
SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 1

A Branch-and-Prune Solver for Distance Constraints
Josep M. Porta, Lluı́s Ros, Federico Thomas, and Carme Torras

Abstract— Given some geometric elements such as points and
lines in R

3, subject to a set of pairwise distance constraints,
the problem tackled in this paper is that of finding all possible
configurations of these elements that satisfy the constraints. Many
problems in Robotics (such as the position analysis of serial and
parallel manipulators) and CAD/CAM (such as the interactive
placement of objects) can be formulated in this way. The strategy
herein proposed consists in looking for some of the a priori
unknown distances, whose derivation permits solving the problem
rather trivially. Finding these distances relies on a branch-and-
prune technique that iteratively eliminates from the space of
distances entire regions which cannot contain any solution. This
elimination is accomplished by applying redundant necessary
conditions derived from the theory of Distance Geometry. The
experimental results qualify this approach as a promising one.

Index Terms— Kinematic and geometric constraint solving,
distance constraint, Cayley-Menger determinant, branch-and-
prune, interval method, direct and inverse kinematics, octahedral
manipulator.

I. INTRODUCTION

THE resolution of systems of kinematic or geometric
constraints has aroused interest in many areas of Robotics

(contact analysis, assembly planning, position analysis of
serial and parallel manipulators, path planning of closed-
loop kinematic chains, etc.) and CAD/CAM (constraint-based
sketching and design, interactive placement of objects, etc.).
The solution of such problems entails finding all object posi-
tions and orientations that simultaneously satisfy a number of
constraints. Examples of such constraints are the closure con-
ditions induced by loops of articulated solids, or orthogonality
and parallelism relationships between geometric primitives.

Although the problem can be approached by using geomet-
ric constructive techniques [2], only the algebraic approaches
have proved general enough to handle all problem instances.
These consist in translating the original geometric problem
into a system of algebraic equations that is then solved using
any suitable standard technique. Unfortunately, a good solution
to both algebrization and resolution, treated as independent
problems, does not necessarily lead to an efficient solution
to the geometric problem. Our aim in this work has been on
finding a good combination of algebraization and resolution so
that the whole process is easy to understand and to implement,
and yet computationally efficient in practice.

Finding all solutions to a system of nonlinear polynomial
equations within some finite domain is an ubiquitous problem

Authors appear in alphabetical order.
The authors are with the Institut de Robòtica i Informàtica Industrial (CSIC-

UPC), Llorens Artigas 4-6, 08028 Barcelona, Spain.
This paper is an extended and updated version of [1].
This work has been partially supported by the Spanish CICYT under con-

tract TIC2000-0696, the Catalan Research Commission through the “Robotics
and Control” group, and by a Ramón y Cajal contract from the Spanish
Ministry for Science and Technology supporting the second author.

for which a wealth of resolution techniques has been pro-
posed. Rewiews of these methods in the context of Robotics,
CAD/CAM and Molecular Conformation can be found for
example in [3] and [4], [5], and [6], respectively. Broadly
speaking, the proposed methods fall into three categories, de-
pending on whether they use algebraic geometry, continuation
or interval-based techniques.

The idea of algebraic-geometric methods—including those
based on resultants and Gröbner bases—is to use variable
elimination in order to reduce the initial system to a univariate
polynomial. The roots of this polynomial, once backsubstituted
into other equations, yield all solutions of the original system.
These methods have proved quite efficient in fairly non-trivial
problems such as the inverse kinematics of general 6R ma-
nipulators [7], distance computations of two-dimensional ob-
jects [8], or the generation of configuration-space obstacles [9].
Recent progress on the theory of sparse resultants, moreover,
qualifies them as a very promising set of techniques [10], [11],
[12].

The idea of continuation methods, on the other hand, is to
begin with an initial system whose solutions are known, and
then transform it gradually to the system whose solutions are
sought, while tracking all solution paths along the way. In
its original form, this technique was known as the Bootstrap
Method, as developed by Roth and Freudenstein [13], and sub-
sequent work by Garcia and Li [14], Garcia and Zangwill [15],
Morgan [16], and Li et al. [17], among others, led to the
procedure into its current highly-developed state [18]. This
method has been responsible for the first solutions of many
long-standing problems in Kinematics. For example, using
them, Tsai and Morgan first showed that the inverse kinematics
of the general 6R manipulator has sixteen solutions [19],
Raghavan showed that the direct kinematics of the general
Stewart-Gough platform can have forty solutions [20], and
Wampler et al. solved nine-point path synthesis problems for
four-bar linkages [21].

While methods in the two previous categories are in theory
complete (they are able to find all solutions if these exist in a
finite number) and general (they can tackle any system of
multivariate polynomial equations), they have a number of
limitations in practice. For example, algebraic-geometric meth-
ods usually explode in complexity, may introduce extraneous
roots and can only be applied to relatively simple systems
of equations. Beyond this, they may require the solution
of a high-degree polynomial, which may be a numerically
ill-conditioned step in some cases. Also, as noted in [22],
continuation techniques must be implemented in exact rational
arithmetic to avoid numerical instabilities, leading to important
memory requirements because large systems of complex initial
value problems have to be solved. For an arbitrary problem,
moreover, neither of these approaches is able to obtain the



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 2

solution variety, or at least characterize it to some extent, if
its dimension is greater than zero.

Interval-based methods are also complete and general, and,
although they can be slow in practice, they present a num-
ber of advantages that make them a competitive alternative:
(1) Contrary to elimination methods, the equations are tackled
in their input form, thus avoiding the need of intuition-guided
symbolic reductions, (2) they are numerically stable, (3) they
also work if the dimension of the solution variety is greater
than zero, (4) they deal with variable bounds in a natural way,
and (5) they are simple to implement. These are mainly the
reasons that motivated the quest for the algorithm we present
here, which belongs to this third class.

