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Summary

In this paper, we address the problem of restoring the orthogonality of a numerically

noisy 4D rotation matrix by finding its nearest (in Frobenius norm) correct rota-

tion matrix. This problem can be straightforwardly solved using the Singular Value

Decomposition (SVD). Nevertheless, to avoid numerical methods, we present two

new closed-form methods. One relies on the direct minimization of the mentioned

Frobenius norm, and the other on the passage to double quaternion representation.

A comparison of these two methods with respect to the SVD reveals that the method

based on a double quaternion representation is superior in all aspects.
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Recently, it has been found that some problems arising in robotics, computer vision, and computer graphics —such as point-

cloud registration1 and hand-eye calibration problems2— can be formulated in terms of 4D rotation matrices. Unfortunately,

experimental data leads to noisy 4D rotation matrices whose orthonormality must be restored.

Orthonormalizing a noisy rotation matrix, say R, usually consists in finding the nearest proper orthonormal matrix in

Frobenius norm, say R̂, to it. This can be formulated as the minimization of

‖‖‖R − R̂
‖‖‖
2

F
= Tr

[
(R − R̂)T (R − R̂)

]
= Tr

(
R

T
R − 2R̂T

R + I

)
, (1)

which is equivalent to maximizing

Tr
(
R̂

T
R

)
, (2)

subject to the orthogonality constraint of R̂. We can deal with this constraint by introducing a symmetric Lagrangian multiplier

matrix �3 and looking for stationary values of

�(R̂,�) = Tr
(
R̂

T
R

)
− Tr

[
�(R̂T

R̂ − I)

]
. (3)

Since it is possible to prove that4,5
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dR̂
Tr

(
�R̂

T
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)
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(
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T
)
, (5)

the differentiation of �(R̂,�) with respect to R̂ yields the condition

R − R̂(� + �
T ) = 0. (6)

1This work was partially supported by the Spanish Government through project PID2020-117509GB-I00/AEI/10.13039/50110001103. This work does not have any

conflicts of interest.



2

Then, since �
T = �, we have that

R = 2R̂�, (7)

which is a useful decomposition of R into the product of an orthonormal and a symmetric matrix6. Now,

R
T
R = 4�R̂T

R̂� = 4�2. (8)

Hence,

2� = (RT
R)

1

2 . (9)

Finally,

R̂ = R(2�)−1 = R(RT
R)

−
1

2 (10)

Therefore, the nearest 4D rotation matrix problem boils down to calculating the square root of A = RRT . As we will see later,

this calculation can be avoided by computing the Singular Value Decomposition (SVD) ofR. Nevertheless, closed-form solutions

are preferable because they involve a constant number of operations, and the contribution of each variable to the solution can be

studied analytically. This is why we present in this paper two new closed-form methods as an alternative to the use of the SVD.

They can be seen as generalizations of the diagonalization and the quaternion methods available for the 3D case7.

This paper is structured as follows. In Section 1, it is shown how the nearest 4D rotation matrix problem can be solved using

the SVD. In Sections 2 and 3, the two new closed-form methods are presented. Section 4 compares the performance of these

two new methods with respect to the method based on the SVD. Finally, Section 5 summarizes the main results.

1 STANDARD SVD METHOD

Let us assume that the SVD of R is given by

R = U�V
T , (11)

and that R̂ is the orthogonal matrix that minimizes
‖‖‖R − R̂

‖‖‖
2

F
. Then, we have that

‖‖‖R − R̂
‖‖‖
2

F
=
‖‖‖U�V

T − UU
T
R̂VV

T ‖‖‖
2

F
=
‖‖‖� − R̃

‖‖‖
2

F
. (12)

where R̃ = UT R̂V is another orthogonal matrix. Now, observe that minimizing (12) is equivalent to minimizing
‖‖‖R̃T� − I

‖‖‖
2

F
,

which in turn is equivalent to maximizing Tr(�R̃), which is maximized for R̃ = I. Thus, if det(R) = +1, the optimal rotation

matrix is

R̂ = UV
T . (13)

