228 ' IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 2, APRIL 1992

Inferring Feasible Assemblies
from Spatial Constraints

Federico Thomas and Carme Torras

Abstract— This paper treats two different problems in the
analysis of assemblies, and algorithms are described for each.
The first problem is the selection of consistent sets of part feature
relationships, and it corresponds to a search over possible config-
urations of parts that are consistent with feature set mappings.
The second problem is the evaluation of the kinematic consistency
of an assembly that has been defined by consistent feature sets.
These two problems are linked together as two of the steps
required in a search for all correct assembly configurations of a
given set of parts. Several of the other necessary steps related to
part interference, path feasibility, and workeell device kinematics
are referred to but not analyzed here. The proposed search
algorithm is based on a constraint posting strategy, i.e., rather
than generating and testing all specific alternatives, chunks of
the search space are progressively removed from consideration
by constraints that rule them out until finally one satisfactory
alternative is found.

1. INTRODUCTION

ULL automatic planning of robotic assembly tasks is

still an open problem that has been addressed mainly
during the last decade. Relevant work on the area ranges from
artificial intelligence (AI) planning to geometric modeling and
computational geometry, including fine motion planning, grasp
planning, etc.

Planning has been an important research topic in artificial
intelligence, and the Al approach has dominated much of the
research in robot task planning. Al planners take as inputs
a description of an initial state, a final state, and a set of
legal operations. Their output is a sequence of legal operations
to be performed to achieve the final state. Extending an
existing Al planner to generate assembly plans is not an
easy task since such an extension must be able to reason
explicitly not only about space occupancy of workpieces
described in terms of their 3-D geometric models, but also
about kinematic constraints and physics (e.g., stability of
subassemblies). Toward this goal some specific planners have
been proposed, but the scope of the problems they are able to
tackle is very limited. A classical example is BUILD [7]-

Because of the influence of Al planners, the input to most
assembly planners includes a relational model of the final
assembly and the task consists of obtaining a sequence of
actions based on one or more criteria such as time required,

Manuscript received February 14, 1990; revised September 13, 1991.
This work was partially supported by the Comisién Interministerial de
Ciencia y Tecnologia under the project “Automatic spatial reasoning based on

constraints” (TIC 88-0197), and by the Fundacién Areces, under the project
SEPETER.

The authors are with the Institut de Cibernética (UPC-CSIC) Diagonal 647,
2 planta 08028 Barcelona, Spain.

IEEE Log Number 9105869.

resources needed, etc. (see [6] and [25] for recent surveys).
Nevertheless, there is no previous work on the inference of
final assemblies given a general description of them. For a
human operator, to give the description of a final assembly
can often be more cumbersome than giving a sequence of
assembly operations at the same level many assembly planners
actually do. Manual positioning of each workpiece in a final
assembly or in a mechanism by the user of a solid modeler
is very tedious and error prone, as pointed out in [24]. These
considerations do not mean that the problem of obtaining the
final configuration is harder to solve than obtaining an implicit
representation of all possible assembly sequences. Actually, as
will become clear later, the underlying problems are the same
in both cases: a final assembly is feasible if a sequence of
operations exists that allows it to be achieved.

This paper deals with the problem of obtaining the spatial
relationships between workpieces in their final assembly, from
an initial description consisting of the models of the work-
pieces and, if desired, instructions that specify constraints on
the degrees of freedom between parts of different workpieces.

We have adopted a constraint-based approach to solve
the problem in which the process of synthesizing assembly
configurations is conceived as a progressive refinement of an
initial hypothesis by the application of successive constraints
[21], [22]. These constraints, which we refer to as spatial
constraints, are of two types: constraints on the degrees of
freedom (DOF) between the parts of the workpieces and
constraints of nonintersection between workpieces. The former
type reduces the dimensionality of the space of the work-
pieces’ DOF (that is, the space of assembly configurations
or configuration space), while the latter type eliminates from
configuration space the zones that lead to interferences.

Actually, spatial constraints are those constraints that are in-
dependent of the environment. Other constraints such as those
imposed by stability and support criteria between workpieces,
and accessibility or grasping requirements are, obviously,
dependent on the working cell where the assembly task is
to be carried out.

This paper is structured as follows. In Section 11, an example
that illustrates the main problems associated with the inference
of final assemblies is given, and the approach proposed to deal
with such problems is sketched. Section III describes the way
assemblies, workpieces, and subparts are represented. Section
IV explains how a hypothesis of the best assembly is obtained,
then the detection of new spatial constraints and the way they
are satisfied to obtain a better hypothesis. Section V is devoted
to describing the method to deal with constraints on the DOF,

1042-296X/92$03.00 © 1992 IEEE

THOMAS et al.: INFERRING FEASIBLE ASSEMBLIES FROM SPATIAL CONSTRAINTS 229

Fig. 1.

and some suggestions of how the described algorithm could
be extended to encompass both nonintersection constraints
and the generation of assembly sequences are also provided.
Finally, in Section VI, conclusions and prospects for future
research are stated.

II. PROBLEM AND APPROACH—AN EXAMPLE

Let us suppose that the workpieces B,, Bg, Bs, and By
in Fig. 1 must be assembled. These workpieces have com-
plementary subparts F; that can be mated together. For the
moment, we assume that compatibilities between complemen-
tary subparts are limited to pairs of subparts. However, this
simplification will be removed in Section IV-B since some
fastenings actually involve three or more subparts of different
workpieces (F4, Fg, and Fig in the example).

Each compatibility between complementary subparts defines
one or more constrained movements. For example, a pris-
matic rod of square base and a pocket define four different
translational movements, and a shaft and a hole through a
wall (Fg and Fio in our example) define two cylindrical
movements. In this section, let us assume for the sake of
simplicity that each compatibility defines only one constrained
movement (from the following section on, this assumption
will be withdrawn). In this simplified context, an assembly
can be unambiguously described by means of a set of pairs
of complementary subparts of different workpieces. However,
some of these sets represent unfeasible assemblies. The set
{(Fs,Fs),(Fe,Fo)} is an example, ie., the pair (Fs,Fg)

Example used throughout this work to illustrate the main problems associated with the inference of final assemblies.

is inconsistent with (Fg,Fy) because these pairings lead
to interference between workpieces B, and Bz. Note that
inconsistencies are not always binary. For instance, any pair of
elements of the set {(Fs, Fo), (F3,F1), (F7,F2)} are consis-
tent, but altogether they are inconsistent. This last situation can
be detected by translating complementarity between subparts
into kinematic constraints and finding whether there exists at
least one configuration that satisfies all of them.

