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Abstract—An image can be seen as an element of a vec-

tor space so that it can be expressed in terms of a series

expansion of any non necessarily orthogonal base of this

space. This paper shows how a matrix-based formula-

tion of this fact permits deriving a new reconstruction

method of an image from its geometric moments where

the basis functions used in the reconstruction and those

used to obtain the moments do not necessarily define the

same subspace. This permits introducing constraints

relative to the bandwidth or the spatial resolution of

the image to be reconstructed. Moreover, it is shown

that, by exploiting the algebraic properties of the in-

volved matrices as well as the properties of computer

arithmetic, accurate solutions to this problem in spite

of its ill-conditioning can be obtained.

I. Introduction

The reconstruction of an image from a set of its mo-
ments is not necessarily unique. In other words, it is an
ill-posed problem. Therefore, all possible methods to
solve it must impose extra constraints so that the so-
lution becomes unique. It can be shown that the stan-
dard least-squares reconstruction method solves this
ill-posedness by assuming constraints on the unknown
moments themselves. On the contrary, the reconstruc-
tion method proposed in this paper permits introducing
constraints that can be interpreted in terms of image
properties, such as its bandwidth or spatial resolution.

The standard reconstruction method of an image
from some of its moments is based on the least-squares
approximation of the image using orthogonal polyno-
mials [12], [10], [8]. Polynomials are the most intuitive
choice among all possible orthogonal basis functions
because they can be easily related to the monomial
functions that are used to obtain geometric moments.
Legendre and Zernike polynomials were first used in
[12]. They are orthogonal polynomials for continuous
variables in rectangular and polar coordinates, respec-
tively. However, they are not orthogonal for discrete
variables, contrary to what is assumed by some au-
thors [10], [4]. Tchebichef polynomials were used in [5]
and [8] which are orthogonal polynomials in arbitrary
discrete domains. Independently of the chosen set of
polynomials, the standard method assumes null projec-
tion coefficients onto the chosen polynomial set of order
higher than the maximum order of available moments.

This solves the ill-posedness and the solution becomes
unique. In order to avoid this assumption, which is
difficult to interpret in terms of the image properties,
a maximum entropy method was proposed in [9]. It
consists in obtaining the image with maximum entropy
with the desired moments. Solving the problem us-
ing Lagrange multipliers permits to obtain an explicit
form of the reconstructed image in terms of an expo-
nential function. Alternatively, [7] proposes minimizing
the divergence of the image, instead of maximizing its
entropy, using also a variational approach. Unfortu-
nately, both approaches assume a continuous domain
for the image.

This paper generalizes the standard method so that
the least-squares approximation using orthogonal poly-
nomials can just be seen as a particular case of the
general technique presented here.

This paper is structured as follows. The next section
introduces the necessary mathematical background.
Section III reformulates the standard method in terms
of the presented formalism. Section IV generalizes the
result to other orthogonal basis different from polyno-
mials. Section V deals with the numerical conditioning
of the problem and, finally, section VI contains the con-
clusions.

II. A matrix-based image series approximation

Following the same matrix notation introduced in [6],
let Zmn denote a matrix of size m × n and Zmn[k, l],
its element (k, l), where 1 ≤ k ≤ m and 1 ≤ l ≤ n.
Superscripts are also used to denote any parameter on
which a matrix depends. Two unary matrix operations
are used: (·)t denotes the transpose of a given matrix;
and (·)−1, its inverse. To avoid confusions, matrices
are always embraced by parenthesis when superscripts
refer to power or transpose.

Any discrete image of size a× b, Iab, can be seen as
a vector in <a×b or, alternatively, as a bidimensional
function that maps all the points of the uniform lattice
{1, 2, . . . , a}×{1, 2, . . . , b} onto real values. Then, Iab ∈
<a×b can be uniquely expressed as a linear combination
of the functions of a basis set, i.e., a set containing
ab linearly independent bidimensional functions, which
will be denoted by {Ξk lab}, k = 0, . . . , a − 1 and l =



0, . . . , b−1. In other words, Iab =
∑a−1

k=0

∑b−1
l=0 αk l Ξ

k l
ab .

