Using Interval Methods for Solving Inverse
Kinematic Problems

Albert Castellet and Federico Thornas

Institut de Robética i Informatica Industrial (CSIC-UPC), Gran Capita 2-4, 08034
Barcelona, Spain. E-mail: acastellei@iri.upc.es and fthomas@iri.upc.es.

Summary. [n this paper we present an algebraic analysis of the closure equation
of arbitrary single loop spatial kinematic chains, which allows us to use an interval
method based on interval cuts for solving their inverse kinematics.

The solution of a kinematic equation can be factored into a solution of both its
rotational and its translational components. We have obtained general and simple
expressions for these equations that are used to perform cuts. A branch and prune
strategy can be used to get a set of boxes as small as desired containing the inverse
kinematic solutions. If the kinematic chain is redundant, this approach can also
provide a discretized version of the solution set.

The mathematics of the proposed approach are quite simple and much more
intuitive than continuation or elimination methods. Yet it seems to open a promising
field for further developments.

1. Introduction

Solving loops of kinematic constraints [11] is a basic requirement when dealing
with inverse kinematics, task-level robot programming, assembly planning,
or constraint-based modeling problems. This problern is difficult due to its
inherent computational complexity (i.e., it is NP-complete} and due to the
numerical issues involved to guarantee correctness and to ensure termination.

Two basic approaches have been used for solving this problem: continu-
ation and elimination methods [10, 7]. The former is based upon homotopy
techniques to sclve a system of polynomial equations [13]. They compute the
solutions of the algebraic system by following paths in the complex space.
They are robust but slow. The latter approach is based on an algebraic for-
mulation, eliminating variables from a system of equations, and is used along
with algorithms for finding roots of univariate polynomials [9]. They can be
slow because of symbolic expansion and usually do not work for kinematic
chains with special geometries.

Recently, interval methods for solving systems of non-linear equations
have attracted much attention and have been explored by a variety of authors
[4]. They have already been used to solve some kinematic problems proving
to be robust but sometimes slow compared to continuation methods [5].

We have developed an algebraic analysis that allows us to obtain the
closure equations of an arbitrary kinematic chain in a well-conditioned way
so that they can be readily used by an interval method [2]. The method
adopted in our experiments consist in improving the known bounds on the

2 Albert Castellet and Federico Thomas

possible solutions using a set of inference rules called inierval cuis as defined
in [3].

In our case, the interval method receives a box, i.e. an interval tuple of the
variables of rotation and translation, specifying the initial bounds. Then, it
returns a set of boxes containing the different solutions. When the kinematic
chain is redundant, it is also shown how this method is able to provide a
discretized version of the underlying self-motion manifold. These ideas are
beening implemented using BIAS-PROFIL [6], a portable C++ class library.

This paper is structured as follows. Section 2 describes the used formu-
lation for the closure equations of an arbitrary kinematic chain. Section 3
gives an introduction to interval methods and in particular to those involv-
ing infervael cuts. In Section 4, our specific cuts are extensively explained. We
conclude in Section 5.

2. Background

Any closed kinematic chain can be described as a circular list of screws
X1,Xz,...,Xn, each one being orthogonal to the next one, so that its con-
figuration is determined by the angles ¢; around X; and the offsets d; along
X;. Then, its associated loop equation can be expressed as

[ITE)r¢)zZ=1 (2.1)

i=1

where T(d;) stands for a translation along the z-axis, R(¢;), a rotation
around the z-axis and Z, a rotation of #/2 radians around the z-axis. This
equation corresponds to the loop equation of what in [12] is called the n-bdar
mechanism (Figure 2.1).

(b)

Fig. 2.1. The n-bar mechanism {a} and definitions of the involved degrees of free-
dom (b).

Using Interval Methods for Solving Inverse Kinematic Problems 3

If we rename agi-1);2 = #: + 7 and a;;_1)y2 = di when ¢ is odd and
872 = ¢: + 7 and {;;» = d; when i is even, a;, a;, 0; and {; are the Denavit-
Hartenberg parameters of the mechanism, where the odd bars correspond to
links and the even bars to joints [3](Figure 2.2). Therefore, any single loop
mechanism with n/2 links can be represented by an n-bar mechanism by
restricting some of its degrees of freedom.

Axis i

Axis i -1 Link i — 1
Link ¢

Fig. 2.2. The Denavit-Hartenberg parameters of a mechanism (a) and the corre-
sponding ones in an n-bar mechanism {b).

