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ABSTRACT

It has been recently shown that the singularity locus of a 3R
robot, and in particular its nodes and cusps, can be algetatly
characterized in terms of nested determinants. This nedt an
structured formulation contrasts with the huge and ofterame
ingless formulas generated using computer algebra systéms
this paper we explore further this kind of formulation. Wegant
two new results which we think are of interest by themselves.
First, itis shown how Chrystal’'s method, used to obtain twui-
tant of two quadratic polynomials, can be formulated as est
determinants. Second, it is also shown how the coefficiétig o
harmonic conic of two given conics, can also be expressdtkin t
same form. These results lead to new formulations for trersev
kinematics of 3R robots, their singularity loci, their nadand
some of their high-order singularities.

INTRODUCTION

The regional part of most wrist-partitioned robots is based
on a 3R robot meeting some geometric conditions to make its
inverse kinematics reduce to the solution of quadratic ggus.
One important consequence of this simplification is thas¢he
robots have to pass through a singularity to change theikwor
ing mode (change from one inverse kinematic solution to an-
other). Nevertheless, it has been shown how generic 3Rsobot
can change their working modes without meeting any singular
ity, if at least one point in its workspace has exactly threeise
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kinematic solutions (corresponding to a cusp point in itggk
larity locus). Actually, the number of cusps provides a 16t o
information about the topology of the singularity locus aasla
result, about the global properties of the manipulator sascthe
existence of voids and of 4-solution regions [1-3]. Thiserbs
vation reveals that a precise understanding of the natutleof
singularity loci of generic 3R robots can assist in the desify
industrial robots [4].

Despite what it might seem at first glance, the analysis of the
singularities of generic 3R robots is a huge task. This is thig/
analysis has been limited to 3R robots whose consecuting joi
axes are mutually orthogonal (usually known as orthogoRal 3
robots). The first attempt to classify 3R manipulators with o
thogonal joints was presented in [5]. Five surfaces weradou
to divide the manipulator parameter space into cells with-co
stant number of cusp points. The equations of these surfaces
were derived as polynomials in the DH-parameters using lisroe
ner bases. A physical interpretation of this theoreticalkweas
conducted in [6] where the existence of extraneous surfqea-e
tions was detected, and where additional features in thesiela
fication such as genericity [7] and the number of aspects were
took into account. The complete classification of orthog8fa
manipulators was established for the first time on the bdsso
number of cusps and nodes in the singularity locus in [2, 8].

The use of algebraic geometry methods applied on alge-
braizations of the problem based on DH parameters thus has
important limitations. This motivated our quest for findia
ternative formulations that could be used to study geneRal 3
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robots. As a result, we proposed a distance-based forronlati
in [9]. One important feature of this formulation is that tha
the nodes and cusps in the robots’ singularity loci can be-alg
braically characterized in terms of nested determinamtghik
paper we explore further this kind of formulation. At a pune-t
oretical level, it is shown how the coefficients of the resunttof
two quadratic polynomials, and the coefficients of the harimo
conic of two given conics, can be both formulated as nested de
terminants. These results lead to new formulations fontherse
kinematics of 3R robots, their singularity loci, their nedand
some of their high-order singularities.

The rest of this paper is structured as follows. In the next
section, we briefly review the results presented in [9] that a
expressible as nested determinants. They refer to the'scot
gularity locus, and its nodes and cusps. Then, we show how
the coefficients of the closure polynomial of generic 3R tsbo
can also be expressed as nested determinants using Chrystal
method. This result leads to a new formulation for the siagty
locus as the discriminant of this closure polynomial, andra s
ple way to detect swallowtail higher-order singularitiédl. ob-
tained necessary and sufficient conditions are also exguiess
nested determinants. Then, we show how the coefficientseof th

FIGURE 1.
TION.