Definition 1 (Basis matrix) The functions in any ba-
sis set are assumed to be separable and equally defined
for both coordinates, i.e., Ξk lab = φka (φlb)

t, where φka
and φlb are vectors which will be grouped in matri-

ces of the form Φpq =
(

φ0
p . . . φ(q−1)

p

)

, called basis

matrices.
Definition 2 (Gram matrix) The matrix Γpq =

(Φpq)
t Φpq, containing the inner products between the

elements of the corresponding basis matrix, is called a
Gram matrix.

Note that, since Γpq [k + 1, l + 1] =< φkp,φ
l
p >, the

Gram matrices are diagonal for orthogonal basis sets
and the identity for orthonormalized basis.
Definition 3 (Projection matrix) The matrix con-

taining the projection coefficients of image Iab onto
the first m × n elements of {Ξk lab} are called pro-

jection matrices, which can be expressed as Ωmn =
(Φam)t Iab Φbn.

Note that Ωmn[k + 1, l + 1] =< Iab,Ξ
kl
ab >=

(φka)
t Iab φ

l
b.

Definition 4 (Expansion matrix) The image Iab can
be partially expanded in terms of the first m × n ele-
ments of {Ξk lab} as

Îmn
ab =

m−1
∑

k=0

n−1
∑

l=0

λklΞ
kl
ab = Φam Λmn (Φbn)

t,

wherem ≤ a, n ≤ b, andΛmn[k+1, l+1] = λkl. If λkl is
chosen so that the truncation error is minimized using
the least-squares error criterion, Λmn denotes what it
is called an expansion matrix.
Lemma 1: The series approximation of an image, in

the least-squares sense, can be expressed as

Îmn
ab = Φam Λmn (Φbn)

t

= Φam (Γam)−1 Ωmn (Γbn)
−1 (Φbn)

t

= Φam ((Φam)t Φam)−1Ωmn ((Φbn)
t Φbn)

−1 (Φbn)
t

= (Φam)− Ωmn (Φbn)
+, (1)

where (·)− and (·)+ stand for the left and right Moore-
Penrose pseudoinverses.

Proof: Given Iab and the first m × n ele-
ments of {Ξklab}, it can be easily shown that the
corresponding expansion matrix can be expressed in
terms of the projection and Gram matrices as Λmn =
(Γam)−1 Ωmn (Γbn)

−1, where m ≤ a and n ≤ b. The
lemma follows directly.

Corollary 1: If the basis set {Ξ kl

ab} is orthonormal
— we use an overline to distinguish it from the general
case — the least-squares approximation of the image
can be expressed as I

mn

ab = Φam Ωmn (Φbn)
t because

Ωmn = Λmn.

Lemma 2: Given the projection matrix Ωmn =
(Φam)t Iab Φbn, the series approximation of Iab in
terms of an arbitrary orthonormal basis Φam can be
expressed as:

I
mn

ab = Φam ((Φam)t Φam)−1 Ωmn ((Φbn)
t Φbn)

−1(Φbn)
t

= Φam (Ca
m)−1 Ωmn

(

(Cb
n)
t
)−1

(Φbn)
t (2)

where Cp
q [k + 1, l + 1] =< φ

k

p , φ
l
p >.

Proof: Given the first m × n elements of {Ξ kl

ab}
that expand a subspace of the same dimension as the
one expanded by the first m× n elements of {Ξklab}, it
can be shown that

Ωmn = ((Φam)t Φam)−1 Ωmn ((Φbn)
t Φbn)

−1,

where Ωmn = (Φam)t Iab Φbn and Ωmn =
(Φam)t Iab Φbn. Then, the lemma follows straight-
forwardly.

