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Abstract Despite the significant advances in path planning methods, problems in-

volving highly constrained spaces are still challenging. In particular, in many sit-

uations the configuration space is a non-parametrizable variety implicitly defined

by constraints, which complicates the successful generalization of sampling-based

path planners. In this paper, we present a new path planning algorithm specially

tailored for highly constrained systems. It builds on recently developed tools for

Higher-dimensional Continuation, which provide numerical procedures to describe

an implicitly defined variety using a set of local charts. We propose to extend these

methods to obtain an efficient path planner on varieties, handling highly constrained

problems. The advantage of this planner comes from that it directly operates into

the configuration space and not into the higher-dimensional ambient space, as most

of the existing methods do.

1 Introduction

Many problems require to determine a path between two points, fulfilling a given set

of constraints. In Robotics, this appears for instance in parallel manipulators [35],

robot grasping [25], constraint-based object positioning [24], surgery robots [1], and

humanoid robots [20]. This situation also appears in Biochemistry when searching

for low energy paths between different molecular conformations [38]. In all these

cases, the constraints expressed as a set of equations reduce the configuration space

to a variety composed by one or more manifolds embedded in a higher-dimensional

ambient space, defined by the variables involved in the equations. Approaches that

try to directly describe these manifolds exist, but they are either too complex to be

applied in practice [6], or limited to particular architectures [28]. The adaptation of
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a b

Fig. 1 RRTs with 500 samples. Blue crosses represent the tree nodes and red lines the connections

between them. a When the ambient space is a box tightly enveloping the sphere, the exploration

is relatively homogeneous. b When the box is elongated along the vertical axis, an unwanted bias

penalize the exploration.

sampling-based planning methods is also cumbersome since, sampling in the ambi-

ent space, the probability of the samples to lay on the configuration space is null.

Consequently, several methods have been devised to find points of the configuration

space from points of the ambient space.

The Kinematics-based Roadmap method [12] samples a subset of variables and

uses inverse kinematics to find all the possible values for the remaining ones. This

strategy is only valid for particular families of mechanisms, and although some im-

provements have been proposed [8], the probability of generating invalid samples is

significant. Moreover, the presence of singularities in the subset of variables solved

via inverse kinematics complicates the approach [11].

An alternative strategy to get a valid configuration is to use numerical iterative

techniques, either implementing random walks [39], or the more efficient Jacobian

pseudo inverse method [2, 9, 30]. All these approaches only perform properly when

the ambient and the configuration spaces are similar. If the constraints define one

or several complex surfaces with many folds, a uniform distribution of samples in

the ambient space will not translate to a uniform distribution in the configuration

space and this heavily reduces the efficiency of the sampling approaches. This prob-

lem may appear even in simple cases such as the one described in Fig. 1, where a

Rapidly-exploring Random Tree (RRT) is built on a sphere from points sampled in

a 3D ambient space. If the sphere is not centered in, and tightly enveloped by the

ambient space, the sampling process is biased and the result is a poor exploration of

the solution variety. The lack of prior knowledge on the variety structure makes it

hard to forecast whether or not a sampling-based approach would be successful.

One way to limit the problems of mismatching between the two spaces is to focus

the sampling on a subset of the ambient space around the configuration space [42].

However, even in the case where the ambient and the configuration spaces are some-
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a b

Fig. 2 Atlas of the sphere obtained by Higher-dimensional Continuation. Each polytope is a chart

that locally parametrizes the sphere. a The full atlas includes about 500 charts. b The part of the

atlas explored with our approach for connecting the two poles. Only about 30 charts are generated.

The solution path is shown as a yellow line.

how similar, samples are thrown in the ambient space that can be of much higher

dimensionality than the configuration space. Um et al [36] sketch a RRT scheme

where the tree is defined in the tangent of the configuration space, which is of the

same dimensionality as the variety. However, the overlap between tangent spaces at

different points can lead to an inappropriate sampling bias and points in the tangent

space do not actually fulfill the equations defining the variety. Ideally, one would

like to sample directly on the configuration space. A uniform sampling over this

space typically relies on a global parametrization. In some families of mechanism

distance-based formulations provide this parametrization [13, 31], some approaches

try to infer it from large sets of samples [14], and task-space planners assume that a

subset of variables related with the end-effector are enough to parametrize the con-

figuration space [40, 27]. However, it is in general not possible to obtain a global

isometric parametrization of the configuration space.

