Geometric Methods In The Algebraic Theory Of Quadratic Forms: Summer School, Lens, 2000 (Lecture Notes In Mathematics) (French Edition) - Oleg T. Izhboldin, Bruno Kahn, Nikita A. Karpenko, Alexander Vishik
Springer (2004)
In Collection

Read It:
Forms, Quadratic, Forms, Pfister, Algebraic fields

The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes an introduction to motives of quadrics by A. Vishik, with various applications, notably to the splitting patterns of quadratic forms, papers by O. Izhboldin and N. Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields with u-invariant 9, and a contribution in French by B. Kahn which lays out a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties.

Product Details
LoC Classification QA3.L28 .no. 1835
Dewey 512.7/4
Format Paperback
Cover Price 59,95 €
No. of Pages 190
Height x Width 234 x 155 mm
Personal Details
Links Amazon
Library of Congress