Two main classes of interval-based methods have been
explored in the Robotics literature: those based on the interval
version of the Newton method (also known as the Hansen
algorithm) and those based on subdivision. To our knowledge,
the first applications of the Hansen algorithm in this field were
due to Rao et al. [23] and Didrit et al. [24], who respectively
applied the interval Newton method to the inverse kinematics
of 6R manipulators and the forward analysis of Stewart-Gough
platforms. Rather than plunging into specific mechanisms,
Castellet and Thomas then tackled general single-loop inverse
kinematics problems [25], showing that the Hansen algorithm
can be sped up if it is used in conjunction with other necessary
conditions drawn from the problem itself. Later on, successful
applications of the interval Newton method were also reported
by Merlet in singularity analysis and mechanism design of
parallel manipulators [26], [27]. Subdivision techniques, in
turn, were developed in the early nineties by Sherbrooke
and Patrikalakis in the context of constraint-based CAD [22].
These exploit the subdivision property of Bernstein polynomi-
als, which avoids the computation of derivatives while main-
taining the quadratic convergence of the Hansen algorithm.
Their application to general multi-loop mechanisms was made
possible after explicit expressions for the control points of
their closure equations were found in [28], allowing their
rewriting in Bernstein form. A specific subdivision technique
was then developed in [29], which leads to a remarkably
simpler algorithm when the problem can be described only by
multilinear constraints. (A constraint is said to be multilinear
if it is linear in each of its variables.) Given this simplicity,
it seems logical to elucidate whether a formulation of every
kinematic or geometric constraint solving problem is possible
in terms of such constraints exclusively. We show in this
paper that the theory of Distance Geometry allows such a
formulation, thus permitting a reasonably good symbiosis
between algebraization and resolution, as initially sought. This
problem formulation and a novel subdivision-based constraint-
solving technique for multilinear equations are, in sum, the
main contributions of the present work.

The paper is structured as follows. In Section II, Cayley-
Menger determinants are briefly introduced. Using them, in
Section III it is shown how kinematic constraints, such as
loop-closure constraints, and geometric constraints, such as
aligment or orthogonality, can be translated into constraints
involving only distances. Then, the proposed branch-and-
prune algorithm for systems of such constraints is detailed

in Section IV. Two applications of the method in the areas
of robot kinematics and geometric design are presented in
Section V, and finally some conclusions are drawn in the
closing section.

II. CAYLEY-MENGER DETERMINANTS

Let us define the function

Ξ(p1, . . . ,pn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 r1,2 r1,3 · · · r1,n 1
r2,1 0 r2,3 · · · r2,n 1
r3,1 r3,2 0 · · · r3,n 1
· · · · · · · · · · · · · · · · · ·
rn,1 rn,2 rn,3 · · · 0 1
1 1 1 · · · 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where p1, . . . ,pn are n points in R
3 and ri,j = ‖pi − pj‖2,

i.e. the square distance between pi and pj . Obviously, ri,j =
rj,i. The previous determinant is the general form of the
Cayley-Menger determinant. It was first used by A. Cayley in
1841 [30], but it was not systematically studied until 1928,
when K. Menger showed how it could be used to study
convexity and other basic geometric problems [31]. Nowadays,
this determinant plays a fundamental role in the so-called
“Distance Geometry,” a term coined by L. Blumenthal in [32],
which refers to the analytical study of Euclidean geometry in
terms of invariants without resorting to artificial coordinate
systems.

If n = 2,
Ξ(p1,p2) = 2 r1,2. (1)

If n = 3,
Ξ(p1,p2,p3) = −16 A2, (2)

where A is the area of the triangle defined by p1, p2, and p3.
Actually, Eq. (2) is Herron’s formula, which permits to obtain
the area of a triangle in terms of the lengths of its edges.

If n = 4,

Ξ(p1,p2,p3,p4) = 288 V 2, (3)

where V is the volume of the tetrahedron defined by p1,
p2, p3, and p4. If Ξ(p1,p2,p3,p4) vanishes, p1, p2, p3,
and p4 lie on the same plane. If it gives a negative value,
the tetrahedron cannot be assembled with the given distances.
Actually, Eq. (3) is known as Euler’s tetrahedron formula.

If n > 4,
Ξ(p1, . . . ,pn) = 0 (4)

because this determinant essentially gives the volume of a
simplex in R

n−1 but, since this simplex is degenerate in R
3,

its volume is zero.
If we have a set of points p1, . . . ,pm, and all distances

between pairs of them are given, we can use conditions of this
kind to check whether such a point configuration is actually
embeddable in R

3. The following result of Distance Geometry,
used later on below, provides a set of necessary and sufficient
conditions to this end [32].

The points p1, . . . ,pm are embeddable in R
3, satisfying

the prescribed distances between them, if, and only if, all the
following conditions are met:

R1: All Cayley-Menger determinants of three such points are
either negative or zero.



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 3PSfrag replacements

p1p1

p2

p2

q1q1

q2 q2

r1

r1

r2
r2

s1s1

s2 s2

t1 t1

t2 t2

u1 u1

u2
u2

o
o

pp

qq rr

ss

t

t uu

v v

l1

l2
l3

l4

l5

l6

(a) (b)

(c) (d)

B1

B2

Fig. 1. Top: a general 6R linkage (a) and its equivalent bar-and-joint model, a tetrahedral ring (b). Bottom: a Puma 560 robot with, overlaid,
its six binary links (c), and its equivalent bar-and-joint model (d).

R2: All Cayley-Menger determinants of four points are either
positive or zero.

R3: All Cayley-Menger determinants of five and six points
vanish.

Note that conditions R1, R2, and R3 are indeed necessary as,
in accordance with Eqs. (2), (3), and (4), a Cayley-Menger
determinant must be negative or zero, positive or zero, or
strictly zero depending on whether it involves three, four,
or more than four points, respectively. Actually, Blumenthal
proves a slightly stronger version of this theorem in which
it is sufficient to find an ordering of p1, . . . ,pm such that
the first four points in this ordering satisfy conditions R1 and
R2, and then only those Cayley-Menger determinants of five
and six points that include these four points vanish. For the
purpose of this paper, though, the previous weaker version will
be used, as it provides extra redundant equations that enhance
the convergence behaviour of the presented solver.