There are other important validity conditions besides the
interference-free and kinematic ones mentioned above. For
example, it could happen that workpieces could not be assem-
bled because there were no collision-free path to bring them
into contact from a situation in which they were sufficiently
far apart. In our example, the set {(Fs, Fo)(Fe, Fs)} would
give rise to a kinematically valid subassembly of By and B3
without interference, but it would be impossible to assemble.
Obviously, validity conditions of this kind can be checked
using path-planning algorithms and, in some cases, kinematic
considerations.

The naive way of solving the problem would be to enu-
merate all possible sets of matchings between complementary
subparts and finding those that correspond to a feasible as-
sembly. Obviously, this is not the best way to solve the
problem: the same tests would be repeated many times since
the algorithm would not keep track of partial inconsistencies.

The constraint-based approach taken here assumes that, at
the beginning of the search, the problem is weakly constrained
since it is only constrained by compatibilities between sub-

230 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 2, APRIL 1992

Fig. 2. GF graph associated with the assembly problem shown in Fig. 1.

parts. Then it is possible to generate a hypothetical solution
that is not likely to correspond to a feasible assembly. In the
process of checking the feasibility of the proposed hypothesis,
new constraints that define the problem in more detail will
be discovered. These constraints are used to obtain a better
hypothesis. The process is repeated until a feasible assembly is
found or the algorithm fails to find a hypothesis that satisfies all
posted constraints. This approach is an instance of the classic
“generate and test” paradigm [1] and the organization of the
paper into two main sections—“generating the most promising
hypothesis” and “testing the feasibility of a hypothesis”—tries
to make this point clear.

III. GRAPH OF COMPATIBILITIES BETWEEN FEATURES

There are two levels of representation of a solid: 1) geomet-
ric and topological, and 2) semantic. The latter can be extracted
from the former, which corresponds to the information stored
in the data bases generated by most solid modelers.

The extraction of semantic information plays an important
role in the link between CAD and CAM. This extraction has
been addressed in the context of process planner development,
where the goal is to find a plan to obtain a workpiece
from a given stock by a sequence of drilling and milling
operations carried out by a numerically controlled machine.
The goal is to develop a system able to classify patterns of
geometry (concave, convex, perpendicular, colinear, etc.) and

topology (adjacent, number of sides, number of edge loops, .

etc.), according to predefined machinable features [271.

Different techniques have been applied in order to extract
semantic information from a CAD data base. They range
from rtecursive volume decomposition to syntactic pattern
recognition and rule-based systems. For a brief. description
of these methods, see [9].

Semantic information is usually stored as a graph of fea-
tures, where a feature is defined as a set of connected faces,
or a subpart of a workpiece, related to a specific manufacturing
process (examples are holes, slots, pockets, threads, etc.). A
node of this graph is similar to a frame as used in knowledge-
based system implementations. Slots exist for the boundary
representation (BREP) of the feature and for all the necessary

local manufacturing data, including links to other feature
nodes.

The algorithm described below assumes that the extraction
of all features of the involved workpieces, according to a dic-
tionary of possible features [9], has already been carried out.
Afterward, compatibilities between features are established,
leading to a graph of compatibilities between features (GF
graph). Nodes in this graph stand for features and arcs for
compatibilities between them. The number of arcs between two
nodes equals all the possible constrained movements between
the corresponding features, so that each compatibility has a
unique translation into constraints on the DOF. The GF graph
for the workpieces in Fig. 1 appears in Fig. 2.

Compatibilities can be weighted. These weights measure the
complementarity of shapes and the similarity of parameters,
allowing us to deal with complementary subparts that do not
exactly match each other.

IV. GENERATING THE MOST PROMISING HYPOTHESIS

Once the GF graph has been created, one can look for
an optimal match between workpieces. Assuming that fas-
tenings involve only pairs of features, this problem can be
conceptualized as a graph-matching problem [3, p- 339]. This
simplification will be removed in Section IV-B. A matching
of a graph is defined as a set of arcs, no two of which share
a node. Given a graph, it is a well known problem to find
a match that has as many arcs as possible. This problem
would correspond, in our context, to the problem of finding
an assembly involving as many complementary subparts as
possible. Since we have also given weights to the arcs, the
challenge is to find the match that has the largest total weight
and also satisfies all detected spatial constraints.

A. Obtaining an Optimal Matching
The incidence matrix A of a GF graph has its entries defined
as follows:
gis = 1, if compatibility j involves feature i, and (1)
* 0, otherwise
Vi=1,...,m

THOMAS et al.: INFERRING FEASIBLE ASSEMBLIES FROM SPATIAL CONSTRAINTS 231

@

m and n being the number of features and the number of
compatibilities, respectively.

Let w; be the weight for compatibility j, which measures
the complementarity of shapes and the similarity of parameters
of the corresponding features. These weights are heuristic and
determine the order in which the hypotheses are obtained.

To obtain the first hypothesis, the following function is

maximized:
> wizj ©)
J
subject to the constraints
n
Za,'jzjgl, 1=1,...,m 4)
Jj=1
z; >0, j=1,...,n ®)
The interpretation for the variables z; is that
g = 1, if compatibility j is in the matching, and ©)
7710, otherwise.

What is very important here is that it is guaranteed that
z; € {0,3,1} in an optimal solution to the linear problem
above. This is because all vertices of the convex polytope
defined by the semihyperspaces (4) and (5), where a;; are
the elements of the incidence matrix of a nondirected graph
with m nodes and 7 arcs, have coordinates 0, %, or 1, and the
term % only appears when there exist cycles of odd cardinality
(Edmonds’ theorem) [19, p. 256].

Let us assume, for the moment, that there are no cycles of
odd cardinality in our graphs of compatibilities. It is then easy
to solve the matching problem by finding a solution to the
linear problem above using the simplex algorithm. Obviously,
an optimal solution to the matching problem does not always
correspond to a feasible assembly. Thus, it is necessary to ver-
ify this feasibility. If the current optimal matching corresponds
to an unfeasible assembly, then unsatisfied spatial constraints
will be detected during this verification and a new optimal
solution must be found.