Corollary 2: If the subsets of {Ξklab} and {Ξ
kl

ab} span
the same subspace, then Îmn

ab = I
mn

ab .
Lemmas 1 and 2 are the key elements for the new

reconstruction method but, before introducing it, let
us reformulate the standard least-squares method in
terms of the formalism just introduced.

III. Revisiting the standard method

The geometric moment of order (m,n) with respect
to the origin of image Iab is defined as:

µmn =
a
∑

x=1

b
∑

y=1

xmynIab[x, y].

Then, they can be seen as the projection coefficients
of the image onto the basis set of monomial functions,
that is Ωmn[k + 1, l + 1] = µkl, Ξ

kl
mn[x + 1, y + 1] =

xkyl, and Φpq[k, l] = kl−1, for k = 0, . . . ,m − 1 and
l = 0, . . . , n− 1.

As a consequence, in our case, Ωmn are Vander-

monde matrices and their associated Gram matrices
correspond to what are known as Hilbert matrices

whose general term is [11]:

Γpq [k + 1, l + 1] =
1

k + l + 1
.

According to Corollary 2, if both the projection basis,

{Ξklab}, and the orthogonal reconstruction basis, {Ξ kl

ab},
span the same subspace, then the reconstructed images
obtained, using either Lemma 1 or Lemma 2, coincide.

In figure 1, the reconstruction of the binary pattern
“E” is carried out using the result of Lemma 2 and tak-

ing as basis {Ξ kl

ab} the one corresponding to Tchebichef



PSfrag replacements
m = 3 m = 5 m = 7 m = 9 m = 11

m = 13 m = 15 m = 17 m = 19 m = 21

m = 23 m = 25 m = 27 m = 29 m = 31

Fig. 1. Reconstructed 32 × 32 images, from its moments up to
order (m, m), using Lemma 2 and Tchebichef polynomials as
orthogonal polynomial basis.

polynomials. The same results are obtained if Lemma
1 is used instead, i.e. if pseudoinverses of Vandermonde
matrices are computed.

Note that ill-posedness is solved here by imposing
null value to those coefficients of the orthogonal basis
set used in the reconstruction that have higher order
than the maximum order of available moments. Next,
it is shown how the use of other orthogonal basis sets
different from polynomials allow to solve ill-posedness
by introducing constraints directly on the image char-
acteristics such as its bandwidth or spatial resolution.

IV. A Novel Reconstruction Method

The application of Lemma 2 leads to a reconstruction
of the image by its truncated series expansion onto an
orthonormal basis set. In this section we explore the
possibility that the projection and the reconstruction
subspaces are not the same. To this end, the coefficients
associated with those reconstruction functions of order
higher than the maximum order of available moments
are assumed to be null. All the others are obtained
from the available moments.

A. Reconstructing a band-limited image

In terms of the Fourier transform coefficients of
the image, the band-limiting assumption means that
Fourier coefficients of order greater or equal to (m,n)
are null.

Fourier coefficients are normally defined as

ck,l =
1√
ab

a
∑

x=1

b
∑

y=1

Iab e
−j2π

(

(x−1)(k−1)
a

+
(y−1)(l−1)

b

)

.

Nevertheless, a relocation of these coefficients in ma-
trix Cmn is carried out here so that increasing indexes
correspond to higher frequency coefficients. In this
case,

Cmn[k, l] =
1√
ab

a
∑

x=1

b
∑

y=1

Iab

e−j2π
(

(x−1)(k−
(m−1)

2
−1)

a
+

(y−
(n−1)

2
−1)(l−1)

b

)

.

Then, these Fourier coefficients can be seen as
the projection coefficients of the image onto com-
plex exponential functions of the form Φpq[k, l] =

1
p
e−j2π

(

(k−1)(l−
(q−1)

2
−1)

p

)

. Substituting these orthogo-
nal basis matrices in the result of Lemma 2, a low-pass
approximation of the original image is obtained from
a set of its geometric moments. Figure 2 shows the
obtained results using the same moments as in figure
1.