Three bars are enough to reach any point in 3D space with arbitrary
orientation. Then, if the mechanism described by the Denavit-Hartenberg
parameters is not closed (e.g. a manipulator), we can always close the asso-
ciated n-bar mechanism with three bars, representing the position of the last
bar (the end-effector in a manipulator) with respect to the base.

As an example, the Denavit-Hartenberg parameters of the PUMA 560 are
those of Table 2.. The associated n-bar mechanism will have the vectors of
rotations and translations of Table 2..

d13, d14, P15, d1s, di4 and dys are used to represent the end-effector’s
position with respect to the robot base.

4 Albert Castellet and Federico Thomas

Table 2.1. Denavit-Hartenberg parameters of the PUMA 560.

I TEEE]
1 [i} 0 VCH
2t —xf2 0 0 8
3 0 /5] t;; 93
4 —1?/2 a3 iy 8,
sl =/2 0 0 4
6 —xf2 0 0 B

Table 2.2. The vectors of rotations and translations of an n-bar mechanism resp-
resenting the PUMA 560.

|1 2 3 4 5 6 7 8 9 10
¢|n h+m w2 fi+m w Gat+m w/2 Bitm —w/2 O+
d [i] 0 0 0 as 13 an t4 0 0
1 11 12 13 14 15
¢ | m/2 Bet+m d1a P dis
d 0 0 dia duy dig
Equation (2.1) can be factored into the following two equations [12}:
F(¢)=]JR(4:)Z=1 (2.2)
i=1
and
no d;
T(¢,d)=Y AN #)| 0 | =0, (2.3)
i=1 U
where
I k=141
! A !
A=) TIR@oz k<t
i=k

Equations (2.2) and (2.3) are called the rotetion and translation equations,
respectively.

The rotation equation can be extracted directly from the original loop
equation by simply removing all translations. It only assures that the final
orientation of the chain is the same as the first one, without constraining the
translation values. The translation equation, however, involves both transla-
tions and rotations. It states that the chain really closes, i.e. that the last bar
ends at the beginning of the first one without constraining its orientation.

Thus, the solutions to both the rotation equation (2.2) and the translation
equation (2.3} are the solutions to the loop equation (2.1).

Using Interval Methods for Solving Inverse Kinematic Problems 5

3. Interval methods

Interval methods manipulate upper and lower bounds on variables and are
based on interval arithmetic [4]. They have been used to solve systems of non-
linear equations, global optimization problems and to avoid rounding errors
due to floating-point representation of real nuinbers in computers. There
are many variants of these methods; some of them consist in improving the
bounds of the variables using a set of inference rules called interval cuts [8].
An interval cut is a procedure which cperates on a set of constraints and
a current box, reducing this box by deriving a new bound on one of the
variables. A box can be successively reduced by applying interval cuts to all
variables with all the constraining equations.

In our case, an interval method would receive a box, i.e. two interval
tuples </g,,...,I2,> and <ly,, ..., I4 > specifying the initial range of the
elements in d and ¢, respectively. In general, this box is highly degenerate,
since usually most of the variables are fixed by the mechanisin’s geometry.
Only the variables corresponding to the degrees of freedom of the mechanism
will vary within a range delimited by design constraints. When performing
an interval cut, the box will be reduced in one direction.

After reducing the box, three possibilities arise. First, the pruning oper-
ation may have resulted in an empty box, in which case we return failure.
Second, it may be the case that the interval associated with each variable
has reached a width below a specified accuracy. In this case we terminate
and return the box. If the pruning operation results in a box which is not
of sufficient accuracy, then we can split the box and two branches are gener-
ated. Then, solutions on each branch are recursively searched. This is what
in [5] is called a branch and prune strategy. This method would also be able
to provide a discretized version, up to a given resolution, of the underlying
sell-motion manifold of a redundant mechanism (i.e., the set of all solutions
(1))

Besides the wide variety of heuristics for finding useful cuts and for deter-
mining when to branch, the key point is to efficiently generate cuts to prune
the box.

In [8] and [5], three different cuts are described: the Newton cut, which
is based on the natural evaluation of interval functions, the Snake cut and
the Taylor cut, which are faster at the end of the process. These three cuts
follow the same schema: they evaluate the constraint equation for a fixed
value of the variable we want to cut. Then, by evaluating derivatives of the
constraint equation, we can infer the possible range of values of these vari-
ables. The aforementioned three cuts differ in the kind of evaluation used for
the equation and for its derivatives.