The simplex algorithm starts at one solution that satisfies
a set of given constraints and proceeds toward an optimum.
Nevertheless, not all constraints are known at this point so
that when a new constraint is added, the optimal solution
becomes impossible. However, it is well kown that it is
possible to proceed toward an optimum from an impossible
primal solution by applying the dual simplex [19, p. 50].

Assemblies cannot always be described in terms of pairings
of features. The linear programming methodology described
above allows us to easily represent the previously discarded
situations, thus removing the simplification adopted up to here.
If feature 4 can be simultaneously mated to n different features
in the set Q, then we set

Vi€ Q. ™

1
A5 = w

Actually, it is easy to express other complex constraints.
For example:

1) Features ¢ and j cannot appear together in any matching

E aQ;pTr + Z ajr; < 1.
k !

®

2) Either feature ¢ or feature j must appear in all matchings

Z aikTr + Z ajir; = 1.
!

k

©

3) If feature ¢ appears in a matching, then feature j must
also appear

(10

z QikTh — Z ajir; < 0.
k l

These constraints will be called matching constraints to
distinguish them from spatial constraints.

If there exist features that can be mated simultaneously to
more than one other feature or the GF graph has cycles of odd
cardinality, the solution to the linear programming problem
is not guaranteed to be an integer, according to Edmonds’
theorem. Constraints that remove noninteger solutions from
the search space are referred to as cuts. Cuts are automatically
added to ensure integrality of solutions. These cuts are gen-
erated according to the simple algebraic method proposed by
Gomory (see [19, p. 326] for details).

The problem tackled can be described then as follows:

Input: A GF graph and (optionally) a set of matching
constraints.

Output: A set of arcs that correspond to a feasible assem-

bly.

The problem above is NP hard, as is proved in the appendix.
The algorithm we have proposed to solve it consists of repeat-
ing the three following steps, until no unsatisfied constraints
are detected or added by the user:

Step 1: Find a vertex of the polytope defined by the match-
ing constraints that maximize a given objective
function.

If the vertex is not an integer, introduce a cut that
strictly eliminates this vertex.

If the vertex is an integer, verify the feasibility of
the solution. If the solution is not feasible, derive
as many matching constraints as possible which
eliminate this and possibly other vertices of the
polytope.

Next, we will see how this algorithm works through an
example.

Step 2:

Step 3:

B. Example

Let us look at how a final assembly can be obtained for
the workpieces in the example of Fig. 1, using the spatial
constraints derived during the search process. The GF graph
for this problem appears in Fig. 2. It contains 10 nodes and
20 arcs.

232

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 2, APRIL 1992

TABLE I
OBTAINING FEASIBLE ASSEMBLIES FROM SPATIAL CONSTRAINTS FOR THE WORKPIECES IN FIG. 1
Total ..
Step Hypothesis Constraints lte’E::?(:ns Gomory Rseolﬂil:;;'f
Cuts
DOF User
1 {1'3,.135,1‘9,.‘1‘11,1'15} r3 + s+ T11 52 9 0 256
r11 115 <1
2 {z4,25.79,711, %16} T+ as+ax <2 16 1 234
T +re <1
3 {.1?4,1‘6,19,111,1‘20} T4+ x6 + 11 <2 29 4 216
4 {x3,76,%9,T11,T20} 3+ re+r11 <2 34 5 212
5 {13,1'6,.1:9,.1?15,.1717} X3+ x5 + Y16 £2 52 7 208
6 {1‘3,.1‘6,1'9..[12,.[14} r3 416+ 112 <2 54 7 204
12+ 114 <1
7 {23, %6, 9. 213, T14} r3+re+113<2 56 7 184
r13+ 114 <1
8 {x3,76, 29,715,217} 3+ 16 + 115 <2 58 7 164
*9 {z3,16, 79,714,720} 3 + a6+ T9 + 14 + 120 <4 60 7 160
10 {13,16,110,114,120} T3+ &6 + 110 + 720 <3 62 7 159
*11 {1’3,I5,1‘10,1’14,1‘19} 87 11 158

Its incidence matrix is obtained according to (1), with the
exception of the following elements:

1
a10,9 = 610,10 = @10,17 = @10,18 = @10,19 = 010,20 = '2‘

(11)

which are obtained according to (1). Thus, we get (12), given
at the bottom of this page.

If all complementary features fit exactly, all arcs will
have the same weight, and the 256 solutions involving 9
features will have the same maximum confidence. Only four
of these solutions, which are totally equivalent because of
the symmetries of workpieces By and By, are feasible. These
feasible matchings, with maximum confidence, are:

{3, 6, T10, %14, T19}
{x3,z6, T, T14, T20}
{z1,27,%10,T14, 10}

{11, Z7,T9,T14, $20}

(13)

where the subindices of x refer to the compatibility numbers
shown in Fig. 2 (e.g., T14 refers to the unique matching of
features Fg and Fg, while ; and x¢ refer to the two alternative

matchings of feature F; derived from the symmetric placement
of features F; and F, in workpiece Bj).

A solution to the problem is reached after 9 iterations
of the 3-step algorithm described in the preceding section,
which entail 60 iterations of the simplex algorithm. Only 8
hypotheses are generated, which lead to 12 inconsistencies
due to kinematic problems. Note that the lack of at least one
remaining degree of freedom in each subassembly—to permit
effectively assemblying it—is considered a kinematic problem
(e.g., £11 + 15 < 1). Moreover, seven cuts are also generated
in order to ensure integrality of hypotheses.

Table I shows the list of generated hypotheses, the con-
straints added after checking their feasibility, the number of
iterations of the simplex algorithm, the number of Gomory
cuts, and the number of solutions with the same confidence
remaining in the search space.

In step 9 a feasible assembly is found. If this assembly is
not the one the user wanted, a new constraint that strictly elim-
inates this solution is introduced, leading to another feasible
solution after generating two new hypotheses.