III. FROM KINEMATIC AND GEOMETRIC
CONSTRAINTS TO DISTANCE CONSTRAINTS

Many problems of direct and inverse kinematics can be
expressed in terms of systems of distance constraints like

PSfrag replacements
B1

B2

Fig. 2. Sarrus’s mechanism. Since the axes of the three revolute pairs
in each leg are parallel, body B2 can only translate with respect to
B1 and, hence, this device can be used to implement a prismatic pair
using revolute joints alone.

those derived from conditions R1 to R3 above. Consider,
for example, the problem of finding all valid configurations
of a closed 6R linkage, a cycle of six binary links pairwise
articulated with revolute joints (Fig. 1a). A binary link can
be modelled by taking two points on each of its two rev-



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 4

olute axes and connecting the four points with rigid bars
to form a tetrahedron. Bars meeting at a common point are
thought of as articulated through ideal ball-socket joints. By
doing so, a 6R linkage is easily translated into a ring of
six tetrahedra, pairwise articulated through a common edge
(Fig. 1b). Observe that the valid configurations of this ring
are in one-to-one correspondence with those of the original
6R linkage. Since the ring only involves ball-socket joints and
rigid bars, it can be regarded as a set of points (the joints)
that keep some prescribed distances between them (the bars).
Hence, all unknown distances within the ring must fulfill all
conditions R1 to R3 above which, when gathered together,
form a polynomial system whose solutions yield the valid
postures of the ring.

When the axes of a link are not skew but intersecting, the
link can be modelled by a rigid triangle rather than by a
tetrahedron, thus using less ball-socket joints and bars. The
case of the PUMA 560 robot depicted in Fig. 1c illustrates
this: as in each of the links l1, l3, l4, and l5 the two axes
are copunctual, they can be substituted by a triangle in the
equivalent bar-and-joint model of Fig. 1d. The last link l6 is
fictitious, but it is drawn here to emphasize that, in the inverse
kinematics of such a robot, the desired position for the robot’s
hand is a priori known.

This process can be generalized to larger classes of mecha-
nisms. When multiple loops are present, for example, some of
the links will not be binary, but will necessarily involve three
or more joint axes. In general, a link with m revolute axes is
easily modelled by taking two points on each axis and placing
all possible bars between the selected 2m points to make the
whole compound rigid. On the other hand, if a prismatic pair
is present, one can always substitute it with Sarrus’s equivalent
mechanism (Fig. 2), made up with revolute joints alone, and
apply the previous transformations to its links. In any case,
if only revolute and prismatic pairs are present, a reduction
to an equivalent bar-and-joint model is always possible, for
which a system of coordinate-free equations giving its valid
configurations can be set up by using conditions R1 to R3.

An interesting remark here is that one may be able to detect
that a closed-form solution for the mechanism is available,
by simply examining which unknowns are present in each
of the equations derived from conditions R3 above, without
requiring any algebraic manipulation of them. For example,
it can be seen that, for the PUMA 560, a sequence of ten
Cayley-Menger equations of five points can be selected among
the points o, p, q, r, s, t, u, and v of Fig. 1d, such that
every equation in the sequence contains one more variable
than the preceding one. Being in echelon form and quadratic in
all unknowns, this subsystem is solvable in closed-form, and
already determines the ten unknown distances among these
points—the ten missing “bars” in Fig. 1d.

Many geometric constraints can also be expressed in a
coordinate-free form in terms of distances, by using Cayley-
Menger determinants. To give some examples, we here derive
three such constraints: collinear points, orthogonal segments
and point-line distance.

• Three points p1,p2, and p3 are collinear if, and only if,
Ξ(p1,p2,p3) = 0. This follows from Eq. (2), since the

area of the triangle defined by three collinear points is
null.

• Two adjacent segments p1p2 and p2p3 are orthogonal if,
and only if, Ξ(p1,p2)+Ξ(p2,p3)−Ξ(p1,p3) = 0. This
is a rewriting of Pythagoras’ theorem by using Eq. (1).

• Finally, the distance d between a point p1 and a line
passing through p2 and p3 satisfies the equation

Ξ(p1,p2,p3) + 4r2,3d
2 = 0, (5)

which follows from Eq. (2) and the fact that, in this case,
A2 = r2,3d

2/4.
Section V will exemplify how some kinematic and geomet-

ric constraint solving problems can be formulated and solved
on the basis of the distance constraints introduced above.

IV. THE ALGORITHM

We now present an algorithm able to solve systems of multi-
linear constraints. Since both Cayley-Menger determinants and
identity relations ri,j = rj,i are multilinear, this algorihtm can
be readily used to solve systems of distance constraints like
those derived in the previous section for kinematic or geomet-
ric constraint-solving problems. Specifically, for a system

F(x) = 0, G(x) ≥ 0, (6)

where F = (f1(x), . . . , fm(x)), G = (g1(x), . . . , gl(x)),
and each function fi or gi is multilinear in the unknowns
x1, . . . , xn (the unknown distances ri,j , in our case), the al-
gorithm is able to isolate all solutions that lie in a prespecified
rectangular box B of R

n. B is defined as the cartesian product
B = [xl

1, x
u
1 ]×· · ·×[xl

n, xu
n], where [xl

i, x
u
i ] denotes the closed

real interval in which the solution values for xi must be sought.

A. A branch-and-prune scheme

Generally speaking, the algorithm isolates the solutions by
iterating two operations, box reduction and box bisection,
using the following branch-and-prune scheme. Using box
reduction, portions of B containing no solution are cut off
by narrowing some of its defining intervals. This process
is iterated until either (1) the box is reduced to an empty
set, in which case it contains no solution, or (2) the box is
“sufficiently” small, in which case it is considered a solution
box, or (3) the box cannot be “significantly” reduced, in which
case it is split into two sub-boxes via box bisection. If the latter
occurs, the whole process is repeated for the newly created
sub-boxes, and for the sub-boxes recursively created thereafter,
until one ends up with a collection of boxes whose size is
under a specified size threshold, as explained in detail below.

