out of local minima.

Then, as a summary, the basic interaction required for robotic assembly task planning, at the
level presented here, is performed through two basic operations: (a) interactive selection of
faces and subparts (features) of the elements in the work cell; and (b) interactive application
of virtual forces using a pointing device.

Besides these two basic interactive operations, commands from the user are also accepted at
any time, which are basically of two kinds: VAL sentences and representation commands.

CONCLUSIONS

We have focused on interactive planning aspects, providing some ideas in order to facilitate
off-line programming of robotic assembly tasks using an interactive graphic system. It has
been shown that, while the interactive reference to elements and subparts of workpieces are
of great interest for easy specification of assembly tasks, the application of virtual forces is
useful during the planning process to aid the planner to escape from dead ends.

The aim of the presented environment is twofold: to get deeper insight in the problem of
automatic programming of robots, and to provide an efficient and well-structured system on
top of which it would be easy to build other environments with higher capabilities. The
system briefly described can be seen as an implemented intermediate step towards a more
sophisticated one [1] that would allow, for example to deal with knowledge data bases and
to apply artificial intelligence tools.

Other capabilities, such as performance analysis involving time variables (dynamic behaviour
of the robot, cycle time of a repetitive task, etc.), seem much more difficult to be introduced.
Presently, the current implementation, as many other early simulators, do not account for
dynamics. They repond ideally with no slop or backslash in the joints. Feedback control
dynamics is considered instantaneously. There are no gravitational or inertial effects. The
links have infinite acceleration and deceleration, therefore having no overshoot errors.

Finally, as with any simulator, the accuracy of the model limits the extent that the system
can be used. The graphic system introduces the errors associated with the definition of the
workpieces and their actual location in the workcell. The automatic generation of sensory
strategies is an important point for future developments.

——

Ay m——

T A e e e e e

. 4

e =

T gt~ e — N -

~@pe

g — g =

7

—— -

m———

- "

m T T g P p gt T T g e g

g —

- —— g -

38¢
ACKNOWLEDGEMENTS

This work has been partially supported by the CICYT under the project ROB 89-0287 (Sis-
tema de percepcién con integracién multisensorial para robética y automatizacién).

REFERENCES

[1] L. Basafiez, C. Tomras, J. Ilari, and A. Sanfeliu, “Operation Specialists for Automatic
Programming and Monitoring of Robotic Assembly Cells”, Journal of Robotics and
Computer Integrated Manufacturing, Vol. 6, No. 4, pp. 269-276, 1989,

[2] R.D. Bergeron, P.R. Bono, and J.D. Foley, “Graphics Programming Using the Core
System,” ACM Computer Surveys, Vol. 10, No. 10, December 1978.

[3] S. Cameron, and J. Aillet, “ROBMOD: A Geometric Engine for Robotics,” IEEE Inter-
national Conference on Robotics and Automation, pp. 880-885, Philadelphia, U.S.A.
24-29 April 1988.

[4] E. Celaya, “LMF: A Program for Positioning Objects Using Geometric Relationships,”
AIENG 92 (Applications of Artificial Inzelligence in Engineering), Tuly 1992, University
of Waterloo, Ontario (Canada).

[5] S. Derby, “GRASP. From Computer Aided Design to Off-lina Programming,” Robotics
Age, February 1984,

[6] A. Izaguirre, “A C library to Control a PUMA 560 Using the DDCMP Protocol,”
GRASPLab Report, CIS Dep., Univ. of Pennsylvania, 1984.

[7) O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” The
Int. Jour. of Robotics Research, Vol. 5, No. 1, 1986,

[8] J.K. Myers, “RCODE: The Robotic Simulator with Collision Detection,” Tech Note SRI
International, December 1984.

[9] A. de Pennington, M.S. Bloor, and M. Balila, “Geometric Modelling: A Contribution
Towards Intelligent Robots,” 13th ISIR, pp. 7.35-7.54, Chicago, April 7-21, 1983.

[10] M.J. Pratt, “Solid Modeling and the Interface Between Design and Manufactures,”
IEEE Trans. on Comp. Graphics and Applications, JTuly 1984,

[11] P. Sjolund and M. Donath “Robot Task Planning: Programming Using Interactive
Computer Graphics,” 13th ISIR, pp. 7.122-7.135, Chicago, April 17-21, 1983,

[12] P. Simkens, J. de Schutter and H. Van Brussel, “Graphical Simulation of Compliant
Motion Robot Tasks,” INCOM 1989.

384

[13] F. Thomas, J. llari and L. Basaiez, “Paquete grafico para la programacion fuera-de-
linea y simulacién de un robot PUMA 560,” First Congress of the Spanish Robot
Association, November 1989,

[14] F. Thomas, and C. Torras, “Exact Interference Detection between Non-Convex Poly-
hedra,” submitted for publication.

[15) Unimation Inc., “User’s Guide to VAL-II”, Unimation Inc., Danbury, Conn., Version
1.1, August 1984,

[16] A. Witkin, K. Fleischer and A. Barr, “Energy Constraints on Parametrized Models,”
Computer Graphics, vol. 21, No. 4, July 1987.

(17} J.R. Woodwark, “Some Speculations on Feature Recognition,” Computer-Aided Design
20, 4, May 1988.

—_— ——— — e 2

——y ——— W

f— e

—_— —

