9781107008953
Proof Analysis - A Contribution to Hilbert's Last Problem - Sara Negri, Jan von Plato
Cambridge University Press (2011)
In Collection
#7578

Read It:
Yes
Bisacsh, Mathematics / General, Mathematics / History & Philosophy, MATHEMATICS / Logic, MATHEMATICS / Logic., Proof theory

"We shall discuss the notion of proof and then present an introductory example of the analysis of the structure of proofs. The contents of the book are outlined in the third and last section of this chapter. 1.1 The idea of a proof A proof in logic and mathematics is, traditionally, a deductive argument from some given assumptions to a conclusion. Proofs are meant to present conclusive evidence in the sense that the truth of the conclusion should follow necessarily from the truth of the assumptions. Proofs must be, in principle, communicable in every detail, so that their correctness can be checked. Detailed proofs are a means of presentation that need not follow in anyway the steps in finding things out. Still, it would be useful if there was a natural way from the latter steps to a proof, and equally useful if proofs also suggested the way the truths behind them were discovered. The presentation of proofs as deductive arguments began in ancient Greek axiomatic geometry. It took Gottlob Frege in 1879 to realize that mere axioms and definitions are not enough, but that also the logical steps that combine axioms into a proof have to be made, and indeed can be made, explicit. To this purpose, Frege formulated logic itself as an axiomatic discipline, completed with just two rules of inference for combining logical axioms. Axiomatic logic of the Fregean sort was studied and developed by Bert-rand Russell, and later by David Hilbert and Paul Bernays and their students, in the first three decades of the twentieth century. Gradually logic came to be seen as a formal calculus instead of a system of reasoning: the language of logic was formalized and its rules of inference taken as part of an inductive definition of the class of formally provable formulas in the calculus"--

Product Details
LoC Classification QA9.54 .N438 2011
Dewey 511.3/6
No. of Pages 279
Height x Width 228 x 152 mm