If there is only a finite number of solution points in B, this
algorithm returns a collection of small boxes containing them
all. If, contrarily, the solution space is an algebraic variety of
dimension one or higher, the algorithm returns a collection of
small boxes discretizing the portions of this variety contained
in B. In all cases, the algorithm is complete, in the sense that
every solution point will be contained in one of the returned
boxes.

Let us now follow the box reduction and bisection oper-
ations in detail, to later see how they fit into the solver’s
algorithm.



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 5

PSfrag replacements
xl

1

xu
1

xl
2

xl
2

xu
2

xu
2

x1

x2

x2

f(x1, x2)

f(x1, x2)

δ

minl

maxl

minu

maxu

B

H

Fig. 3. Segment-trapezoid clipping. Top: In this two-variable case,
the graph of f(x1, x2) corresponding to points in B necessarily lies
inside the shown tetrahedron H. The vertices of H are obtained by
evaluating f in the corners of B. Bottom: From the initial range for
a variable, we can prune all points for which its trapezoid does not
intersect the f(x1, x2) = 0 line.

B. Box reduction and box bisection

The box reduction operation is based on the following
lemma, which is a direct consequence of Theorem 1.1 in [33]:

The point (x, f(x)) ∈ R
n+1, where f is a scalar

multilinear function and x = (x1, . . . , xn) is a point
lying in B = [xl

1, x
u
1 ]× · · · × [xl

n, xu
n], is contained

in the convex hull of the 2n points {(x, f(x)) | x ∈
{xl

1, x
u
1} × . . .× {xl

n, xu
n}}.

In other words, the graph of f(x) corresponding to a box B
necessarily lies inside the convex hull of the 2n points of the
form (x, f(x)), where x is a corner of B.

This result can be readily used to refine an initial bound of
the solution space of the system (6). For the sake of clarity,
we explain how this is done when (6) consists of just one
equation in two variables, and show at the end how the same
process directly applies to the general case.

Assume that we want to find all solutions of a multilinear
equation f(x) = 0, for x = (x1, x2) in the box B =
[xl

1, x
u
1 ] × [xl

2, x
u
2 ] ∈ R

2 (Fig. 3). Since (x, f(x)) must lie
within the convex hull H of the 22 points {(x, f(x))| x ∈
{xl

1, x
u
1}×{xl

2, x
u
2}} of R

3, we can compute H and intersect

it with the plane f(x) = 0 to obtain a polygon whose smallest
enclosing box gives a better bound for the solutions. Since the
explicit computation of H and its intersection with f(x) = 0
are inefficient operations when f depends on a high number
of variables, we will adopt the following variation of this
technique: we simply project the hull H onto each coordinate
plane, as depicted in Fig. 3 (top), and intersect each of the
resulting trapezoids with the f(x) = 0 line, as shown in Fig. 3
(bottom). Clearly, from the initial range of a variable we can
prune those points for which the trapezoid does not intersect
the f(x) = 0 line. Thus, these segment-trapezoid clippings
usually reduce the ranges of some variables giving a smaller
box that still bounds the root locations (see the black rectangle
in Fig. 3). The experiments show that, although this strategy
produces less pruning than the convex hull-plane clipping, it
results advantageous due to the lower cost of its operations.

Note that exactly the same pruning strategy can be applied
for a multilinear equation in n variables, with n > 2, because
the convex hull of the (then) involved 2n points will also yield
a trapezoidal polygon when projected to a plane defined by
the xi and f(x) axes, for i = 1, . . . , n. Also, if instead of
an equation, we have an inequation g(x) ≥ 0, we proceed
similarly by pruning all values of a variable range for which
its trapezoid entirely lies in the g(x) < 0 half-plane. Finally,
if we have more than one constraint in the system, the process
can be clearly iterated for all constraints by applying the
pruning process of each constraint onto the box produced by
the pruning process of the preceding one.

The previous box reduction procedure is repeatedly applied
on a same box until one of the following conditions is met:

• The box gets empty. This happens when we are treating
an inequation g(x) ≥ 0 and the trapezoid for some
variable in g(x) is entirely in the g(x) < 0 half-plane,
or when we are treating an equation f(x) = 0 and a
trapezoid does not intersect the f(x) = 0 line. In any
case, a whole variable range is pruned and we can stop the
exploration in the search space the current box delimits.

• The reduction of the box volume between two consecu-
tive iterations is below a given threshold ρ. At this point,
as the box cannot be significantly reduced, it is split into
two sub-boxes via box bisection. This operation simply
divides the longest variable range of the box into two
halves, in order to keep the shape of the resulting sub-
boxes as cubic as possible. Box reduction and bisection
are then recursively applied to the newly created sub-
boxes.

• The longest side of the box is under a specified threshold
σ. Here, the box is considered a “solution box” since, if
σ is sufficiently small, either this box contains a solution
or is very close to one. Hence, it is added to the final list
of boxes to be returned by the algorithm.

C. Pseudocode

For the sake of conciseness, the given pseudocode only
manages equations. Its extension to also deal with inequations
is straightforward, if we take into account all comments
above. The main loop, as schematized in Fig. 4, uses the



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 6

following conventions. The arrow “←” is the assignment
operator. The boolean expression Empty(B) is evaluated to
true when any of the defining intervals of B is empty. The
function Extract Box returns (and removes) one box from its
list argument. The expressions V ol(B) and Size(B) denote
the volume of B and the length of the longest side of B.