A GENERAL 3R ROBOT AND ASSOCIATED NOTA-

and

harmonic conic of two given conics can be expressed as nested

determinants. This result permits to have a new way to charac
terize the nodes of the singularity locus of 3R robots. Fnale
present two examples to clarify some of the presented sesult
Finally, we conclude with some prospect for future research

SUMMARY OF KNOWN RESULTS EXPRESSED AS
NESTED DETERMINANTS

Consider the 3R robot depicted in Fig. 1. We have placed
in each revolute axis two points. Their exact location altirgy
revolute axes is irrelevant as long as they are far apartaaav
numerical instabilities. Let us denote these points defitie
joints locationsPy,...,P;. Now, observe that the distances be-
tween the points between two consecutive axes do not depend o
the robots’ configurations.

According to the notation used in Fig. 1, the distances be-
tween the set of point§Py, Py, Ps, Py, Py} or {Ps, Py, P5, Ps, Py}
are not independent because they are embedd&®.in This
dependency, using the theory of Cayley-Menger determsnant
translates into the following algebraic conditions:

o1 1 1 1 1
1 0 s12 813 S14 S17
11 0 83 24 97
11832 0 s34 S37
111 42 43 0 917
1s/1 82 83S4 0

(1)

1 1 1 1 1
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3S4 0 S 57
3 S4 S5 0 S57
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(@)

0
1
1y
lss
ls
1

wheres j stands for the squared distance betweandP;. The
above two equations are quadratic forms in the unknown dis-
tancessz 7 andss 7. They actually represent two real ellipses,
o :xAXT =0and% : xBx" =0, wherex = (s3.7,%7,1) and

a; C dl a C d2
A= bl e1 and B=|c b2 (S7) (3)
dl €1 f1 d2 € f2

The entries ofA andB can, in turn, be expressed in terms of
determinants (see Table I).

A 3R robot is in a singularity if, and only if, the following
discriminant vanishes

26, &

5 25, (4)

b=

where
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and

a; ¢ dp

[3=1|c1 by e|=defA), (6)
dp e 1
a Cp di| |ag ¢ di| (&g ¢ do

3y=co by er|+|cy by | +]|c1 by & (7)
d2 e fi| |dy & fi| |di e f2
a; G ) |ap ¢y dp| (&2 Cp dy

i=|c1 by &+ |c2 b1 e+ |2 by &1 (8)
di e fo| |d2 e fo| |do &2 1
a C d2

lo=|Cc2 by e| =detB) 9)
d> e f2

The robot is in a cusp singularity if, and only & = 0 and
03 =0.

Finally, using Silvester’s criterion, the robot is in a ncie-
gularity if, and only if, the following overconstrained $gm of
equations has a root

pr G r1) (A2
P2 Q2 I2 A|l=0 (10)
P3 O3 I3 1
where
a1 C1 a1 C2 a C a2 C2
p1= c1 bl , 01 = c1 b2 + Co bl 1= Co b2 ; (11)
C1 bl C1 b2 Co bl a b2
P2 dl e , 02 dl & + d2 e’ 2 d2 &l ( )
b1 & by & | |b1 & by &
= s = s = . 13
Ps=le f1)" BT ey o T|ey " 92le (13)

OBTAINING A CLOSURE POLYNOMIAL

If we eliminate, for examplesz 7 from the system formed by
Eqns. (1) and (2), a quartic closure polynomisad4n is obtained.
The result, in its expanded version, cannot be included foere
space limitation reasons, but it can be easily reproducgyusi
computer algebra system. Next, we show how this quartic clo-
sure polynomial can be compactly expressed using nested det
minants by following the little known Chrystal’s procedyi®),
pp. 416-417].