V. TESTING THE FEASIBILITY OF A HYPOTHESIS

Any optimal matching is first translated into constraints on
the DOF between the involved workpieces. For example, a
match involving only shafts and holes would be translated into

coorooooor
ceoreooooor
ceoeoroooore
cooroooere

cooocoporeor
copopoopereor
coeopooorEe
copoooerre
woeooooroee

—

OO eR

—_—

(12)

PRI rE2eRL
SEalEol
CreLOroe L@
COrerReLee®
CrEOoroOoLeR
erooreee R
RSNl = i ol
=Nl
PR
e eee

THOMAS ez al.: INFERRING FEASIBLE ASSEMBLIES FROM SPATIAL CONSTRAINTS 233

the alignment of the axes of the shafts and their corresponding
holes. In other words, the depths and angles of the shafts in
the holes would remain as variables, giving rise to constrained
movements with two DOF each. Two conditions now must be
satisfied for the current optimal matching to be feasible: 1) it
must be possible to simultaneously satisfy all constraints on
the DOF generated so far and 2) there must be at least one
remaining DOF between the workpieces in each subassembly,
allowing their assembly. An efficient algorithm for propagating
constraints on the DOF is needed to check these conditions.
This algorithm not only must discern whether it is possible to
simultaneously satisfy all established constraints but also must
assign values to the constrained DOF’s and obtain relation-
ships between them. If the analyzed matching is kinematically
feasible (i.e., the two conditions above are satisfied), then two
additional conditions must be satisfied: 3) there must be no
interference between workpieces in the final assembly and
4) there must exist a valid assembly sequence. These two
additional conditions are not addressed in this paper.

A. Constraints on the Degrees of Freedom

Matings of features have a direct translation into constraints
on the DOF. This translation requires that the legal motion for
each compatible pair of predefined features is known. Thus, it
has to be either provided by the user or inferred automatically
by the system itself. The main underlying problem to infer
legal motions directly from geometric models of predefined
features is, in most cases, finding local symmetries or finding
cycles of edges when working with polyhedral workpieces
[26].

For each hypothesis obtained as described in the preceding
section, a graph of spatial relationships—or GR graph—is
generated, whose nodes correspond to workpieces and whose
arcs are labeled with sets of legal relative spatial transforma-
tions. These sets of legal transformations are, in most cases,
easily represented through a matrix equation that links the
coordinate reference frames of the corresponding workpieces.
These equations contain variables or DOF’s. When values are
assigned to these variables, an element of the corresponding
transformation set is obtained. Each of these sets is defined as
a constraint on the DOF and will be denoted by R;, where i is
the same subindex as that of the compatibility it corresponds
to, in this case z;.

If R; is the set of legal transformations from the reference
frame of B, to the reference frame of By, R, ! denotes the
set of legal transformations in the other way around, i.e., from
By to Bi.

The automatic manipulation of constraints on the DOF has
attracted a lot of attention not only in kinematics but also
more recently in the design of object-level robot programming
languages such as RAPT [20]. Several algebraic symbolic
approaches have emerged, among which we will mention a
system of rewriting rules [20] and a table look-up procedure
{15].

Algebraic symbolic (as opposed to numerical) methods for
dealing with constraints on the DOF can shed light on basic
aspects of linkage behavior. As will be shown later, the way

Ry Rz R, -R,
o Two
o w0 ™o =>
8 By By By By
(a)
R, RiNR,
By o >0 By => Bio~ ™0 B
R,
®)

Fig. 3. The two basic operation with constraints on the DOF’s (a) Compo-
sition of constraints. (b) Intersection of constraints.

in which constraints on the DOF propagate provides useful
information on the sequence of assembly.

The algebraic symbolic method used by the RAPT inter-
preter consists of two stages: Finding a solution for the rotation
component that will fix some angles, followed by the formation
of real equations involving variables that represent linear
displacements and possibly sines and cosines of remaining
angle variables, which, in general, are difficult to solve.

A more recent approach takes advantage of the fact that
the legal relative motions resulting from mating two com-
plementary features, such as cylinders, prisms, or grooves,
constitute subgroups of the Euclidean group, leading to a
simple procedure for constraint manipulation [23].

The two basic operations with constraints on the DOF are
constraint composition and constraint intersection. The former
(see Fig. 3(a)) involves finding the constraint between work-
pieces By and Bs that results from composing the constraint
between B; and B; (say R;) with that between B, and B3 (say
R;), which will be denoted by R; - R;. The latter operation (see
Fig. 3(b)) permits combining two given constraints, R; and
R;, between the same two workpieces into a single resulting
constraint, which will be denoted by Ry N R;. These operations
admit formal definitions that can be found elsewhere [10].

If, as the result of intersecting two constraints between the
same two workpieces, the empty set is obtained, the constraints
are said to be inconsistent. The goal now is to verify the
consistency of entire GR graphs. This can be stated as a
problem of consistency in networks of relations. As pointed
out in [17], any representation of the constraints that allow
composition and intersection is sufficient for this purpose.

Informally, a GR graph is consistent if there exist configura-
tions of the workpieces whose relative coordinate transforma-
tions satisfy the corresponding constraints. Obviously, a GR
graph without cycles is always consistent; thus, it is easy to
realize the important role of cycles in GR graphs.

Let C; be a cycle whose arc set is labeled with the
constraints

{Ri,Ry,...,R;,...,R,} (14)

according to Fig. 4(a). Then the constraint RB; can be substi-
tuted by

R;=R;n(R;},---R;'-R;*---R;},) (15)
without modifying the consistency of the corresponding GR
graph (see Fig. 4(b)). In order to simplify the notation, we

will write S(R;, C;) for the intersection in (15) and we will

234 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 2, APRIL 1992

S(R;,C)

Fig. 4. The basic mechanism for constraint propagation. A constraint R,
labeling an arc in a cycle C; (a), can be substituted by S(R;.C;) (b).

say that, to obtain R;, the cycle C; is solved for R;. This is
the basic mechanism for constraint propagation as it is shown
in Section V-A-3.

Next, before introducing a general algorithm for verifying
the consistency of GR graphs, a few concepts on cycles in
graphs are reviewed.

1) Preliminaries on Cycles: We denote a cycle by the set
of its arcs. For cycles C; and C in a graph G = (V,E)
such that C; N Cy # B, we define two basic operations that
will be useful later, namely the sum C; + Ca and the ring
sum Cy @ C as the usual union and symmetric difference set
operations, respectively:

Ci,+Cy={ecElecCiore€Ca} (16)
CEPCr={e€E|(ceCrandegC)
or (e ¢ Cy and e € Ca)}. a7

Both operations are commutative and associative, the out-
come of the ring sum being a cycle or a set of cycles.