Initially, two lists are set up (lines 1 and 2): a list L of
“boxes to be processed” and a list S of “solution boxes”. L is
initialized to contain B, and S to an empty list. A while loop
is then executed until L gets empty (lines 3-17), by iterating
the following steps. Line 4 extracts the first box in L. Lines
5-8 repeatedly reduce this box as much as possible, via the
Reduce Box function, until either the box is empty (Empty(B)
is true), or it is a solution box (Size(B) ≤ σ), or it cannot be
significantly reduced (V ol(B)/Vprev > ρ). Finally, if the box
is not empty, lines 9-16 either add it to the list S of solution
boxes, if it is sufficiently small, or they split it into two sub-
boxes and add them to L for further processing. The list of
solution boxes is finally returned as the algorithm’s output in
line 18.

The Reduce Box function in Fig. 5 implements the box
reduction operation. As input, the function takes a box B and
the m multilinear equations in the system (6), and returns the
same box B, eventually resized. For each equation fi(x) = 0
the following is done. Line 2 determines which of the n
variables are actually present in the expression of fi(x). Their
indices are stored in V and hereafter referred to as v1, . . . , vk.
Line 3 stores all corners of the box [xl

v1
, xu

v1
]× . . .× [xl

vk
, xu

vk
]

into a set C. For each variable xv present in fi, then, lines
5-8 compute the values minl, maxl, minu and maxu, the
minimum and maximum values that the function fi(x) takes
inside B when xv is set to the lower and upper values of
its range, respectively. These values define the trapezoid for
this variable (see Fig. 3, bottom) and, now, it only remains to
intersect it with the fi(x) = 0 line, hoping to reduce the range
for xv . The call to Trapezoid Clipping in line 9 performs this
straightforward operation.

D. Performance

We emphasize that this algorithm follows the simplest pos-
sible scheme for an interval-based technique, which consists
in iteratively taking one equation at a time and projecting
an approximation of the solution set for this equation onto
a single variable, to prune it accordingly. The key point is
then obtaining these approximations. In the context of interval
Newton methods, pruning a single variable by projecting
approximations of the solution set onto this variable is known
as a “Newton cut”, which requires evaluating interval deriva-
tives [34], [35]. When using algorithms based on subdivision,
these approximations are just the convex hull of a set of control
points for the input polynomials. Our algorithm for multilinear
equations can be seen to be equivalent to that obtained using
the standard subdivision approach [22] which is in turn as
good as a Newton cut in the worst case. Obviously, such
a simple algorithmic structure comes with advantages and
disadvantages.

On the negative side, the use of one equation at a time
leads to the so-called cluster problem, that is, each solution

The Solver
Input: m multilinear equations f1(x) = 0, . . . , fm(x) = 0,

an initial box B, a size threshold σ, and a reduction
threshold ρ.

Output: A set S of solution boxes.
Process:

1 S ← ∅

2 L← B
3 while not Empty(L)
4 Bc ← Extract Box(L)
5 do
6 Vprev ←Vol(Bc)
7 Reduce Box(Bc, f1(x), . . ., fm(x))
8 until Empty(Bc) or Size(Bc)≤ σ or Vol(Bc)/Vprev > ρ
9 if not Empty(Bc) then
10 if Size(Bc)≤ σ then
11 S ← S ∪ {Bc}
12 else
13 Split Bc into two sub-boxes: B1,B2

14 Add B1 and B2 to L
15 endif
16 endif
17 endwhile
18 return S

Fig. 4. The main loop of the equation solver.

Reduce Box(B, f1(x), . . ., fm(x) )
Input: A box B, defined as a set of intervals

B = {[xl
1, x

u
1 ], . . . , [xl

n, xu
n]}, and m multilinear

equations f1(x) = 0, . . . , fm(x) = 0.
Output: The same box, but eventually resized.
Process:

1 for each equation fi(x) = 0
2 V ← {v1, . . . , vk} (Indices of variables in fi)
3 C ← {xl

v1
, xu

v1
} × . . .× {xl

vk
, xu

vk
}

4 for each v ∈ V
5 minl ← min {fi(x) | x ∈ C, xv = xl

v}
6 maxl ← max {fi(x) | x ∈ C, xv = xl

v}
7 minu ← min {fi(x) | x ∈ C, xv = xu

v}
8 maxu← max {fi(x) | x ∈ C, xv = xu

v}
9 Trapezoid Clipping(xl

v, xu
v , minl, maxl, minu, maxu)

10 endfor
11 endfor

Fig. 5. The Reduce Box function.

is obtained as a compact cluster of boxes instead of a single
box containing it [36]. As will be shown in the experiments,
fortunately, the use of redundant equations, which naturally
appear in our formulation, reduces this effect. Also, the use
of a single variable at a time makes the convergence to the
roots be linear [22], while other standard interval-based algo-
rithms exhibit quadratic convergence. Although our algorithm
compares unfavorably in this respect, it should be beared in
mind that we are actually facing a trade-off between cost of
each iteration and convergence rate. However, despite these
drawbacks, its stability, simplicity, easy parallelization and
speed for many problems makes it attractive.

On the positive side, the algorithm does not suffer from
two common problems of classical root-finding procedures.



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 7

PSfrag replacements

p1 p2

p3

p4p5

p6

p7

p8

p9

Fig. 6. Points involved in the forward kinematics of an octahedral
manipulator.

configuration “a” configuration “b”
non redundant non redundant

redundant redundant
t < 0.01 (0.09) < 0.01 (0.35) 0.03 (0.28) 0.03 (2.15)

bp 7 (851) 3 (1477) 65 (2173) 39 (6841)
ns 2 (86) 2 (67) 27 (680) 8 (764)

TABLE I

THE ALGORITHM’S PERFORMANCE ON THE FORWARD

KINEMATICS OF THE OCTAHEDRAL MANIPULATOR

On the one hand, it is immune to singularities of the Jacobian
of the equations because it does not use derivative informa-
tion. Certainly, this is a typical drawback of many Newton-
Raphson methods. Given a system of equations F (x) = 0,
such methods iteratively work on an estimation xi of the
solution to derive a better estimation xi+1 using the recurrence
xi+1 = xi − D−1F (xi), where D is the matrix of partial
derivatives of F (x). Clearly, when D is close to singular, the
method may fail to converge, as the examples in Section V-A
below will illustrate. On the other hand, it is well-known that
the numerical stability of polynomial root finding is often
surprisingly low [37], [38] and that a very small perturbation in
just a few coefficients can yield solutions completely different
from the intended ones. For example, classic solutions to the
forward and inverse kinematics problems that rely on solving
a resultant polynomial must carefully deal with this issue,
specially in configurations of the mechanism near a singularity,
where solutions may be lost. Contrarily, our algorithm is robust
in this sense because it directly works with the input equations.