When working with very noisy systems, it could happen that det(R) = −1. In this case, it can be shown that the optimal rotation

matrix is given by8,9

R̂ = U diag (1, 1, 1,−1) VT . (14)

2 CLOSED-FORM SQUARE ROOT MATRIX METHOD

We have seen in the introduction how using Lagrange multipliers, it was proved that the orthogonal matrix R̂ that minimizes
‖‖‖R − R̂

‖‖‖
2

F
is given by (10). Since A = RTR is symmetric non-negative definitive, it has non-negative real eigenvalues. The

square root of matrix A can thus be computed by applying Cayley-Hamilton theorem to the characteristic polynomial of A
1

2 .

That is, (
A

1

2 −
√
�1I

)(
A

1

2 −
√
�2I

)(
A

1

2 −
√
�3I

)(
A

1

2 −
√
�4I

)
= A

2 − a3A
3

2 + a2A − a1A
1

2 + a0I = 0, (15)

where

a3 =
√
�1 +

√
�2 +

√
�3 +

√
�4,

a2 =
√
�1�2 +

√
�1�3 +

√
�1�4 +

√
�2�3 +

√
�2�4 +

√
�3�4,

a1 =
√
�1�2�3 +

√
�1�2�4 +

√
�1�3�4 +

√
�2�3�4,

a0 =
√
�1�2�3�4.

(16)
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Now, if we multiply (15) by A
1

2 and we substitute A
3

2 from (15) in the result, we obtain

A
1

2 =
1

−a0 +
a1a2
a3

−
a2
1

a2
3

⋅

[
1

a3
R

3 +

(
−a3 −

a1

a2
3

+
2a2
a3

)
R

2 +

(
a2
2

a3
+

a0
a3

−
a1a2

a2
3

− a1

)
R +

(
−
a0a1

a2
3

+
a0a2
a3

)
I

]
. (17)

Therefore, we have to find the roots of the characteristic polynomial of A to calculate the square root of A. That is, the roots of

det(A − �I) = �4 + p�3 + q�2 + r� + s, (18)

where

p = −Tr(A),

q =
1

2

[
p2 − Tr(A2)

]
,

r =
1

6
p3 −

1

2

[
pTr(A2)

]
−

1

3
Tr(A3),

s = det(A).

These coefficients can also be computed using the recursive Faddeev–LeVerrier method10, but in our implementation we have

directly use the above explicit formulas.

Many closed-form methods have been proposed for solving quartic equations like the one in (18), but they have been designed

with aims of elegance, generality or simplicity rather than error minimization or computational cost. All methods require the

solution of a subsidiary cubic equation (known as “cubic resolvent"). In11, five different resolvents are examined from the

computational point of view to conclude that the one presented in12 is numerically the most stable and less subject to round-

off errors. The later methods presented in13 and14 provide further improvements. Nevertheless, since in our case the problem

is well-conditioned because the four roots of (18) are known to be real and positive, we have adopted a simple variation on

Ferrari’s method. First, we define

a =
−q2

3
− 4s + pr,

b = −sp2 +
pqr

3
− r2 +

8qs

3
−

2q3

27
.

From which, we obtain

y =
3

√
−
b

2
+

√(
b

2

)2

+

(
a

3

)3

+
3

√
−
b

2
−

√(
b

2

)2

+

(
a

3

)3

+
q

3
(19)

and

D =

⎧
⎪⎨⎪⎩

√
3

4
p2 − 2q + 2

√
y2 − 4s, if C = 0,√

3

4
p2 − C2 − 2q + 1

4C
(4pq − 8r − p3), otherwise.

(20)

E =

⎧
⎪⎨⎪⎩

√
3

4
p2 − 2q − 2

√
y2 − 4s, if C = 0,√

3

4
p2 − C2 − 2q − 1

4C
(4pq − 8r − p3), otherwise.