Let us define the matrix

(a1 bl 2c; 2d1 2eq fl

o (az bz 2C 2d2 26 fz) (14)

andwij, i # j, the minor ofW containing its columns and j.
For exampleys; = 2 E;Z;’ Then, tediously following by hand

Chrystal's procedure, it is possible to prove that the testlof
Egns.(1) and (2) can be expressed as:

A< ;+4Bs};+6CS;+4Ds7+E =0, (15)
where
Wio W
A= Wiz Wa3|
Wa2 W12
1B — 2W15 W35 4 [ W13 Wa2
Wiz Wip|  |Wig Woy|’
| W15 W12 W14 W13 W13 W14
6C = + ,
2We1 Wi5|  |Wag Woa|  |Was Wsg
D — 2W15 W14 4 |Wis Was
Was Wig|  |Wag Wea|’
E — | W16 W14
Wy6 W16

The roots of Eqn. (15) determine the inverse kinematics so-
lutions of the analyzed 3R robot. In general, this equatidh w
have four different roots but, when some roots coincidefaohe
lowing possibilities arise:

1. If two roots coincide, the robot is in a standard singtyari

2. If there are two pairs of coincident roots, the robot is in a
node of its singularity locus.

3. Ifthree roots coincide, the robot is in a cusp of its siagity
locus.

4. If four roots coincide, the robot is in a so-called swallailv
singularity, a kind of high-order singularity.

In the following two sections, we derive a new characteriza-
tion of standard singularities, as well as swallowtailsngshe
resultant polynomial in Eqn. (15).

AN ALTERNATIVE FORMULATION FOR SINGULARI-
TIES

Using the results presented in [11, pp. 264-267], the dis-
criminant of Eqn. (15) can be expressed as:

3w 3w W
Dy = |3wp 93 + (o 3wy
w 3w 3w

(16)
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TABLE 1. COEFFICIENTS OF THE ELLIPSES?Y AND # EXPRESSED AS DETERMINANTS OF SQUARED DISTANCES BETWEEN
P1,...,P;. OBSERVE THAT THE ORIGINAL PRESENTATION IN [9] CONSTAINS A YPO IN THE DEFINITIONS OFf; AND dy.

01 1 1
|1 0 si2814

1si2 0 94
1sia4 0

a) =

01 1 1 1

10 si2814917
h=-|1s2 0 47|

by =

e=—1s2 0 387, h=

01 1 1 01 1 1
1 0 s2813 7 o - 10 si2813 |
1sip 0 3 1sip 0 53
lsi33 0 1s14 434

01 1 1 1 1
01 1 1 1

1 0 si2913914817
1si2 0 939497
1si3%3 0 s34 0 /

1 0 12813817

1si4%4 0 O 1si33 0 0
1lsja434 0 O
1si3334 0 1siasp434 0
11757 0 0 O
01 1 1 01 1 1 01 1 1
1 0 5654 1 0 5653 1 0 5653
ap=-— , by = — ; C2= )
156 0 s54 l1ss6 0 s53 l1ss6 0 s53
1ss454 0 15353 0 15454 S34
01 1 1 1 1
01 1 1 1 01 1 1 1
1 0 5653547
1 0 56547 1 0 565357
1ss6 0 553564 567
d=—|1ss6 0 547> ©2=—|1ss6 0 S3S67|» f2= .
15353 0 s34 O
1ss4%4 0 O 1ss3%3 0 O
1545434 0 0
1535334 O 1545434 0
lss75%7 0 0 O
where SWALLOWTAIL SINGULARITIES
In [9], it is said that higher-order singularities correaddo
those cases in which the inverse kinematics of a 3R robothas f
AB AC BC repeated solutions. Nevertheless, this is only a neceasarguf-
W = ’B clr 2= ’B D" = ’C D|’ ficient condition for a kind of higher-order singularitiesdccur
BD cD AD known as swallowtail singularities. Two other kinds of hégh
oy = ’C E‘ W5 = ‘D E‘ , W = ‘B E" (17) order singularities can occur in the root loci of 3R robotskn
as beaks and lips, which do not satisfy this condition (s& [1
for details). Since a swallowtail (four coincident rootsinche
seen as the coincidence of a cusp (three coincident roadsy an
Then, the robot will be in a singularity if, and only ifi, van- node (two pairs of coincident roots), we can readily chanact

ishes. This is an alternative formulation to that given, &s e ize them using the criteria presented above. However, we can

plained above, by; = 0.