[Albert Castellet and Federico Thomas

4. Qur cuts

The constraint equations used to perform the cuts in our problem are the
rotation equation (2.2) and the translation equation (2.3). It is possible to
isolate the variable we want to cut and evaluate directly its range of possible
values for both equations. In doing so, we are minimizing the errors of the
three previous cuts, since we are evaluating directly the variable we want
to cut and, thus, the errors due to the evaluation of its derivative are not
introduced. This is why we often call them ezact? cuis.

In our case, three different exact cuts are possible: two cuts for the vari
ables of rotation —derived from both the rotation and translation equation—
and one cut for the variables of translation -derived from the translation
equation.

4.1 Cuiting ¢; with the rotation equation

The rotation equation (2.2) can be written as
AT OIR($)ZAL (6) =1 .

In this equation, the only matrix that involves ¢; is R{¢;), which can be
isolated as follows:

R(:) = (ZAT, (#)AT ()" .
Let us define V¥ as:

Vi 2 (ZAZ (AT (@) .

Since R(¢#;) = Vi, evaluating V* in a box of ¢ will give us all possible values
of R(¢;) for values of ¢ in that box. Thus, the chain can be effectively closed
if

i S S S
Lewv), and 0€ vy, vi5 vy, ,

where vjk denotes the (5, k) element of matrix V¥,
If the previous conditions hold, the possible values for ¢; will be:

$: = arccos(vhy N vhy) Naresin(vh, N —vhy) (4.1)

The interval of possible values for ¢; can be cut by intersecting the initial
range of ¢; with the interval obtained from (4.1).

Note that the arcsin function gives only values between —x/2 and +7/2.
However, we need to evaluate this function in an interval and get all possi-
ble values between 0 and 2x. Note that the result encompasses up to three
intervals. Something similar happens with the arccos function. Then, the in-
tersection of intervals in {4.1) can lead to as much as four disjoint intervals.
For the sake of simplicity, we take as the final interval for ¢; the convex hull
of the resulting intervals.

Using Interval Methods for Sclving Inverse Kinematic Problems 7
4.2 Cutting ¢, with the translation equation

We can also isolate ¢; from the translation equation (2.3):

i dk dk
ZA‘.“—n(qb)(0) (cb)lz AfzNe (0)] =0 .
k=1 0 k=il 0

Multiplying by (Ai~!(¢))* we get

dp. dy.
(Al (¢) ZA‘ 1(¢)(0)+R(¢;)z > Af+1'(¢)(0) =0.

k=i41
Defining
i—1 dk
wrorEaro(t)
k=1 0
and
A8 (d,,)
wi=) AffMNe) :
E=i+1 0

we can write

dk . .
0 | —wj=R(g;)Zw] .
0

In other words,

0 -1 0 d; :)

cos¢p; 0 —sing; 0 w,“ _ Wot ,_ ¢

sing; 0 cos¢y O w}g - w?2 !
0 0 0 1 o3

where w}; and w{; stand for the (j) element of vectors w§ and wj respectively.
The chain can be effectively closed if

0 € (wh, + uwi, — di)
and the possible values for ¢; will be

) wh — wiaw whawt | — wiwk
¢; = arcsin (03 “ 132 02) ﬂarccos (02 ,l.i ?32] . (4.2)

3 T
wll + wiy Wy, + Wwia

Then, we can cut the initial interval of ¢; by intersecting it with the range
obtained in (4.2).

In this case, two observations have to be made. First, the division of
intervals can cause problems if the denominator includes the origin. In equa-
tion (4.2), the denominators are greater or equal than 0. Then the division

8 Albert Castellet and Federico Thomas

leads to a single interval, possibly extended to infinity. However, this does not
imply any difficulty, since we have to intersect this interval with [~1, 1], since
the arcsin and arccos functions are only defined within this interval. Second,
note that the translation equation depends on where we place the first bar of
the n-bar mechanism in the chain. This can be easily seen by observing that
the translation equation (77) does not involve the last angle ¢,. In general,
the result using (4.2) will be different from the result using a translational
equation where the first angle is another one. Therefore, we have n different
translation equations and each angle ¢; can be cut using them. This was not
the case with the rotation equation, since it is the same wherever we take the
reference.

4.3 Cutting d; with the translation equation

In order to isolate d; in (2.3), we express it as follows:

i—1 dy.] d; n dy
SAFUS | 0 |+AaT e 0)+ D AT 0 | =0,
k=1 0 0 k=i+1
Multiplying this equation by (A‘i'l)t, we get:
d,;] . i—1 d,‘ n d;;
0 | =—(A7TH¢) D_ATTH@) | 0 |- D AN 0
0 k=1 0 k=itl 0
Defining
wfj 2 wf) — A:(qb)wi ,
the chain can be closed if
0e w}'ﬂ, w§3
and the allowed values for d; are:
d,‘ = wfn B (43)
We can cut the initial interval of d; by intersecting it with the range obtained

in (4.3).