(21)

where

C =

√
1

4
p2 − q + y. (22)

Subsequently, we have that the sought roots in decreasing order are:

�1 = −
p

4
+

1

2
(C +D), (23)

�2 = −
p

4
+

1

2
(C −D), (24)

�3 = −
p

4
−

1

2
(C − E), (25)

�4 = −
p

4
−

1

2
(C + E). (26)
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Then, A
1

2 can be calculated by substituting the above values in (16), and substituting the result in (17). Finally, R̂ is obtained

using (10).
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FIGURE 1 Expected values for the eigenvalues of A = RRT as a function of the added noise

To see the effect of noise on the eigenvalues of A, we can compute the eigenvalues of a noiseless rotation matrix whose ele-

ments are contaminated with zero-mean additive noise normally distributed with standard deviation equal to �. If this operation,

is repeated 104 times for values of � ranging from 0 to 0.5 and the average of the obtained eigenvalues is computed, we obtain

the plot shown in Fig. 1 .

Clearly, the four eigenvalues of A are equal to one for noiseless rotation matrices. Then, for low levels of noise, we have that

a3 ≈ 4, a2 ≈ 6, a1 ≈ 4, and a0 ≈ 1. As a consequence,

R̂ ≈ R

(
1

16
R

3 −
5

16
R

2 +
15

16
R +

5

16
I

)−1

, (27)

which can be used to calculate the 4D nearest rotation matrix for low levels of noise. The three-dimensional counterpart to this

formula can be found in7. Since this asymptotic expansion is valid for levels of noise tending to zero, RRT tends to the identity,

and so tends (RRT )
1

2 . Therefore, the required inversion is well-conditioned.

3 CLOSED-FORM DOUBLE QUATERNION METHOD

While a rotation in 3D is defined by an axis of rotation and angle rotated about it, a rotation in four dimensions is defined by two

orthogonal planes and two angles of rotation (see15,16 for details on the geometric interpretation of rotations in four dimensions).

A 4D rotation can actually be seen as the commutative composition of two rotations in a pair of orthogonal two-dimensional

subspaces. It is thus said that every 4D rotation matrix can be decomposed into the commutative product of a right- and a

left-isoclinic rotation matrix as17:

R =

⎛
⎜⎜⎜⎜⎝

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

l0 −l3 l2 −l1
l3 l0 −l1 −l2

−l2 l1 l0 −l3
l1 l2 l3 l0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

r0 −r3 r2 r1
r3 r0 −r1 r2

−r2 r1 r0 r3
−r1 −r2 −r3 r0

⎞
⎟⎟⎟⎟⎠
, (28)
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where l = (l0, l1, l2, l3)
T and r = (r0, r1, r2, r3)

T can be interpreted as unit commutative quaternions in two different bases18.

Therefore, every 4D rotation can be represented by a double quaternion
(
lT , rT

)
. The reader is referred to19,20 for a formulation

of this factorization in the language of geometric algebra, where it is shown how it boils down to factorizing a four-dimensional

bivector into the sum of two simple orthogonal bivectors.

It can be checked that (28) can be rewritten as21,22

1

4

⎛
⎜⎜⎜⎜⎝

r11+r22+r33+r44 −r41+r32−r23+r14 −r31−r42+r13+r24 r21−r12−r43+r34
r41+r32−r23−r14 r11−r22−r33+r44 r21+r12+r43+r34 r31−r42+r13−r24
−r31+r42+r13−r24 r21+r12−r43−r34 −r11+r22−r33+r44 r41+r32+r23+r14
r21−r12+r43−r34 r31+r42+r13+r24 −r41+r32+r23−r14 −r11−r22+r33+r44