A set of cycles M in a graph G = (V, E) is said to be a
complete set of basic cycles if 1) every cycle in the graph can
be expressed as a ring sum of some cycles in ‘H and 2) no
cycle in H can be expressed as a ring sum of other cycles
in M. The cardinality of a complete set of basic cycles is
w=| E|—-|V|+1, which is called the cyclomatic number.
Hence, the maximum number of cycles is 2# — 1.

Let X be a complete set of basic cycles in a graph G. The
cycle graph Dx(G) of X is the graph with vertex set X and
arcs joining two distinct nodes if and only if the corresponding
cycles have an arc in common. Constraints labeling a shared
arc are called shared constraints.

In a plane representation of a planar connected graph,
the set of cycles forming the interior regions—called region
cycles—constitutes a complete set of basic cycles. There are

H
| i

Fig. 5. Operations applied for the isolation of blocks: (a) Elimination of
cutlines. (b) Splitting cut points. (c) Composition of constraints in series.

pt 1) different complete sets of region cycles. This can

be easily seen by noting that a planar graph can be embedded
in the surface of a sphere. The number of region cycles in the
surface of a sphere would be i+ 1, which are also the shortest
cycles for a planar graph. Thus, if G is a planar graph, Dx (G)
is a subgraph of the dual graph of G (see [4, p. 106]). Note
also that, in planar graphs, an arc can only be shared by two
basic cycles.

The distance distx(C1,C2) between two basic cycles
C,,C, € X is the minimum number of arcs in a path from
C, to Cy in DX(G).

2) Isolation of Blocks in a GR Graph: When a constraint
on the DOF is posted, it can affect other workpieces different
from those upon which it is incident; however, in general,
a constraint is limited in its scope. In order to isolate the
subgraphs that constitute the scopes of the different constraints,
the following operations are automatically applied:

1) Elimination of cutlines or bridges. This includes the

elimination of pendant constraints (see Fig. 5(a)).

2) Split cutpoints or articulation nodes into two nodes to
produce two disjoint subgraphs (sec Fig. 5(b)).

3) Elimination of nodes of degree two by composing con-
straints in series. This eliminates all nodes of degree
two (see Fig. 5(c)). Obviously, this third operation is
not applicable to cycles consisting of only two arcs.

As a result of these operations, a set of subgraphs, or simply
blocks, are obtained. A GR graph is consistent if and only if
each of its blocks is consistent.

3) Propagation of Constraints in a Block: A general proce-
dure to propagate the effect of constraints in each of the blocks

THOMAS ez al.: INFERRING FEASIBLE ASSEMBLIES FROM SPATIAL CONSTRAINTS 235

of a GR graph has been devised, either to characterize the
set of configurations that satisfy all the constraints or to find
that there exist no such configurations, which will allow us to
discover matching constraints to generate a better hypothesis.
The propagation process consists in filtering all constraints,
i.e., eliminating from the constraints those transformations that
cannot appear in any solution. Eventually, if all constraints are
reduced to only one element, a single solution is obtained.
Global consistency in a block G is checked by removing
local inconsistencies, i.e., by eliminating inconsistencies in ba-
sic cycles, which is equivalent to ensuring node consistency in
Dx(G), and by eliminating inconsistencies between adjacent
basic cycles, which is equivalent to ensuring arc consistency
in Dx(G). The following procedure implements this idea:
procedure filter constraints;
input: G; /* a block */
output: incon_set, p;
incon_set:= J;
p:= -1;
repeat
stop:= true;
/* check node consistency */

p:=p+ 1;
forall basic cycles C; do
forall constraints R; do
R; :=. S(Rj,O,‘);
if R; == O then
incon_set:= {C;};
return();
endif;
enddo;
enddo;
/* check arc consistency */

p:=p+ 1;
forall shared constraints R; do
Ry = nka;
if Rr == J then
incon_set:= {{Ci}r};
return();
endif;
if Rt # R; then
stop:= false;
R]' = RT;
endif;
enddo;
until stop;
end.

Inconsistencies can be found when obtaining either
S(R;,C;) or ﬁka. In the first case, the cycle C; is included
in incon_set; in the second one, the set of cycles sharing
the constraint R; are included in incon_set.

Computing S(R;, C;) and ﬂka requires solving kinematic
equations whose complexity depends on the kind of rep-
resentation used (homogeneous transformations, quaternions,
etc.). These equations are easier to solve if all the involved
constraints have entire DOF (not just ranges of them) that are

independent from each other (not related by equations) [23].
Roughly, this entails that all planes and axes of symmetry of
the involved features are either parallel or orthogonal in the
final assembly. In this particular case, since an integer number
of DOF is removed at each iteration, it is easy to justify that
the procedure given above halts and that its complexity is
linear in the number of shared constraints [18]. If the block
G is planar, then the complexity is also linear in the number
of cycles p [18].

The significance of the described procedure is that it only
involves repeatedly solving a set of basic cycles, which, in
the case above, are becoming simpler to solve at each step.
Further savings can be obtained by selecting the complete set
of shortest basic cycles, which, in the case of a planar graph,
consists of region cycles. ‘

Only in the particular case where all constraints are of
the type above does the fact that the procedure halts with
incon_set = ¢ imply that block G is consistent. In the
other cases, the existence of an actual solution has to be
checked through a backtrack search [18].

If, on the contrary, the procedure halts with incon_set
(J, then G is guaranteed to be inconsistent, and we need
to derive a set of matching constraints that permits obtaining
a more promising hypothesis at the next iteration of Steps 1
and 2 of the algorithm in Section IV-A. This is the subject of
the following section.

4) Obtaining Tightest Matching Constraints: After the pro-
cedure in the preceding section has ended, each cycle (or set
of cycles) in incon_set has to be postprocessed in order to
obtain one or more matching constraints. We would like these
constraints to reduce the search space as much as possible.
Observe that all we know at the end of the procedure is that

>

distx (C:,Cj)<p/2

C; (18)

is inconsistent, YC; € incon_set, if p is even and

> Cj

3c;ec) distx (Ci,C;)<p/2

(19)

is inconsistent, VC € incon_set, if p is odd.

Let us suppose that 7 is the set of the indices of the arcs in
an inconsistent set C; + Cy + ...C, (i.e., C1,Cy,...C, are
Jointly inconsistent cycles); then the corresponding arcs in the
GF graph cannot appear together in another hypothesis, and
thus, the detected matching constraint would be

Yoz <|T| -1

JjET

(20)

However, it could be that there exists a subset of C +C5 +
...+ C, that is also inconsistent, and thus it is possible to
generate a matching constraint involving fewer variables than
those in (20), which, therefore, would introduce a more drastic
cut in the search space. Thus, our aim is to find minimal sets
of jointly inconsistent arcs.

