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Motions of Bipartite Frameworks 

by Walter Whiteley 

At the special session on rigidity at Syracuse last 
Fall, the question was raised: must a spatial frame- 
work contain triangles to be rigid? This problem 
leads naturally to the problem of rigidity of frame- 
works with a bipartite graph Krn,n . The joints form 
two sets A and B (A with m elements, B with n 
elements) and the n x m bars connect every joint in A 
with every joint in B (no bars between pairs in A or 
pairs in B). In the article Bolker and Roth present an 
elegant solution to the problem of rigidity for such 
bipartite frameworks in any dimension. 

In space, frameworks with graphs K46 KS 5 or 
larger are in general statically rigid. However if all its 
joints lie on a quadric surface (a sphere, a hyperbo- 
loid, two planes, etc.) then a bipartite framework will 
not be rigid. In Flgure 1 we illustrate the case of a 
bipartite framework in the plane with joints on a 
circle. The illustrated radial velocities preserve infini- 
tesimally the length of any bar joining A and B along 
a chord of the circle. Clearly this type of motion 
extends to a non-rigid motion for joints on a sphere 
in space. Since plane tonics are all projectively 
equivalent, and infinitesimal motions are projectively 
invariant, the motion when all joints are on a circle 
carries over to the case when the joints are on any 
other plane conic. For spatial quadrics other than the 
sphere we can follow the motion in a plane cross 
section, and in that way find the velocities, which 
remain normal to the surface of the quadric. 

A spatial model of the structure K4 6 having an 
infinitesimal motion can easily be built using only two 
lengths of bars, in the ratio of 1 to 1.93185. First 

construct a tetrahedron using two of the shorter bars 
end-to-end along each edge. Connect each of these 
midpoints to the two opposite vertices of the tetrahe- 
dron, using the longer bars. This places all the joints 
on a sphere. We made a “popping” model of this 
K4,6 by cutting dowels in the ratio 1 to 2.05 and 
inserting them into rubber Unistrut nodes, thereby 
changing the effective ratio to 1 to 1.88. The popping 
model appears to be rigid under most test loads, and 
it is in practice quite difficult to find the permitted 
motion. But once the model is held correctly, it 
moves with ease. 

In Figure 2 we illustrate two cases of a bipartite 
framework with all joints on two lines. Once again the 
illustrated velocities preserve all bar lengths in the 
plane and it is easy to see this construction as the 
cross-section of a spatial construction for the joints 
on a degenerate conic of two planes or even a cone. 

A* second type of failure for a spatial bipartite 
framework occurs when one set A lies in a single 
plane and this plane either contains a joint from B or 
has all the joints of *A on a conic of the plane. The 
reader may be able to develop appropriate motions 
for these cases as well. 

The authors prove that these are the only possible 
types of failure using a detailed analysis of the 
number of static stresses in a realization of a 
bipartite graph in any dimension. 
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The analysis proceeds via an 
mation applied to stresses 

unusual linear tra ,nsfor- 

T( . . . . wij,...) = (...,gi,-..) 
where gi = CWij 

(sum over all j with edge (i,j) entering joint i). This 
transformation really separates the equilibrium at 
joint i: 

CWij (ai-a,j) = 0 

into a linear dependence of the projective coordina- 
tes of the joints 

CWijaj = ( CWij)ai = giai. 

In particular, for bipartite frameworks the kernel of 
T(all gi = 0) is generated simply as a tensor product 
of linear dependencies of the projective points in A 
with dependencies of the projective points in B: 

KerT = D(A)xD(B). 

For a bipartite framework the image of T is compo- 
sed of linear dependencies among tensors axa of the 
joints. (axa is a vector with n(n + 1) divided by 2 
components, namely all products of pairs of projec- 
tive coordinates 

axa = (al al la1 a2 9e”9 anan+lg an+l an+l ))* 

The dependencies making up the image of T are 
exactly those among tensors of joints in a special 
subset C, defined as follows. If we write the projec- 
tive space spanned by A as A then C = 
(AUB)U(AUB). The finalstep in their proof is to use a 62 



matrix with these tensors as columns and then to 
study the column rank by counting row dependen- 
cies plus a standard count of the columns minus the 
rows. The scalars of the row dependencies are 
exactly the coefficients of the equations of quadric 
surfaces in C which contain all points in C. These 
form a space Q(C), 

If C has K elements and dim(C) = h, then the central 
theorem is: for a bipartite framework in n-space the 
dimension of the space of stresses is 

dim(D(A))dim(D(B)) + dim@(C)) +k 
-(h + l)(h + 2)/2 

The results for the rigidity of spatial bipartite frame- 
works are obtained from this theorem by simple 
counting arguments. 

Figure 1. If the joints of a bipartite framework lie on a circle (A) then Figure 2. A bipartite framework with the joints on two lines will have a non-rigid infinitesimal motion. If the two sets are mixed together on the 
the illustrated radial velocities give a permitted non-rigid infinitesi- two lines, then the type of velocities illustrated in (A) give such a motion. If the two sets are separated with one line each, then the type of 
mal motion of the framework (B). velocities in (B) give a non-rigid motion. 

These theorems raise several interesting problems. 
Given a realization of K4.6 in space, Is there a simple 
construction In pro/ectlve geometry (forming pla- 
nes from 3 points and points from 3 planes etc.) 
which checks whether the 10 jolnts Ile on a quadrlc 
surface? In the plane Pascal’s theorem provides a 
check for 6 points on a conic, but we have not found 
a comparable result in space. 

For a framework which counts to be isostatic (e.g. in 
3-space E = 3V-6) the condition for non-rigidity can 
be written as a standard equation in the projective 
coordinates of the joints (a determinant of the rigidity 
matrix). It is possible to count the degree of this 
equation in each joint (in space, the valence less 2), 
but the authors’ results yield an exact factoring of the 
condition for some simple frameworks. For K, 6 the 9 

condition is factored as the expression for a general 
quadric times the square of the bracket (a, a2a3a4). 
We also know that if the framework forms a sub- 
graph of a bipartite graph (if all cycles of bars and 
joints are even) then the framework will have a non- 
trivial motion when the joints lie on a quadric surface 
What does thls tell us about the form of the projec- 
tive condltlon for zluch frameworks? 

Finally if a bipartite framework in space has all its 
joints in A on one plane and all the joints in B on a 
second plane, the central theorem guarantees 3 
degrees of infinitesimal freedom. The type of cons- 
truction illustrated in Figure 28 will give 2 of these 
degrees of freedom when extended along two pla- 
nes through a2b2. Find a construction fbr velocltler 
in the addltlonal degree of freedom. 
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