From differential geometry, it is well known that a variety can be described by an

atlas containing a collection of charts, each chart providing a local parametrization

of the variety [22]. Higher-dimensional Continuation techniques (see [17] for a sur-

vey) provide principled numerical tools to compute the atlas of one of the connected

components of an implicitly defined variety, departing from a point and avoiding

overlap between neighboring charts. For instance, Fig. 2a shows the atlas obtained

with the most recent of these techniques [15] in the toy problem of the sphere.

One-dimensional continuation methods (also known as path following, homotopy

or bootstrap methods), have been strongly developed in the context of Dynamical

Systems [19], whereas in Robotics, they have been mainly used for solving problems

related to Kinematics [26, 29]. To our knowledge, Higher-dimensional Continuation

tools have not been used in Robotics.

In this paper, we extend the tools developed for Higher-dimensional Continua-

tion to the context of path planning. We define the concept of partial atlas connect-
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ing two configurations, dealing with the presence of obstacles. We also introduce

the random exploration of a variety focused towards a target configuration. As a re-

sult, we obtain a Higher-dimensional Continuation planner (HC-planner) for highly

constrained systems that clearly outperforms existing approaches. Figure 2b shows

an example of path found with our approach for the sphere toy problem. Note how

only a small subset of all the atlas charts is needed to find a path connecting the two

query points.

Next section provides a description of the tools for High-dimensional Continua-

tion. Section 3 proposes an extension of these tools to the context of path planning.

Section 4 compares the performance of the planner with respect to existing meth-

ods for several benchmarks. Finally, Section 5 summarizes the contributions of this

work and indicates points that deserve further attention.

2 Higher-dimensional Continuation

Next, we describe the main algorithmic tools appearing in [15]. By generalizing the

one-dimensional pseudo-arclenght procedure, these tools allow the generation of an

atlas for describing a k-dimensional smooth variety implicitly defined by a system

of equations

F(x) = 0 , (1)

with F :Rn→Rn−k, n> k > 0. Figure 3 illustrates the main idea on which relies the

approach. Given a point xi on the variety, we can define Φi, an orthonormal basis of

the tangent space of the variety at this point. This is the n× k matrix satisfying

(

J(xi)

Φ⊤i

)

Φi =

(

0

I

)

, (2)

with J(xi) the Jacobian of F evaluated at xi and I the identity matrix. The pair (xi,Φi)
defines a chart, Ci, that locally approximates the variety. To extend the atlas, the root

point, x j, of a new chart, C j, can be obtained by first generating a point, x̂ j, using

the tangent space of Ci
x̂ j = xi +Φi u

j
i , (3)

with u
j
i a k-dimensional vector of parameters. Then x j is the orthogonal projection

of x̂ j into the variety. This projection is obtained by solving the system [23]

F(x j) = 0 ,

Φ⊤ (x j− x̂ j) = 0 ,
(4)

using a Newton procedure where x j is initialized to x̂ j and where at each iteration x j

is updated with the increment ∆x j fulfilling

(

J(xi)

Φ⊤i

)

∆x j =−

(

F(xi)

Φ⊤ (x j− x̂ j) .

)

. (5)
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Fig. 3 Higher-dimensional Continuation method applied to a two-dimensional manifold embedded

in a 3D ambient space. a A chart is defined from the tangent space at a given start point xi. The

area of applicability of the chart is denoted as Pi. A point x̂ j defined using the tangent space at xi
is orthogonally projected to the manifold to determine x j , the root point of the next chart. b The

new chart locally parametrizes a new region of the manifold. The area of applicability of the new

chart is P j , that does not overlap with Pi.

The update is applied until the norm of the right-hand side of the previous system

becomes negligible or for a maximum number of iterations. When a valid x j is

determined, we can define a new chart C j, as shown in Fig. 3b. The intersection

between tangent spaces marks the boundaries of applicability of the corresponding

charts, denoted as Pi and P j, respectively. When Ci is fully surrounded by other

charts, Pi becomes a convex polytope. Note that Pi is defined in the tangent space

associated with Ci and, thus, it is a polytope in a k-dimensional space and not in the

much larger n-dimensional ambient space.