In order to describe how to obtain the tightest constraints,
we need to introduce some concepts about the consistency of
cycles.

236 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 2, APRIL 1992

Let A be the set of all possible sums of cycles in a
block. The set inclusion relation induces a partial order on N.
This partial order can be interpreted in terms of consistency
relations as follows. Let N1 C N, with Ny, N2 € N; we have

« if N, is inconsistent, then N3 is inconsistent, and

« if N, is consistent, then N, is consistent.

In particular, if C; and C, are two cycles such that
Cy N Cy # &, we have

« If C, is inconsistent, then C; + Co is inconsistent.

« If C; + C, is consistent, then C; & C; is consistent.

If C; + Cs is inconsistent, the cycle C; @ C, may, or may
not, be inconsistent. If it is inconsistent, it will provide a tighter
matching constraint than Cy + Ca.

Now, N* € N will originate a tightest matching constraint
if and only if

e N* is inconsistent, and

+ VYN € N such that N C N* N is consistent.

Next, we will describe how to obtain tightest constraints in
the case that the procedure filter_constraints outputs
a p that is even. The case in which p is odd can be treated
analogously.

Once the set of jointly inconsistent cycles {C;};e7 around
a cycle C; € incon_set has been found according to (18),
one must test the consistency of all the sets N € A such that

NQCi+ZC]-
€T

VYJ C T such that {C;} U {C;}jes conform a connected
subgraph of Dx(G).

These tests can be performed using again the procedure
filter constraints. If such tests are carried out fol-
lowing the partial ordering in A/, then it is guaranteed that the
tightest constraints will be obtained.

Observe that many different search strategies could be
implemented to find the tightest constraints. Each would
involve a different way of traversing the graph representing
the partial order on N. The one we have outlined here
consists of a kind of depth-first search to find an initial set
of constraints, followed by a breadth-first process to refine
these constraints. In some cases, this second search stage can
be very time consuming, and it may be preferable to generate
a new hypothesis on the basis of the constraints obtained in the
first search stage. In sum, there is always a tradeoff between
time spent in tightening the constraints and time spent by
the successive applications of the simplex algorithm to find
hypotheses that satisfy the constraints. Exploring how much
constraint refinement would lead to an “optimal” procedure is
a topic of further research.

5) Example: Returning to our example in Fig. 1, we will
describe in detail how the algorithm works on a particular
hypothesis. After the seventh hypothesis has been obtained
(see Table 1), the GR graph shown in Fig. 6(a) is generated,
which contains only one planar block (see Fig. 6(b)) whose
graph of region cycles appears in Fig. 6(c). There are two
region cycles in the block G obtained, leading to a Dx(G)
graph with only two nodes. Then the first step of the filtering

(a)
By
0
R;'-Rs Ry

O
By
(b)

G G

. o— —o0

R:4~ R14ﬂ(Rn‘>R~,.\ R%‘#-RH 'Ru.l

©

Fig. 6. (a) GR graph obtained for the seventh hypothesis in Table I, (b) the
only block contained in this GR graph, and (c) the corresponding graph of
basic cycles.

procedure (node consistency check) consists of obtaining

R}, = S(Rus,C1) = RN (Rg" - Ry)
R, = S(R14,C2) = RuN Ry (21)
Note that both R}, and R3, contain only one legal trans-
formation between By and Bs each, since the position of the
workpiece B with reference to B3 is fixed in both cases. Each
of the two cycles is thus consistent.

The second step of the filtering procedure (arc consistency
check) consists of intersecting the solutions obtained for the
shared constraint to actualize them, i.e., finding R, N R},
Since the resulting position of By with reference to B is
different in both cases, R}, N R2, = @. Therefore, the cycles
C; and C, are jointly inconsistent. Thus, this allows us to post
the following matching constraint:

T3+ z6 + 713+ T14 £ 3 (22)
according to (20).

We note that, since the cycle Cy involves only two work-
pieces and when it is solved the position between both
workpieces is fixed, no DOF remains to permit assemblying

THOMAS et al.: INFERRING FEASIBLE ASSEMBLIES FROM SPATIAL CONSTRAINTS 237

B,
0
Ri' Ry Ry Ry
O
By
(b
& 22
o —Q
R}, ~ Riun(RZ'-Ry) wg— Rur(Ry - Rg')
©

Fig. 7. (a) GR graph obtained for the ninth hypothesis in Table I, (b) the
only block contained in this GR graph, and (c) the corresponding graph of
basic cycles.

them. Thus, the following matching constraint is also detected:

713+ %14 < L. (23)
In order to find a tighter constraint than (22), we proceed as
explained in Section V-A-4. Since the empty set is obtained
when trying to solve the cycle C, @ C; for any of its
constraints, what follows is a tighter constraint than (22):
z3 + T + 713 < 2. (24)

Note that there are two other sets of region cycles for this
block that would provide this constraint in a more straight-
forward way.

A feasible matching is found for workpieces in Fig. 1 in
step 9 of the search process (see Table I). The associated GR
graph appears in Fig. 7(a), the block it contains appears in Fig.
7(b), and the corresponding graph of basic cycles is shown in
Fig. 7(c). In this case, the hypothesized assembly is found to
be feasible; the three remaining DOF (two translational and
one rotational) permit assemblying it.

B. Constraints of Nonintersection and Assembly Sequences

The assembly configuration problem tackled here, despite
its static nature, has to be viewed as a combination of the
following three different problems:

1) The check interference problem: It must be possible to
detect intersections between objects in fixed positions.
For instance, in the example of Fig. 1, the matching
{zg, 712,717} permits fixing the position of workpiece
B, with reference to Bz. Thus, By and Bs must be
checked to be interference free in this fixed position.

2) The find space problem: After complete constraint propa-
gation on a GR graph without finding any inconsistency,
it is possible that there remain DOF between the work-
pieces. Thus, it is necessary to find interference-free
locations for workpieces. For instance, in the example
of Fig. 1, the matching {z14} leads to a GR graph with
two DOF. In this case, there exist only two discrete
interference-free locations between By and Ba.