⎞
⎟⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≝ H

=

⎛
⎜⎜⎜⎜⎝

l0r0 l0r1 l0r2 l0r3
l1r0 l1r1 l1r2 l1r3
l2r0 l2r1 l2r2 l2r3
l3r0 l3r1 l3r2 l3r3

⎞
⎟⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= l rT

(29)

and that the maximization of (2) can be rewritten as the maximization of

Tr(R̂T
R) = Tr

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

r̂0 −r̂3 r̂2 r̂1
r̂3 r̂0 −r̂1 r̂2

−r̂2 r̂1 r̂0 r̂3
−r̂1 −r̂2 −r̂3 r̂0

⎞
⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎝

l̂0 −l̂3 l̂2 −l̂1
l̂3 l̂0 −l̂1 −l̂2

−l̂2 l̂1 l̂0 −l̂3
l̂1 l̂2 l̂3 l̂0

⎞
⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎝

l0 −l3 l2 −l1
l3 l0 −l1 −l2

−l2 l1 l0 −l3
l1 l2 l3 l0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

r0 −r3 r2 r1
r3 r0 −r1 r2

−r2 r1 r0 r3
−r1 −r2 −r3 r0

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦
, (30)

which, using the commutativity of left- and right-isoclinic rotations, can be rewritten as

Tr(R̂T
R) = 4 (l̂T l )(rT r̂) (31)

= 4 l̂T H r̂ (32)

= 4 r̂T H
T
l̂. (33)

If (32) is left-multiplied by l and the result divided by Tr(R̂TR), we obtain

l̂ =
4

Tr(R̂TR)
H r̂. (34)

Likewise, if (33) is left-multiplied by r, we obtain

r̂ =
4

Tr(R̂TR)
H

T
l̂. (35)

Substituting (35) in (34), left-multiplying by lT , and rearranging terms, we have that
[
Tr(R̂T

R)

]2
= 16 l̂T HH

T
l̂. (36)

Likewise, substituting (34) in (35), left-multiplying by rT , and rearranging terms, we obtain
[
Tr(R̂T

R)

]2
= 16 r̂T H

T
H r̂. (37)

Now, observe that, according to (10), R̂TR = (RTR)
1

2 = A
1

2 is a symmetric non-negative definite matrix. As a consequence,

since the trace of a matrix is equal to the sum of its eigenvalues, the trace of R̂TR is non-negative. Then, the maximization of

(2) can be decomposed into the following two independent optimization problems

max(l̂T HH
T
l̂) subject to l̂

T
l̂ = 1 (38)

and

max(r̂T HT
H r̂) subject to r̂

T
r̂ = 1. (39)

This result generalizes the method for the three dimensional case recently presented in23.

Using Lagrange multipliers, the value of l̂ that solves the optimization problem in (38) is obtained by solving the equation

) (lT HHT l̂)

) l̂
= �

) (l̂T l̂)

) l̂
. (40)

That is,

HH
T
l̂ = � l̂. (41)
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Thus, we have four solution candidates for l̂: the four eigenvectors of HHT . Nevertheless, the one that maximizes the quadratic

form is clearly the one corresponding to the largest eigenvalue. Since the columns of the co-factor matrix of HH
T − �maxI are

proportional to the sought eigenvector, we can take any of these four columns as solution. Nevertheless, from the numerical

point of view, it is better to take the one with the largest modulus. Likewise, it is possible to solve the optimization problem in

(39) to obtain r̂. Substituting l̂ and r̂ in (28), R̂ is finally obtained.

To end up this section, a final consideration must be added. Since (l̂, r̂) and (−l̂,−r̂) represent the same rotation, it might

happen that we obtain (−l̂, r̂) or (l̂,−r̂) because we have obtained l̂ and r̂ separately without taking into account their sign

consistency. Nevertheless, observe that this problem can be easily fixed by changing the sign of R̂ if det(R̂) = −1.