The algorithm proposed in [15] gives a systematic way to define new charts and

to generate the associated polytopes. In this work, Pi is initialized as an hypercube

enclosing a ball, Bi, of radius r, as illustrated in Fig. 4a. The polytope is represented
using a set of faces that intersect defining a set of vertices [7]. A vertex v of Pi
external to Bi, can then be used to generate a new chart. From this vertex, a point x̂ j

on the surface of Bi is defined using Eq. (3) and

u
j
i =

r

‖v‖
v . (6)

If Ci and the new C j generated from u
j
i are too far or too different, i.e., if

‖x j− x̂ j‖> σ , (7)

‖Φ⊤i Φ j‖< 1−σ , (8)

the new chart is discarded and a new attempt of chart generation is performed from

a set of parameters u
j
i closer to xi. When C j is valid, it is used to refine Pi from the

intersection between Bi and Ĉ j, the projection into the tangent space of Ci of the part
of the variety covered by C j. This projection is approximated by a ball, B̃ j, included
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Fig. 4 Polytope-based chart construction. a The initial polytope Pi is a box including a ball of

radius r around xi. b The polytope is refined using a ball B̃ j that approximates Ĉ j , the projection

of a neighboring chart into the current chart.

in Ĉ j, as shown in Fig. 4b. For this approximation to be conservative, the radius of

B̃ j is scaled by a factor α , 0 < α < 1, depending on the angle between sub-spaces

spanned by Φi and Φ j.

The hyperplane defined by the intersection of Bi and B̃ j can be computed by

subtracting the equations for the two balls. As shown in Fig. 4b, this plane defines

a new face of Pi that eliminates some of its vertices (in particular the one used to

generate C j) and generates new ones. P j, the polytope associated to B j, is cropped

using the projection of Ci into C j.
When all the vertices of the polytope of a chart are inside the associated ball,

the chart cannot be further expanded as the domain for this chart is fully bounded.

This process of chart expansion continues as far as there are open charts. At the end,

the connected component of the variety containing the initial point is fully covered

by a set of chats whose area of validity is bounded by the corresponding polytopes

(see Fig. 2a). To fully characterize the connected component of the variety, higher-

dimensional continuation tools need to consider configuration space singularities,

where the variety bifurcates [16]. Here, we consider only the case were the Jacobian

of F at singularities is of rank n− k− 1. In this case, the singularities form a zero-

measure set that can be located by monitoring an indicator function, χ(x), whose
value is different for two points on opposite sides of the singularity set [4]. When

located, singular points are accurately determined using a dichotomic search and

the additional vector of the null space of the Jacobian at the singular point is used

to define a point on the other branch of the variety. This point is used as a root for a

new chart from where to start the coverage of the additional branch of the variety.

The cost of the algorithm at each step is dominated by the cost of two searches

among the set of charts: one to find an open chart and another to find the potential

neighbors of a new chart. The first search can be saved keeping the open charts in a

list. The performance of the second search can be increased using a kd-tree storing

the root points of the charts.
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3 Path-Planning on Manifolds

Using the tools described in the previous section, a graph can be built where nodes

are the chart roots and edges represent the neighboring relations between charts.

Thus, the shortest connecting two given points can be easily computed using a stan-

dard graph search method such as A* considering only the collision-free transitions

between the chart roots. This procedure defines an optimal, resolution complete path

planner, but it is only practical for low dimensional varieties, specially if we have to

use charts with small applicability areas. If we define charts with large radius, the

presence of obstacles becomes an issue. If we use a coarse resolution in an environ-

ment with many obstacles, most of the transitions between chart centers will be in

collision and it will not be possible to find ways out among obstacles.

Herein, we propose modifications to the Higher-order Continuation procedures

to deal with the curse of dimensionality and the presence of obstacles. First, we

take advantage of that path planning is only concerned with the path between two

given configurations and not with the full atlas generation, which allows to save

the construction of many unnecessary charts. Second, to deal with the presence of

obstacles, we randomize the process of atlas extension and adapt the generation of

charts to the presence of obstacles.