3) The find path problem: It must be possible to ensure that
there is a collision-free path to bring workpieces into
contact from a situation in which they are sufficiently
far apart. ‘

The easiest way to deal with nonintersection constraints is
by using a configuration space (c-space) representation [16].
The main problem concerning c-spaces is their construction
because of the computational effort involved. Thus, it is very
important to avoid their explicit representation or, at least, to
use a lazy computation strategy.

Since clearances between workpieces in the assembly do-
main can be arbitrarily small, an exact representation of the
boundaries of obstacles in c-space is required. Thus, the
typification of nonintersection constraints followed in [5],
framed within the predicate-based approach described in [2],
seems to be the most suitable to this end.

The obvious extension of the method for dealing with
nonintersection constraints is the ability to generate assem-
bly sequences {11]-{13]. This would allow the system to
distinguish those configurations for which there is a feasible
assembly sequence from those for which, despite satisfying all
previously generated constraints, there is no such a sequence.

Previous work on finding assembly sequences, given a final
assembly, assume the three following hypotheses: 1) exactly
two workpieces or subassemblies are joined at each time; 2)
whenever workpieces are joined forming a subassembly, no
later relative motion between them is carried out; and 3) the
models of the assemblies represent explicitly the fastenings
that bind one part to another. The last hypothesis is equivalent
to the explicit representation of the features and the legal
motions for any compatible pair we have taken. '

Some precedence relations between assembly operations can
be obtained directly from the way in which constraints on the
DOF have been propagated. Each subassembly in an assembly
sequence must have at least one DOF that permits disassem-
blying it. In the example of Fig. 7(b), solving both basic
cycles for the shared constraint fixes the relative position of B2
with respect to Bs; this implies that the aforementioned two
workpieces must be mated before either B; or By are inserted.

238 |EEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 2, APRIL 1992

VI. CONCLUSIONS

We have presented a constraint-based algorithm to infer
assembly configurations, as well as specialized techniques to
deal with constraints on the DOF. '

The algorithm described has been devised as an aid for
assembly specification and automatic placing of workpieces in
assemblies. It is well suited to deal with workpieces that can
be described in terms of predefined three-dimensional features.

The correctness and completeness of the described al-
gorithm relies on the correctness and completeness of the
algorithms for dealing with spatial constraints. While correct,
there are no algorithms for dealing with spatial constraints
on the DOF that have been proved to be complete. Since
it is always possible to decide whether two workpieces can
be joined based on geometrical criteria, further research must
focus on finding such algorithms.

The solutions to the problem can be seen as the con-
figurations remaining after carrying out all the eliminations

implied by the spatial constraints. The algorithm presented-

here produces the solutions one at a time, according to an
optimality criterion.

The method has been devised so that it can be easily
extended to deal with new constraint types. Thus, the obvious
extension is the addition of all those constraints dependent on
the working cell where the assembly task is to be carried out.
These constraints would include those imposed by stability
and support criteria between workpieces, and accessibility
or grasping requirements. However, adding other constraints
different from spatial constraints requires modifying the opti-
mality criterion.

APPENDIX
COMPLEXITY CONSIDERATIONS

Proposition: The problem stated in Section TV-A is NP
hard.

Proof: We find a reduction from the satisfiability prob-
lem to the problem of inferring feasible assemblies. The
satisfiability problem can be stated as follows: Given a col-
lection of clauses C = {c1,c2,...¢,} on a finite set X =
{z1,Z3, ... Tm} of variables, find whether there exists a truth
assignment for X that satisfies all the clauses in C.

We shall construct a set of workpieces (see Fig. 8) such
that C is satisfiable if and only if there exists an optimum
matching of their features that constitutes a feasible assembly.
First a rectangular workpiece having n rows and 2m columns
of potential holes is designed (see Fig. 8(a)), the columns
corresponding to the variables and their logic negations in
alternation. A hole is effectively drilled in the matrix position
ij if and only if

z(;+1)/2 € c¢;, when j is odd
or
T2 € ci, when j is even.

Next, m workpieces—one for each variable—are designed,
having n holes each, as shown in Fig. 8(b). The two symmetric

ct
c2

©

Fig. 8. Workpieces used in the reduction of SAT to the problem of inferring
final assemblies: (a) Workpiece that codifies the clauses. (b) Workpieces that
correspond to one variable each. () Workpieces corresponding to one clause
each which ensure that, in a maximum matching, all clauses are satisfied.

placements of each of these workpieces correspond to a
variable and its negation.

Finally, a board and n sliding workpieces with one shaft
each are designed (see Fig. 8(c)), which are aimed at ensuring
that at least one hole for each clause is made to correspond
with a hole for a given variable or its negation.

Note that shafts and triangular prisms are defined in such
a way that they can be simultaneously mated to two other
features, all the remaining matings being required to be one
to one.

Thus, if a matching involving 4n + 2m arcs of the GF
graph for this problem is found (2n shaft-hole arcs, 2n groove-
rectangular prism arcs, and 2m triangular prism-triangular hole
arcs), then it is easy to derive a truth assignment for X that
satisfies all the clauses in C. Conversely, if no such optimal
matching leads to a feasible assembly (i.e., the maximum
matching that corresponds to a feasible assembly has a lower

THOMAS et al.: INFERRING FEASIBLE ASSEMBLIES FROM SPATIAL CONSTRAINTS 239

number of arcs), then there is no truth assignment for X that
satisfies all the clauses in C. []

Since all possible solutions already appear as vertices of
the polytope defined by (4) and (5) at the very beginning of
the optimization, the problem of obtaining the most promising
hypothesis has lower complexity than the general integer
linear programming problem. Thus, other algorithms different
from the simplex would provide a solution at less compu-
tational effort [14]. Actually, many optimization problems
on graphs can be formulated as integer programs. There
exists a polyhedron naturally associated with any integer
program, namely, the convex hull of all integer solutions.
The existence of a polynomial algorithm for a combinatorial
optimization problem is often related to finding a system of
linear inequalities that define this convex hull [8].

Because of the NP hardness result and even if the most
promising hypothesis could be found in polynomial time, the
iteration to find a feasible assembly cannot presumably be
carried out in polynomial time. All these considerations can be
made independently of the complexity of testing the feasibility
of a hypothesis. If this test could be carried out in polynomial
time, then the problem would be NP complete.

ACKNOWLEDGMENT

We thank J. Canny from the University of California at
Berkeley for his suggestions as well as some useful references.