PSfrag replacements
m = 3 m = 5 m = 7 m = 9 m = 11

m = 13 m = 15 m = 17 m = 19 m = 21

m = 23 m = 25 m = 27 m = 29 m = 31

Fig. 2. Band-limited reconstruction of a 32×32 image, from its
moments up to order (m, m), using Lemma 2 and Fourier
coefficients.

Note that a band-limited image can be perfectly re-
constructed, using this method, when the number of
moments obtained from the image is equal or greater
than the number of its significant discrete Fourier spec-
trum coefficients.

Likewise, a high-pass approximation could be ob-
tained if the basis function associated with higher fre-
quencies were considered instead.

B. Reconstructing a resolution-limited image

Limiting the resolution of an image means eliminat-
ing those regions of smaller size than a given one. In



terms of the Haar transform, this requirement becomes
trivial since its main characteristic is the direct rela-
tionship between the number of coefficients and the
spatial resolution of the image.

Haar coefficients are obtained from the projection of
the image onto the Haar functions hNk (z), which are
defined over the closed interval z ∈ [0, 1] and for k =
0, 1, 2, . . . , n− 1, where N = 2n, as:

hN0 (z) = hN00(z) =
1√
N
,

and

hNk (z) = hNpq(z) =
1√
N











2
p
2 if q−1

2p ≤ z <
q− 1

2

2p ,

−2 p
2 if

q− 1
2

2p ≤ z < q
2p ,

0 otherwise.

Then, Φpq[k, l] = h
p
l (k). Substituting these or-

thogonal basis matrices in the result of Lemma 2, a
resolution-limited approximation of the original image
is obtained from a set of its geometric moments. Fig-
ure 3 shows the obtained results for the same pattern
used in figure 1.PSfrag replacements
m = 2 m = 4 m = 8 m = 16 m = 32

Fig. 3. Resolution-limited reconstruction of a 32 × 32 image,
from its moments up to order (m, m), using Lemma 2 and
Haar coefficients.

Note that a resolution-limited image can be perfectly
reconstructed when the number of moments obtained
from it is equal or higher than the number of its signif-
icant discrete Haar coefficients.

V. Numerical conditioning

The application of Lemma 1 requires the computa-
tion of pseudoinverses and hence the inversion of Gram
matrices which can be an ill-conditioned problem for
some projection basis. In particular, reconstructing an
image from a set of its geometric moments is an ill-
conditioned problem, i.e., small perturbations in the
data generate large errors in the reconstructed image
which prevent us from obtaining an effective solution.
This is what is usually assumed by the image process-
ing community. Nevertheless, totally positive Vander-
monde systems, as it is our case, can be solved very
accurately, regardless of their condition number, using
Björck-Pereyra-type methods [1]. Actually, the ordi-
nary definition of condition number is not adequate for
describing the numerical conditioning of positive linear

systems whose initial minors can be computed accu-
rately and the true condition number is much smaller
[3], as it can be easily shown in our case. Björck-
Pereyra methods are the perfect example of structure
exploiting algorithms that deliver more accuracy than
traditional algorithms and run in time O(n2) compared
with O(n3) for the traditional algorithms.

VI. Conclusions

A desirable property for the basis functions of the se-
ries approximation of an image is that they concentrate
most of the information in a reduced amount of coeffi-
cients. What information means depends on the inter-
pretation of the basis; however, most common appli-
cations refer to bandwidth or spatial resolution, which
are associated with Fourier and Haar coefficients, re-
spectively. Then, setting a relationship between these
coefficients and moments provides a straightforward in-
terpretation of the information contained in moments,
as well as a method for reconstructing an image from a
given set of moments. None of the former methods pro-
vided the proper setting to introduce these constraints.
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