3.1 Chart selection: focusing on the path to the goal

As aforementioned, the atlas structure can be represented by a graph where nodes

are the charts and edges are the neighboring relations between charts. To guide the

search toward the goal, we use a Greedy Best-First search where the chart to expand

is the one with minimum expected cost to reach the goal. The cost for a chart Ci is
heuristically evaluated as

h(i) = β ni ‖xi−xg‖ , (9)

where xg is the goal configuration, β > 1 a fixed parameter, and ni is the number of

times a chart failed to expand. Thus, the term β ni prevents the search to get stuck

in dead ends. As soon as the goal is connected to the rest of the atlas, the search is

stopped.

Observe that using a Greedy Best-First search, we do not necessary generate all

the neighbors of the chart under expansion. The generation of children charts pro-

ceeds only while the children have higher cost than the parent. This largely reduces

the generation of charts.

Finally, note that due to the use of a Greedy Best-First algorithm the final path

is not necessarily optimal. As mentioned, the generation of a (resolution) optimal

path would require the use of an A* algorithm, the generation of all the neighbors

of the node/chart under expansion, and the use of a small resolution to deal with the

presence of obstacles. In general, this implies to generate too many charts, hindering

the practical applicability of the approach.
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3.2 Chart expansion: Generating random directions

When the chart to be expanded is selected, the expansion point for the atlas is se-

lected at random. This is achieved by sampling a point uniformly on the surface of

the ball associated with the atlas and checking if this point is inside the associated

polytope. If it is the case, the generation of the new atlas proceeds as detailed in

Sect. 2.

The uniform generation of random points, u
j
i , on a the surface of a k-dimensional

ball is done by generating the point elements according to a normalized one-

dimensional Gaussian and scaling the resulting vector to norm r [10].

To verify if the point is inside the associated chart’s polytope, we exploit the fact

that convex polytopes are defined as the intersection of k-dimensional hyperplanes.

Thus, for a point u
j
i = {u1, . . . ,uk} to be inside the polytope Pi made of mi faces, it

must fulfill

γ t0 +
k

∑
s=1

γ ts us ≥ 0 , (10)

for all the faces f t = (γ t0, . . . ,γ
t
k), t = 1, . . . ,mi defining Pi.

If the point is inside the polytope, it is approached through small incremental

steps of size δ . The intermediate points are successively projected on the manifold

using Eqs. (4) and (5) and then checked for collision. The last collision-free config-

uration is used as a root for a new chart. This adjusts the distribution of charts to the

free configuration space. If no progress at all can be done towards the target point,

the expansion is declared as failure and the chart under expansion is penalized by

increasing ni. Since collisions are not checked between intermediate points, δ has

to be set small enough so that only minor interpenetrations could occur.

Observe that while the chart to extend is selected greedily, the exact expanding

direction is selected randomly, favoring the exploration of alternative paths in the

presence of obstacles.

3.3 Algorithm

Algorithm 1 corresponds to the HC-Planner, implementing the path planning ap-

proach introduced in this paper. The algorithm takes xs and xg as start and goal

configurations respectively, and tries to connect them with a path on the variety im-

plicitly defined by a given set of constraints F, as expressed in Eq. (1). The process

begins by initializing two charts associated to the two query configurations (lines 1

and 2). Each chart includes the root point x, the base of the tangent space Φ, the

ball B and the polytope P limiting the area of applicability of the chart. The two

charts are then included in the initial atlas, A (line 3). To efficiently determine the

chart with the minimum expected cost, charts are organized into a binary heap.

Thus, the cost-to-goal of the start configuration is evaluated (line 4) and used to ini-

tialize the heap (line 5). In lines 6 to 16, a greedy search is performed as described in
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Algorithm 1: High-dimensional Continuation path planner.

HC-Planer(xs,xg,F)
input : A couple of samples to connect xs, xg, a set of constraints F.

output: A path connecting the two samples

Cs← INITCHART(xs,F) // Cs = {xs,Φs,Bs,Ps}1

Cg← INITCHART(xg,F) // Cg = {xg,Φg,Bg,Pg}2

A←{Cs,Cg}3

h(s)←‖xs−xg‖4

H←INITHEAP(Cs,h(s))5

while not CONNECTED(A,Cs,Cg) do6

Ci←EXTRACTMIN(H) // Ci = {xi,Φi,Bi,Pi}7

if Pi * Bi then8

C j ←GENERATENEWCHART(Ci,F)9

if C j = /0 then10

h(i)← β h(i)11

H←ADDTOHEAP(Ci,h(i))12

else13

A← A∪{C j}∪SINGULARCHART(Ci,C j)14

h( j)←‖x j−xg‖15

H←ADDTOHEAP(C j,h( j))16

RETURN(PATH(A,Cs,Cg))17

Sect. 3.1, while the two query configurations are disconnected. At each iteration, we