4 PERFORMANCE ANALYSIS
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10-4

10-3

10-2

10-1

100

FIGURE 2 Mean (left) and standard deviation (right) of the Frobenius norm of the difference between the original noiseless

rotation matrix and the estimated matrix, obtained using the three analyzed methods, as a function of the variance of the added

noise. The three curves overlap.
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FIGURE 3 Mean (left) and standard deviation (right) of the orthogonality error of R̂ for the three analyzed methods as a

function of the variance of the added noise.
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In order to compare the two presented closed-form methods with respect to the SVD built-in MATLABⓇ function, the fol-

lowing procedure have been implemented in MATLABⓇ (on a PC with a CoreTMi7 processor running at 3.70 GHz and 16 GB

of RAM) using double-precision arithmetic:

1. Generate two sets of 200 quaternions, ql and qr, using the algorithm for generating uniformly distributed points on S
4

described in24.

2. Convert these quaternions to 4D rotation matrices using equation (28) whose elements are then contaminated with additive

uncorrelated normally distributed noise with standard deviation equal to �.

3. Compute the nearest rotation matrices for these 200 noisy rotation matrices using the SVD and the two closed-form

methods.

4. Compute the mean and the standard deviation of the Frobenius norm of the difference between the original noiseless

matrices and the obtained matrices for each method.

5. Compute the average and the standard deviation of the orthogonality error of the obtained matrices computed as the

Frobenius norm of R̂R̂T−I.

If this procedure is repeated for 1000 values of � uniformly distributed between 0 and 0.1, the plots in Fig. 2 and Fig. 3 are

obtained. Fig. 2 shows the mean and the standard deviation of the Frobenius norm of the difference between the noisy rotation

matrices and the corresponding original noiseless rotation matrices obtained using the three compared methods. There are no

practical differences between the three methods in terms of this error. The situation changes when analyzing the orthogonality

error. Fig. 3 shows the mean and the standard deviation of the orthogonality error for the estimated rotation matrices. Although

for all practical applications this error is negligible for the three methods, the double quaternion method is clearly the best and

the square root matrix method leads to higher orthogonality errors for low levels of noise. This is because the adopted method

for resolving the quartic equation exhibits higher numerical inaccuracies when the three roots are close to each other, but they

asymptotically decrease as the roots move far apart.

Using MATLABⓇ, and in terms of ratios, the average computational times are 1 ∶ 1.72 ∶ 1.88 for the SVD, the square

root matrix and the double quaternion methods, respectively. Nevertheless, we cannot compare, in terms of time performance,

an interpreted program with a compiled program. While Matlab’s SVD calls the corresponding function in LAPACK —an

optimized and compiled library written in Fortran 90— our Matlab implementation is interpreted. For a fair comparison, we have

translated our code in MATLABⓇ to C++ and compared their performances with the SVD implementation of the celebrated

EIGEN library25. In this case, the average computational ratios are 1 ∶ 0.23 ∶ 0.33.

The implemented programs, written in both MATLABⓇ and C++, needed to reproduce the above results, can be downloaded

from http://www.iri.upc.edu/people/thomas/Soft/Nearest4DRotationMatrix.zip.

5 CONCLUSION

We have presented two closed-form methods for solving the nearest 4D rotation matrix problem in Frobenius norm which

generalize previous methods available for the 3D case. Their efficiency and accuracy have been demonstrated on simulated data.

The obtained results indicate that their computational costs are better than that of the SVD method, the one of choice till now.

The reason is simple: the SVD method relies on an iterative algorithm that halts when the improvement in an iteration is below

a certain threshold. The presented closed-form methods directly deliver the optimum up to numerical inaccuracies.

ADDENDUM

After the publication of this paper, Prof. Andrew J. Hanson contacted me with an important number of relevant comments, the

most important referring to the fact that an alternative derivation to the 4D nearest rotation matrix solution presented in Section 3

can be found in Section 4.2 of the supporting information material of reference [23]. As a consequence, the closed-form double

quaternion method presented in this paper should be viewed as an alternate derivation of the existing previous result that should

be credited to Prof. Hanson.

F. Thomas

http://www.iri.upc.edu/people/thomas/Soft/Nearest4DRotationMatrix.zip
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