AlthoughA; = 0 andA; = 0 are equivalent for our purposes,
the former is preferable because it is obtained from theridisc
inant of a polynomial of order three, instead of order founeT
interest of the latter condition comes from the fact thattlad

take advantage of the explicit expression we have just eeériv
for the resultant polynomial in Egn. (15) and its discrinmiban
Eqgn. (16). Indeed, when the inverse kinematics of the 3Rtrobo
has four coincident solutions, the polynomial in Eqn. (18} b
comes a perfect quartic. That is, it can be expressed as:

entries ofA\; vanish in a swallowtail singularity, as explained be-

low.

(sa7+A) =57 +4A s, +60%s5,+4A 3% 7+ A% =0. (18)
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Then, identifying the coefficients of this polynomials witiose and
of the polynomial in Eqn. (15), we conclude that

BiFR|, B2k AL Gy A2 Gr
a—= b =
F102+F2C1’ Glcz+G2C1’
AEE 21 (19) AL Hp|  [A2H A Ho| |A2H
B C D E 1 _ |A1LH2 2 M1 _|A1 2 2 H1
€= Hy Bo| T |Ho By’ f G1F2+(32F1’
_ _ _ _[H1B2|  |H2B1 ho |2 |Ho P
where—A is the root of the perfect quartic. Therefore, in a per- 9= G Rl TGy Rl TG G| TG Gl
fect quartic alley’s vanish, but observe that they are not indepen-
dent. Actually, they should satisfy, for example, the syzjl,
and
p. 266]
A:Mf, a:hg Q:mgw
W W5 — Wy + oz = 0. (20) i G gi G i Oj
_|ai g ~_|hib ~_|hig
H_‘hi fi" Gl_‘gi fl‘ H'_‘fici'
As a consequence, out of the total six, only three need tshani
This is a much more convenient condition than imposing, at th ) .
. . e Now, let us define the matrix
same time, the conditions for a node and a cusp. This will be
exemplified in the second example given below.
arbycy fronhy
X=labca 202 (22)
abcfgh

AN ALTERNATIVE FORMULATION FOR NODES
In our previous work [9], it is said that Salmon gave, in 1848, & jk, 1 <i < j <k <6, the minor ofX containing the columns

the necessary and sufficient condition for a node to occuuin o i, j, andk.
singularity loci but this condition was not expressible astad Finally we conclude thati, 2 and.»# are on a pencil of
determinants [13]. This lead us to use a formulation derfk@mti conics if, and only if X is not full rank. In other words, in a node

a little known result presented by Sylvester in 1850 [14]wHo of the singularity locus; ; « = O for all possible values df j,
ever, a deeper analysis of Salmon’s condition has revehldt  andk.
as it is explained below, it can indeed be expressed in tefms o
nested determinants.
Two arbitrary conics define what is known as their harmonic 1 EXAMPLE I PARADOXICAL NODES IN ORTHOGO-

conic [15, p. 157-8]. This conic is the locus of a point sucht th NAL 3R ROBOTS i i
the tangents from it to two given conics form an harmonic flenc Let us consider an orthogonal 3R robot with the following
Although not explicitly referenced by this name, this cowias DH parameters

introduced by Salmon in his treatise on conic sections [18, A | 6 | a | a | a; |

334]. The important result for us is that, if the harmonicicon
defined by the two conics given by the two matrices in Eqn. (3) 6| 0] 1) m2
is in the pencil defined by these two conics, then the robat & i 6| 3|3 | m2
node of its singularity locus. This condition is next exgedas 609 0

nested determinants.