extract Ci, the most promising chart from the heap (line 7) and if the polytope Pi of
this chart still has vertices outside the ball Bi (line 8), we try to extend the atlas with
a new chart (line 9). If the extension fails (line 10), the current chart is penalized so

that its chance to be selected for future extension decreases (line 11), and the chart is

added to the heap with the updated cost (line 12). If the atlas extension succeeds, the

new chart is added to the atlas, updating the neighboring relations between charts

(line 14). Next, the heuristic-to-goal is initialized for the new chart (line 15) and

added to the atlas (line 16). When the goal is reached, a graph search procedure can

be used to extract the path linking the query configurations via the roots of some

of the charts in the atlas. Every time a new chart is added to the atlas, we check

whether the line connecting the roots of the parent and the child charts crosses a

singularity. If so, the singular point is located and an additional chart is defined such

that its root is at the singularity and its tangent space is aligned with the branch of

the variety that does not contain Ci and C j. Function SINGULARCHART (line 14)

implements this process and returns the new chart or and empty set if there is no

singularity between Ci and C j.
The generation of a new chart from a previous one is presented in Algorithm 2.

We select a point u
j
i on surface of the ball defined on the tangent space of the input

chart (line 2), as described in Sect. 3.2. If the point is inside the polytope (line 3),

i.e., the point is in the area of influence of the current chart, we proceed to determine

a point, x j, adequate to generate a new chart. This point is searched from the root of

the chart under expansion, progressively moving to the target point with incremen-
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Algorithm 2: Generation of a new chart.

GenerateNewChart(Ci,F)
input : A chart to expand Ci = {xi,Φi,Bi,Pi}, a set of constraints F.
output: A new chart C j

C j ← /01

u
j
i ←RANDOMINBALL(Bi)2

if u
j
i ∈Pi then3

e←TRUE // Small error with respect to Ci4

c←TRUE // Collision-free5

t←TRUE // Tangent space similar to Ci6

s← δ7

while s≤ r and e and c and t do8

x̂ j ← xi +Φi s u
j
i /r9

x j ← PROJECT(Ci, x̂ j,F)10

if ‖x̂ j−x j‖> σ then11

e←FALSE12

else13

if COLLISION(x j) then14

c←FALSE15

else16

Φ j ←TANGENTSPACE(x j,F)17

if ‖Φ⊤i Φ j‖< 1−σ then18

t←FALSE19

else20

C j ← INITMAP(x j,F) // C j = {x j,Φ j,B j,P j}21

s← s+δ22

RETURN(C j)23

tal steps of size δ . At each step, we project the point from the tangent space to the

manifold (lines 9-10), implementing Eqs. (4) and (5). If the projection converges

to a point in the manifold, we check whether the obtained point is too far away

from the tangent space (line 11), whether it is in collision (line 14), and whether the

tangent space at the new point, computed using Eq. (2), and that of Ci are too dif-

ferent (line 18). In any of these cases, the progress towards the new point is stopped

(lines 12, 15, and 19) and we return the chart for the last valid point (line 23), if any.

The main operations of the HC-planner scale as follows. The initialization of a

chart scales with O(n3 +2k), with n the dimensionality of the ambient space and k

the dimensionality of the configuration space, since we use a QR decomposition to

identify a base of the kernel of the Jacobian of F and we have to define a box with 2k

vertices. The initialization of the heap is O(1) and the extraction and removal of its

minimum element is O(k). The generation of a new chart scales with O(n3 + k 2k)
since it includes the five following steps: 1) the generation of a random number on

a k-dimensional ball that is O(k); 2) the check to determine if a point is inside a

k-dimensional polytope, that scales as O(k 2k) since each face is defined by a k+1
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dimensional vector and the number of neighbors of a chart grows with the kissing

number that is O(2k); 3) the projection of a point from the tangent space to the

manifold, a Newton process with a bounded number of iterations, where at each

iteration we use a QR decomposition that is O(n3); 4) the determinant of a matrix

of size k, O(k3), that comes from the product of n× k matrices that is O(k2 n);
and, finally, 5) the initialization of a chart, O(n3 + 2k). When adding a chart to the

atlas, we have to look for neighboring charts. This can be done in O(k) since it is

logarithmic with the number of charts that, in the worst case scales exponentially

with k. For the neighboring charts, we have to crop the corresponding polytopes.