V. EXPERIMENTS

The algorithm has been implemented in C and we next
show how it performs in two test cases: solving the forward
kinematics of octahedral manipulators, and finding all lines
simultaneously tangent to four spheres.

A. Solving the octahedral manipulator

An octahedral manipulator is formed by two triangles, the
base p1p2p3 and the platform p4p5p6, joined by six linearly-
actuated legs: p1p5, p1p6, p2p6, p2p4, p3p4 and p3p5

(Fig. 6). The forward kinematics problem is to find all poses
of the platform (relative to the base) that are compatible

2

4

6

8

10

2 4 6 8 10

PSfrag replacements

r1,4

r3,6

1

1

2

9

13
2

10

8

6

4

2

10864

PSfrag replacements

r1,4

r3,6

1

1

1

1

1

2

9

13

(a) (b)

4 6 8 10

2

4

6

8

10

2

PSfrag replacements

r1,4

r3,6

1

1

2

9

13
64 82

10

8

6

4

2

10

PSfrag replacements

r1,4

r3,6

1

1

1

1

2

2

9

13

(c) (d)

0

2

4

6

8

10

2 4 6 8 10

PSfrag replacements

r1,4

r3,6

1

2

9

13

0

2

4

6

8

10

2 4 6 8 10

PSfrag replacements

r1,4

r3,6

1

2

9

13

(e) (f)

0

2

4

6

8

10

2 4 6 8 10

PSfrag replacements

r1,4

r3,6

1

2

9

13

0

2

4

6

8

10

2 4 6 8 10

PSfrag replacements

r1,4

r3,6

1

2

9

13

(g) (h)

Fig. 7. Solving the octahedral manipulator. Left and right columns
refer, respectively, to configurations “a” and “b”. The numbers in (a),
(b), (c) and (d) indicate the amount of solution boxes returned around
each solution point.

with the six specified leg-lengths. No closed-form solution to
this problem is known, but numerical procedures have been
given that involve finding the roots of an 8th-degree univariate
polynomial, obtained by symbolic elimination techniques [39],
[40]. Using Cayley-Menger determinants, though, it is possible
to give the following simple formulation, directly solvable
by the above algorithm. To this end, consider the following



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 8

PSfrag replacements

(a)

(b)

(c)
r1,4

r2,5

r3,6

C C

C

CC

C

109
◦

109
◦

109
◦

109
◦

109
◦

109
◦

p1

p2

p3

p4

p5

p6

PSfrag replacements

(a)
(b)

(c)
r1,4

r2,5

r3,6

C
109

◦

p1

p2

p3

p4

p5

p6

Fig. 8. (a) The cyclohexane molecule. (b) Its bar-and-joint model. (c) Solution boxes found by the solver, plotted in the space defined by
the variables r1,4, r2,5, and r3,6. The shown bounding box is defined by the intervals r1,4 = r2,5 = r3,6 = [2.75, 3.95]. The isolated box
and the continuum correspond, respectively, to the “chair” and “boat” forms of this molecule.

Cayley-Menger equations:

Ξ(p1,p3,p4,p5,p6) = 0,
Ξ(p1,p2,p3,p4,p6) = 0.

(7)

Note that, among all involved squared distances, only r1,4 and
r3,6 are unknown in Eqs. (7), and that once this system is
solved for them, we can determine the spatial position of the
three points of the platform by trilateration [41], since each
of these points will have a tripod of known lengths with three
points at a known position. Thus, although a third squared
distance is also unknown in this problem (r2,5), there’s no
need to take it into account if only these two equations are
used. We may now use our algorithm to solve them.

Figs. 7a and 7b show the results for two different sets of
leg-lengths. In both cases, the base and platform triangles are
equilateral, of side

√
3 and

√
3/2, respectively. Fig. 7a shows

the solution boxes found when the squared leg-lengths are set
to r1,5 = r2,6 = r3,4 = 4.25 and r1,6 = r2,4 = r3,5 = 5.75, a
case hereafter referred to as configuration “a”. Fig. 7b shows
the solution boxes when all squared leg-lengths are set to
4.75, a case hereafter referred to as configuration “b”. Insight
into the behaviour of the solver may be get by comparing
these two outputs with the corresponding plots of the implicit
curves of Eqs. (7), shown in Figs. 7e and 7f. Note that while
in configuration “a” the two curves are rather different and
intersect only in two points, in configuration “b” they are quite
close to one another and intersect in six points, with tangency
on two of them. This proximity explains why our solver gives
larger clusters of boxes in Fig. 7b than in Fig. 7a.

We may add redundant equations to the system of Eqs. (7).
For example, if we add the remaining Cayley-Menger equa-

tions of five points,

Ξ(p2,p3,p4,p5,p6) = 0,
Ξ(p1,p2,p4,p5,p6) = 0,
Ξ(p1,p2,p3,p5,p6) = 0,
Ξ(p1,p2,p3,p4,p5) = 0,

(8)

we end up with a system of six equations, now including the
three unknowns of this problem. The solution boxes found by
the solver are displayed in Figs. 7c and 7d, for configurations
“a” and “b”, respectively. Comparing Figs. 7a and 7b with
Figs. 7c and 7d, we clearly see that the use of redundant
equations produces extra pruning, and that the solutions are
bounded with higher accuracy. Table I shows the execution
time t (in seconds, on a Pentium IV PC at 1.8 GHz) for
both configurations, the number bp of boxes processed by
the algorithm, and the number ns of solution boxes found.
These statistics are separately given for the non-redundant
formulation of Eqs. (7), and for the redundant one involving
Eqs. (7) and (8). In parentheses, the table also gives t, bp

and ns, for a slightly modified version of the algorithm that
uses interval arithmetic to compute the vertical sides of the
trapezoids, instead of evaluating the functions in the 2n corners
of each box. In all cases, the global control parameters have
been set to σ = 0.1 and ρ = 0.9.