The singularities of this robot plotted both in tt& 7,5, 7)
Using somewhat tedious manipulations, it can be verified plane and in the robot's workspace appear in Fig. 2(a) and

that the harmonic conic defined by the two conics with the matr  Fig. 2(b), respectively. Besides the nodes located orz-dods

ces given in Egn. (3) can be expressedds xHx" = 0 where of the workspace, which are obtained when mapping from the

distance space to the workspace [9], this singularity Idrse

4 nodes and 4 cusps. If we apply the condition derived from

ahg Sylvester’s criterion, which reduces to the computatiorthef
H=(hbf (21) intersection between two pairs of a conic and a line, theltresu
gfc appears in Fig. 2(c) and Fig. 2(d). Two nodes are real (Fig)) 2(
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FIGURE 2. PRESENCE OF PARADOXICAL NODES IN THE SINGULARITY LOCUS ORHE 3R ROBOT ANALYZED IN EXAMPLE I. (A)
SINGULARITY LOCUS IN THE DISTANCE SPACE. (B) SINGULARITY L&US MAPPED ONTO THE WORKSPACE. (C) AND (D) NODES
DETECTED USING SYLVESTER’S CRITERION. (E) NODES DETECTESING SALMON'’S CRITERION. (F) THE UNDETECTED NODES
ARE ACTUALLY HIGHER-ORDER SINGULARITIES WHICH DESAPPEAR WEN INTRODUCING A PERTURBATION IN THE ORTHOG-
ONALITY OF THE ROBOT.
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and the other two are imaginary (Fig. 2(c)). If we apply theco = CONCLUSION

dition presented here, derived from Salmon'’s criterioa,réssult In this paper we have explored a bit further the kinematics of
appears in Fig. 2(e). In this case, we have plotted the curves generic 3R robots using nested determinant formulatioresy N
defined byé123=0,8234=0,8345=0, andés56 = 0. These results concerning closure polynomials, singularity lowdes,

four curves intersect at the same two points. That is, botiiime  and swallowtail higher-order singularities have been gméed.
ods detect the same two nodes while the other two remain un- However, in order to give a complete characterization ofsihe
detected. The problem with these undetected nodes is tiyat th  gularities of 3R robots in terms of nested determinantset r
behave as nodes as long as the robot is orthogonal. If we per-mains to obtain such a kind of characterization for beaks and

turb the orthogonality of the robot —for example, if we set lips higher-order singularities. Our current efforts aiaed at

to 11/2.05 instead ofrr/2— the new singularity locus appears this.

in Fig. 2(f). Observe how the previously undetected nodes ha The characterization of higher-order singularities haserb
disappeared, but we know that standard nodes are stableewith  revealed much more important than initially suspected, as w
spect to “small perturbations”. The explanation to thisaept have proved through a simple example. Classifying 3R robots
paradox is that the undetected nodes are not standard nodes b in terms of the number of nodes and cusps in their singularity
higher-order singularities. Moreover, we can also say tiey loci seemed meaningful because nodes and cusps are assumed t

are not swallowtail singularities because a swallowtgilegys as  pe stable features of these loci, in the sense that smaditiars
the coincidence of a node and a cusp and we have just seen thafn the parameters defining the robot lead to small pertushatin

they are not detected as nodes. their locations, but they still remain there. This was trendard

What seem to be stable nodes and cusps in a given subspac@pproach when analyzing orthogonal 3R robots. Nevertseles

are not necessarily so in the ambient space of all possible 3R perfect orthogonality cannot be guaranteed in practicesante
robots. This seems to be a flaw in some previous analyses of of the nodes in the singularity locus behave as higher-itter
orthogonal 3R robots. As a consequence of this, not all appar gularities when orthogonality errors exist. As a resukirig into

ent nodes in the singularity locus of an orthogonal 3R roleetb  account higher-order singularities seems to be unavaidabén

have in the same way. While some nodes are stable and they arecharacterizing the singularity loci of 3R robots with somedk
detected by either using Sylverter’s or Salmon’s critergyme of constraint in their geometry.

others are unstable as they disappear under small peitnbat
in the robot’s orthogonality. Actually, they must be cléiesl as
higher-order singularities. In the light of this, the exdegypre-
sented in [12], for the three kinds of higher-order singitiks in
the singularity locus of orthogonal 3R robots, should bésitad.
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2 EXAMPLE II: SWALLOWTAILS , L
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Let us consider an orthogonal 3R robot with the following
DH parameters
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