REFERENCES

[1] B. G. Buchanan, G. L. Sutherland, and E. A. Feigenbaum, “Heuristic
DENDRAL: A program for generating explanatory hypotheses in or-
ganic chemistry,” in Machine Intelligence 4, B. Meltzer and D. Michie,
Eds. Edinburgh, U.K.: Edinburgh Univ. Press, 1969, pp. 209-280.

[2] J. Canny, The Complexity of Robot Motion Planning. Cambridge, MA:

MIT Press, 1988.

N. Christofides, Graph Theory. An Algorithmic Approach. New York:

Academic, 1975.

[4] N. Deo, Graph Theory with Applications to Engineering and Computer
Science. Englewood Cliffs, NJ: Prentice-Hall, 1974.

[5] B.R. Donald, “Local and global techniques for motion planning,” M.Sc.
thesis, Massachusetts Institute of Technol., Cambridge, May 1984.

[6] R. S. Doshi, R. S. Desai, R. Lam, and J. E. White, “Integration
of artificial intelligence planning and robotic systems with Airobic,”
presented at IMACS Conf. Expert Syst., Purdue Univ., West Lafayette,
IN, Dec. 1988.

[7] S. E. Fahlman, “A planning system for robot construction tasks,”
Artificial Intell., vol. 5, pp. 1-49, 1974.

[8] M. Grotschel, L. Lovisz, and A. Schrijver, “The elipsoid method and
its consequences in combinatorial optimization,” Combinatorica, vol. 1,
pp. 169-197, 1981.

{9] M. R. Henderson, “Extraction of feature information from three dimen-
sional CAD data, Ph. D. dissertation,” Purdue Univ., West Lafayette,
IN, 1984.

[10] J. M. Hervé, “Analyse structurelle des mécanismes par groupe des

déplacements,” Mechanism Machine Theory, vol. 13, pp. 437-450, 1978.

[11] L. S. Homem de Mello and A. C. Sanderson, “A correct and complete

algorithm for the generation of mechanical assembly sequences,” IEEE

Trans. Robotics Automat., vol. 7, no. 2, pp. 211-227, 1991.

, “Representations of mechanical assembly sequences,” IEEE

Trans. Robotics Automat., vol. 7, no. 2, pp. 228-240, 1991.

W. Jentsch and F. Kaden, “Automatic generation of assembly se-

quences,” in Artificial Intelligence and Information-Control Systems of

Robots, 1. Plander, Ed. Amsterdam: North-Holland, 1984,

N. Karmarkar, “A new polynomial-time algorithm for linear program-

ming,” Combinatorica, vol. 4, pp. 373-395, 1984.

3

[12]

(3]

(14]

[15] N. Koutsou, “Planning motion in contact to achieve parts mating,” Ph.
D. dissertation, Univ. of Edinburgh, Edinburgh, U.K., 1986.

T. Lozano-Pérez, “Spatial planning: A configuration space approach,”
IEEE Trans. Comput., vol. C-32, pp. 108-120, Feb. 1983.

A. K. Mackworth, “Consistency in networks of relations,” Artificial
Intell., vol. 8, pp. 99-118, 1977.

A. K. Mackworth and E. C. Freuder, “The complexity of some poly-
nomial network consistency algorithms for constraint satisfaction prob-
lems,” Artificial Intell., vol. 25, pp. 65-74, 1985.

C. H. Papadimitrion and K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall, 1982.
R. J. Popplestone, A. P. Ambler, and I. M. Bellos, “An interpreter for
a language for describing assemblies,” Artificial Intell., vol. 14, pp.
79-107, 1980.

F. Thomas, “Planificacién de tareas robotizadas de ensamblaje basada
en andlisis de restricciones,” Ph.D. dissertation , Polytechnic Univ. of
Catalonia, Spain, June 1988 (in Spanish).

F. Thomas and C. Torras, “Constraint-based inference of assembly
configurations,” in Proc. IEEE Conf. Robotics Automat. (Philadelphia,
PA), Apr. 1988.

, “A group theoretic approach to the computation of symbolic part
relations,” JIEEE J. Robotics Automat., vol. 4, pp. 622-634, Dec. 1988.
R. B. Tilove, “Extending solid modeling systems for mechanism design
and kinematic simulation,” IEEE Comput. Graphics Applicat. Mag., vol.
3, pp. 9-19, May-June 1983.

C. Torras, “Planning for problem solving: A survey,” in Al and Expert
Systems in Scientific Computing, R. M. Huber, C. Kulikowski, J. M.
Davis, and J. P. Krivine, Eds., IMACS Transactions Series. Basel,
Switzerland: Baltzer, 1989.

[26] J. M. Valade, “Geometric reasoning and synthesis of assembly trajecto-
ries,” Int. J. Robotics Res., to be published.

J. R. Woodwark, “Some speculations on feature recognition,” in Geo-
metric Reasoning, D. Kapur and L. Mundy, Eds. Cambridge, MA:
MIT Press, 1989.

[16]
[17]

(18]

(19]

[20]

{21]

[22]

(23]

[24]

{251

[27]

Federico Thomas was born in Barcelona in 1961.
He received the B.Sc. degree in telecommunications
engineering from the Escuela Técnica Superior de
Ingenieros de Telecomunicaciéon de Barcelona at
the Polytechnic University of Catalonia in 1984
and the Ph.D. degree in computer science from the
Polytechnic University of Catalonia, Barcelona, in
1988.

Since 1985, he has been with the Institute of
Cybernetics. At present he holds the position of
Associate Professor in the Spanish Council for Sci-
entific Research.

Carme Torras was born in Barcelona in 1956.
She received the M.Sc. degree in mathematics from
the Universitat de Barcelona in 1978, the M.Sc.
degree in computer science from the University of
Massachusetts, Amherst, in 1981, and the Ph. D.
degree in computer science from the Universitat
Politeécnica de Catalunya in 1984.

Since 1981, she has been with the Institut de
Cibernética, Barcelona, conducting research on robot
motion planning and neurocomputing. She is author
of the monograph “Temporal-Pattern Learning in
Neural Models” (Lecture Notes in Biomathematics, Springer-Verlag, 1985) and
a co-author of the book Robética Industrial (Marcombo, 1986). At present,
she holds the position of Professor of Research in the Spanish Council for
Scientific Research and she teaches doctoral courses in the fields of robotics
and artificial intelligence at the Universitat Politecnica de Catalunya.