The table clearly shows the positive effect of adding re-
dundant equations: although the two configurations are solved
in practically the same time, in the redundant case fewer
boxes have to be explored. It is remarkable that, for con-
figuration “a”, the redundancy of equations allows to isolate
the solutions by only exploring three boxes, the minimum
required when two solutions exist. In configuration “b”, the
solver also isolates the solutions, but returns whole clusters



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 9PSfrag replacements

p1

p2

p3

p4

p5 p6

l

d1 d2
d3

d4

Fig. 9. Points involved in computing all lines tangent to four spheres.

of boxes for those lying in tangency points (Fig. 7b). This
effect is nevertheless reduced when adding redundancy, as
the delivered clusters contain only two boxes each, as shown
in Fig. 7d. Furthermore, the cost of processing each box
during the segment-trapezoid clipping is O(2n), where n is
the maximum number of variables per equation. When using
interval arithmetic in this process, this cost is reduced to O(n),
but despite this lower complexity, we observe that both t and
bp increase considerably in this case, as shown in the table.
This is due to the looser bounds that interval arithmetic yields
for the vertical sides of the trapezoids.

In view of Fig. 7f one may ask whether an octahedral
manipulator exists for which the two oval curves coincide,
thus yielding a whole continuum of solutions. Certainly this
may happen, if the manipulator’s geometric parameters are
those of a Bricard octahedron. As Bricard showed in [42],
there are three distinct types of fully mobile octahedra: one
is symmetrical about a line, another about a plane, and the
third is such that the “opposite” angles at every vertex (in
Fig. 6) are equal or supplementary. Mechanisms of this kind
are said to be architecturaly singular and are usually avoided
for being difficult to control. However, a specific realization
of them exists in Nature: the cyclohexane molecule, a cycle
of six carbon atoms pairwise connected with simple covalent
bonds (Fig. 8a). Its structure can be viewed as six rigid bars
of equal length cyclically connected with ball-socket joints at
the atoms, plus the additional constraint that the angle between
every two adjacent bars is of 109◦—the usual angle between
covalent bonds in a carbon. If we establish this constraint
by adding extra bars of a proper length, we realize that the
kinematic model of this molecule is actually an octahedron,
as we get the bar-and-joint framework of Fig. 8b, whose
combinatorial structure is the same as that of the octahedron
in Fig. 6.

Fig. 8c shows the solution boxes returned by the solver
in this case, obtained by solving Eqs. (7) and (8) together.
Using σ = 0.05, 105 solution boxes have been found, in 0.39
seconds. In nature, the cyclohexane takes two forms: while the
so-called chair form is rigid, and corresponds to the isolated
box in Fig. 8c, the boat form is flexible and its feasible motions
are described by the continuum of solution boxes shown in this
figure.

Finally, these examples show that the presented algorithm
performs well even when we seek solutions for which the ma-

(a)

PSfrag replacements

r2,5

r3,5

1

2 − 3

2

4

4

5

6

8

8

7 − 8

9

10

11

12

12

14

16

16

(b)

PSfrag replacements

r2,5

r3,5

1

2 − 3

2

2

4

4

5

6

6

8

8

7 − 8

9

10

10

11

12

14

16

(c)

PSfrag replacements

r2,5

r3,5

1

2 − 3

2

2 4

4

5

6

6

8

8

7 − 8

9

10

10

11

12

14

16

(d)

PSfrag replacements

r2,5

r3,5

1

2 − 3

2

2

4

4

4

5

6

6

6

8

8

7 − 8

9

10

10

10

11

12

14

16

Fig. 10. Output for the second test case. The lengths of the axes in
(b), (c) and (d) correspond to the shaded area in (a). Clusters in (d)
correspond to the same-labelled ones in Fig. 11.



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 10

PSfrag replacements

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

r2,5

r3,5

r4,5

Fig. 11. Top: Clusters of solution boxes found in the second test case. The shown bounding box is defined by the intervals r2,5 = r3,5 =
r4,5 = [2.5, 8.8]. Bottom: The corresponding twelve lines that keep the specified distances to the given four red points. Each configuration
corresponds to the same numbered cluster in the plot above.



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 11

trix D of partial derivatives of the input equations is singular
(or close to singular) as already mentioned in Section IV-D.
Figs. 7g and 7h show iso-contours of the determinant of D
for configurations “a” and “b”, overlaid with the curves in
Figs. 7e and 7f, respectively. The white areas correspond to
points where this determinant is less than 10−8. One can
verify that, using the Newton-Raphson routines of MAPLE,
for example, it is impossible to compute the two solutions
where the curves in Fig. 7f are tangent, precisely because they
lie inside a region of near-singularitiness of D. The situation
is worse in the cyclohexane molecule, since in that case the
jacobian is null for all values of r1,4, r2,5 and r3,6. Despite
this, though, our algorithm is able to bound all solutions at
the desired accuracy, as shown above.

B. All lines tangent to four spheres

Given four spheres of radii d1, . . . , d4 in R
3, with their

centers located in p1, . . . ,p4, we want to find their common
tangent lines. Equivalently, the problem can be stated as
finding all possible lines that keep the prescribed distances
d1, . . . , d4 to the four points p1, . . . ,p4. This problem was
first formulated by Larman [43], and later discussed by
Karger [44] and Verschelde [45], and finds several applications
in Computer Graphics and Computational Geometry, including
visibility computations with moving viewpoints [46], com-
puting smallest enclosing cylinders of point sets [47] and
placement problems in geometric modelling [48]. It has been
proved that there are at most twelve discrete solutions and
that this bound is tight. A method to find them has recently
been given by MacDonald et al. [49] who formulate it as a
system of two algebraic equations, a cubic and a quartic, in
the involved point and vector coordinates. After elimination,
this yields a twelfth degree univariate resultant that must be
numerically solved. As an alternative, one can arrive at the
following coordinate-free formulation, directly tackleable with
the presented constraint solver.