This operation scales with the number of vertices of those polytope which is O(2k).
Finally, the addition of an element to the heap is O(k), in agreement with the cost of

determining the neighboring relations between charts.

Summarizing, if l is the number of charts needed to connect the start and the goal

the overall algorithm scales with O(l (n3 + k 2k)). In very constrained problems, as

the ones we consider, k≪ n and the cost is dominated by O(l n3). In the worst case,
the final atlas might include all the possible charts for a given manifold and l is

exponential in k and independent of n. However, as we show in next section, many

problems require in practice a limited number of charts to connect the start and goal

configurations.

Note that the planner is resolution complete, in the sense that by taking a radius r

small enough we can ensure to find a solution path if it exists. In particular, in

problems involving narrow passages of minimum width υ , setting r < υ/2 would

ensure a solution. However, in practice, much larger radius can be used safely.

4 Experiments

We implemented in C the higher dimensional continuation tools1 described in

Sect. 2 and the HC-planner described in Sect. 3, including the treatment of con-

figuration space singularities. These tools were integrated as modules of our posi-

tion analysis toolbox [32] using SOLID [3, 34] as a collision detector and the GNU

Scientific Library for the lineal algebra operations. Our position analysis toolbox

is based on a formulation that yields a system of simple equations only contain-

ing linear, bilinear, and quadratic monomials, and trivial trigonometric terms for the

helical pair only [21]. The simplicity of the final system of equations makes it ad-

vantageous for continuation methods [37]. For the purpose of comparison, we also

implemented the RRT for constrained spaces presented in [9]. In this RRT, points

are sampled in the ambient space and the nearest sample on the variety is progres-

sively extended towards the random sample. At each extension step, the points are

projected to the variety using the Jacobian pseudo inverse method. In our implemen-

tation, the nearest-neighbor queries use the kd-tree described in [41]. The maximum

number of nodes in the RRT is set to 75000. Experiments were executed on a In-

1 An implementation of these tools tailored for dynamical systems is available in [33].
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Fig. 5 The four benchmarks used. a Star-shaped planar manipulator with three fixed extremities.

b Two-arms manipulator moving an object from one gap to another. c Rotational-only parallel

manipulator. d Cyclooctane molecule.

tel Core 2 at 2.4 Ghz running Linux. Finally, the algorithm parameters were set to

r = 0.4, δ = 0.04, σ = 0.1, and β = 1.1 for all the experiments.

Figure 5 shows the four benchmarks used in this paper. The first one is a planar

star-shaped manipulator also used in [28]. In this case, obstacles are not consid-

ered. The second problem involves a system where two arms have to cooperate to

move an object from one gap to another. This problem previously appears in [11].

The movement between the start and goal configurations requires to traverse actu-

ator singularities, which makes the problem unsolvable by basic Kinematics-based

Roadmap approaches [8, 12]. The third example, kindly provided by Juan Cortés,

is a parallel platform with rotation motion only. The task here is to move a stick

attached to the robot across some obstacles. The last benchmark is the cyclooctane,

a molecule whose kinematics is a 8-revolute loop. Here, we have to find a path be-
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Table 1 Dimensionality of the ambient and configuration spaces, execution times and number of

samples/charts used by a RRT and the HC-planner

RRT HC RRT/HC

Benchmarks k n Time Samples Time Charts T/T S/C

Star-shaped 5 18 3.87 5515 0.47 199 8.23 27.71

Two-arms 3 10 22.94 27130 0.35 391 65.54 69.38

Parallel 3 27 36.97 13400 0.92 276 40.18 48.55

Cyclooctane 2 17 6.49 6813 0.28 152 23.17 44.82

tween two conformations that avoids self-collisions involving carbon and hydrogen

atoms (depicted in cyan and white in the figure, respectively).

Table 1 shows the performance comparison, averaged over 100 runs, between

RRT and the HC-planner. For each of the four benchmarks, the table gives the di-

mensionality of the configuration space (k), the dimensionality of the ambient space

(n), the execution times and the number of samples or charts used for each method.