As)explained in the previous subsection, we can cut d; with n different
translation equations.

For the three described exact cuts we have used the natural evaluation
of interval functions described in [5], extended with the arcsin and arccos
functions. Since our evaluations involve many times the same variables, the
final result is a wider interval than the actual range of possible values for
that function. This is the main limitation of the described cuts.

Using Interval Methods for Solving Inverse Kinematic Problems 9

We have done some preliminary experiments, which show that, first, the
performance of exact cuts depends on the variables that have fixed values and,
second, they are not able to cut the initial box to the maximum by themselves.
As a consequence, the proposed cuts should be seen as complementary to the
general procedure described in [5]. Basically, they can be used to accelerate
the pruning process, which actually is the interest of domain-dependent cuts.

5. Conclusions

Interval methods based on interval cuts can be used to solve inverse kinematic
problems. We have presented a formulation of the closure equation of single
loop kinemnatic chains which can be used to derive domain-dependent cuts,
herein called exact cuts.

By adding our exact cuts to the Newton, Snake and Taylor cuts described
in [8], the pruning process will be more informed and hence faster. We are
now experimenting when our cuts work best and in which order the cuts
should be applyed to cut the box in the most efficient way.

Acknowledgement. This work has been partially supported by the Spanish CICYT
under contract TIC96-0721-C02-01. The first author is currently supported by a
grant from the Catalan Government (CIRIT. No. FI/94-3.003).

References

[1] J. W. Burdick, “On the Inverse Kinematics of Redundant Manipulators: Char-
acterization of the Self-Motion Manifolds,” IEEE Proc. Int. Conf. Robotics
Automat., 1:264-270, Aug. 1989.

[2] A. Castellet and F. Thomas, “Towards an Efficient Interval Method for Solving
Inverse Kinematic Problems,” IEEE Proc. Int. Conf. Robotics Automat, 1997.

{3] J. 1. Craig, “Introduction to Robotics: Mechanics and Control,” Addison-
Wesley Pub. Comp., 1989.

{4] E. Hansen, “Global Optimization Using Interval Analysis,” Pure and Applied
Mathematics, New York, Marcel Dekker, Inc., 1992.

[5] P. van Hentenryck, D. McAllester and D. Kapur, “Solving Polynomial Systems
using a Branch and Prune Approach,” to appear, SIAM Journal of Numerical
Analysis, also available through http://www.al.mit.edu/people/dam/dam.html.

[6] O. Kniippel, “PROFIL-Programmer’s Runtime Optimized Fast Interval Li-
braries,” Technical Report of the Technische Univertit 93.4, Hamburg-Harburg,
1993, also available through http://www.ti3.tu-harburg.de/indexEnglisch.html.

[7] D. Manocha and Y. Zhu, “A Fast Algorithm and System for the Inverse Kine-
matics of General Serial Manipulators,” [EEE Proc. Int. Conf. Robotics Au-
tomat., 4:3348-3353, 1994.

[8] D. McAllester P. van Hentenryck, and D. Kapur, “Three Cuts for Acceler-
ating Interval Propagation,” A.l. Memo no.1542, Massachusetts Institute of
Technology, 1995.

10 Albert Castellet and Federico Thomas

[} M. Raghavan and B. Roth, “A General Solution for the [nverse Kinematics
of All Series Chains,” Proc. of the 8th CISM-IFTOMM Symposium on Robots
and Manipulators, 1990.

(10] B. Roth, “Computational Advances in Robot Kinematics,” Advances in Robot
Kinematics and Computational Geometry, eds. A. J. LenarZi¢ and B. B. Ravani,
Netherlands: Kluwer Academic Publishers, pp. 7-16, 1994,

[11] F. Thomas, “Graphs of kinematics constrants,” in Computer-Aided Robotic
Assembly Plenning, eds. 5. Lee and H. de Mello, Kluwer Academic Publishers,
1991.

[12] F. Thomas, “On the N-bar Mechanism, or How to Find Global Solutions to
Redundant Single Loop Kinematic Chains,” [EEE Proc. Int. Conf. Robotics
Automat, 1:403-408, 1992.

[13] C. Wampler and A. P. Morgan, “Solving the 6R Inverse Position Problem Us-
ing a Generic-Case Solution Methodology,” Mechunism and Machine Theory,
26(1):91-106, 1991.