The table also shows execution time ratios (T/T) and the ratio between the number

samples used in RRT and the number of charts used with the HC-planner (S/C).

Note that the RRT in the Two-arms test case is unable to find a solution for 25% of

the cases. In Table 1, the RRT results for this problem correspond to averages for

the successful tests only.

The results show that, for this set of problems, the execution time of the RRT is

more than one order of magnitude higher than that of the HC-planner, except for

the Star-shaped problem where the HC-planner is only about a 8 times faster. This

is true despite the generation of samples being much faster than the generation of

charts. This is so because charts are more powerful since they do not only describe

the variety on a single point but on a local neighborhood of a point. Thus, the HC-

algorithm uses in average 40 times less charts than samples used by RRT.

The advantage of the HC-planner search strategy with respect to a more optimal

strategy is evaluated by applying a standard A* algorithm, implemented as described

in the introduction of Sect. 3. A* can not solve the Star-shaped problem with less

than 10000 charts. This is due to the curse of dimensionality: in a 5-dimensional

configuration space the number of neighboring charts for each chart is about 40 and

this results in a large exponential growth of the number of chart to generate even for

simple problems. The Two-arms test can not be solved with R= 0.4 since with such
a coarse resolution, almost all the transitions between chart centers are in collision.

The problem can only be solved with R below 0.25. However, at this resolution the

number of charts to generate increases to the point that the A* execution time is

about 20 seconds. Our approach dynamically adapts the root of the charts to the

distribution of obstacles, avoiding the generation of charts on blocked regions. Fi-

nally, both the Parallel and the Cyclooctane problems can be solved with A*, but at

a higher cost than the one used by RRT. In the cases that can be solved, though, A*

returns a path that, in average, is about half the length of those obtained both with

the HC-planner or with RRT. However, the path length for both the HC-planner and

the RRT could be improved with a smoothing post-process, which is not yet im-
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plemented in our system. Finally, note that A* is able to detect if two samples can

not be connected because they are in different connected components of the vari-

ety even in the presence of obstacles: in the worst case the atlas for the connected

component including the start sample will be completed and if it does not include

the goal sample the planning can be declared as a failure. The HC-planner trades off

this completeness for efficiency introducing a randomness that prevents an atlas to

be completed in the presence of obstacles.

5 Conclusions

In this paper, we extended the use of High-dimensional Continuation algorithmic

tools for path planning applications. Using these tools, we defined a randomized

path planner for highly constrained systems. The presented planner directly works

on the configuration space, trying to connect any pair of query configurations with

a small collection of local charts. The algorithm performance is highly independent

of the relation between the configuration space and the ambient space. This is in

contrast with existing sampling algorithms for constrained problems that generate

samples in the ambient space. The experiments show that our approach can be more

than one order of magnitude faster than state of the art algorithms.

The worst case cost of the algorithm introduced in this paper is exponential with

the dimension of the configuration space, which is in agreement with the cost of

the best complete path planners [6]. Thus, the algorithm would not scale gracefully

to high-dimensional problems. Despite this, the use of a greedy search strategy to-

gether with the randomization allow to solve problems with moderate complexity

(at least up to dimension 5 in the examples) embedded in even higher-dimensional

spaces. Problems slightly more complexes than this are also likely to be addressable

with the presented planner and this includes many interesting problems in Robotics

and in Molecular Biology [5]. To scale to problems with even larger dimensional-

ity we could rely on charts with larger area of influence. However this is likely to

be valid only in almost lineal problems, where the error between the tangent space

and the solution variety remains small over large areas. Moreover, the use of large

charts limits the set of problems that can be solved since environments densely pop-

ulated with obstacles typically require small charts. We would like to explore the

possibility to define variants of the HC-planner where the role of the resolution is

minimized in the same way as probabilistic roadmaps overcome the resolution lim-

itations of cell decomposition methods. Another possibility to explore is to define a

cost function over the configuration space so that the exploration could be limited

to areas with low cost [18]. All these points deserve a more careful evaluation. It is

also our future endeavor to perform a more thorough experimental and theoretical

analysis of the proposed algorithm, focusing on the performance of the algorithm

for different obstacle settings.
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