First, we characterize the tangent line l by two points on
it, say p5 and p6, placed a unit distance apart, such that p5

is the tangent point of l with the first sphere (see Fig. 9).
With this, and using the right triangle p1p5p6, we directly
see that r1,6 = d2

1 +1. Finally, we state the following distance
constraints among all points in S = {p1, . . . ,p6}, defining a
redundant system of ten equations in six unknowns:

C1: Three constraints of the form of Eq. (5) to force that the
distance from each of p2, p3, p4 to l be d2, d3 and d4,
respectively.

C2: The two Cayley-Menger equations of five points
Ξ(p1,p2,p3,p4,p5) = 0, and Ξ(p1,p2,p3,p4,p6) =
0, each involving three unknowns.

C3: The remaining four Cayley-Menger equations of five
points of S, three involving four unknowns, and one
involving six unknowns.

C4: The unique Cayley-Menger equation of the six points in
S, with six unknowns.

One can now use the solver to treat them all together, but
it is illustrative to successively apply it to larger subsets of
these equations instead, and see the outputs. Let us study the

σ = 0.1 σ = 0.01

t (sec.) 315 385
bp 7875 14579
ns 870 813

TABLE II

THE ALGORITHM’S PERFORMANCE ON THE

“TANGENTS TO FOUR SPHERES” PROBLEM

case where all inter-center distances are
√

8, and all radii are
1.45, for which 12 solutions exist [49]. If we start by setting
σ = 0.1 and we just consider the five constraints in C1 and
C2, we obtain the one-dimensional continuum of solutions
depicted in Fig. 10a. The continuum disappears when we solve
C1, C2, and C3 together, as seen in Fig. 10b, giving rise to
very large clusters of solution boxes. These can be further
reduced if the last constraint C4 is taken into account, to get
the box clusters in Fig. 10c. At this point we have exhausted
all possible distance constraints between the selected points
and we cannot further reduce the clusters, unless we ask a
higher accuracy to the solver. If we do this, by setting σ =
0.01, we get the small clusters in Fig. 10d, each corresponding
to one of the 12 solutions of the problem. Actually, the two
pairs of clusters 2-3 and 7-8 appear overlaid, but they can
be seen separated if we plot them on the three-dimensional
space defined by r2,5, r3,5 and r4,5. This plot, together with
the line configuration corresponding to each cluster, are shown
in Fig. 11.

Table II gives the values of t, bp and ns for the last two
experiments. The σ = 0.1 and σ = 0.01 columns correspond,
respectively, to the computation of Figs. 10c and 10d. Both
experiments have been done with ρ = 0.99. We note that the
time to compute the solutions does not increase substantially,
despite the fact that σ has been decreased by one order of
magnitude in the second experiment. Furthermore, although a
higher number of boxes is processed for σ = 0.01, the final
number of solution boxes remains practically the same as for
σ = 0.1. This is not casual. One can see that, from a certain
point, after asking higher and higher accuracies to the solver,
the number of boxes around each solution point will practically
remain constant. The avoidance of this phenomenon, also as-
sociated with the cluster problem observed in [36], constitutes
part of our current research.

VI. CONCLUSIONS

We have presented a general solver for systems of kinematic
and geometric constraints. Target applications are those were
a system of constraints on the relative positions of a set of
objects must be solved—such as those arising in the position
analysis of serial and parallel robots, the contact analysis of
polyhedral models, or the automatic generation of constraint-
specified designs or assemblies.

A special emphasis has been put on finding a good com-
bination of algebraization and resolution techniques. To this
end, the use of standard coordinate-free constraints derived
from the theory of Distance Geometry, combined with a
novel branch-and-prune technique to solve them, has proved



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 12

efficient, yielding a solver that is conceptually simple and
easy-to-implement. The solver is also complete, in the sense
that it loses no solutions, and is able to discretize entire
continua of solutions if they exist.

According to our experiments, the addition of redundant
constraints speeds up, in general, the resolution process and
reduces the number of final boxes delivered. Although not
illustrated by the presented examples, the addition of redun-
dant variables, on the contrary, usually introduces a trade-off
between the number of final boxes and execution times: as the
number of redundant variables is increased, the solver needs
longer execution times but, in return, it obtains a lower number
of final boxes.

The algorithm as it stands leaves many choices open, as it is
usually the case in constraint-based search (variable ordering,
constraint selection, redundacy dosage, etc.). This offers a
range of possibilities to speed up the resolution process, which
we will tackle in future research by devising good heuristics
for the choice points above.

REFERENCES

[1] J. M. Porta, L. Ros, F. Thomas, and C. Torras, “A branch-and-prune
algorithm for solving systems of distance constraints,” in IEEE Int. Conf.
on Robotics and Automation, vol. 1, Taipei, Taiwan, September 2003,
pp. 342–348.

[2] I. Fudos and C. Hoffmann, “A graph-constructive approach to solving
systems of geometric constraints,” ACM Transactions on Graphics,
vol. 16, no. 2, pp. 179–216, 1997.

[3] J. Nielsen and B. Roth, “Formulation and solution for the direct and
inverse kinematics problems for mechanisms and mechatronic systems,”
in Proceedings of the NATO Advanced Study Institute on Computational
Methods in Mechanisms, J. Angeles and E. Zakhariev, Eds., vol. I, June
1997, pp. 233–252.

[4] ——, “On the kinematic analysis of robotic mechanisms,” The Interna-
tional Journal of Robotics Research, vol. 18, no. 12, pp. 1147–1160,
1999.

[5] C. H. Hoffmann and B. Yuan, “On spatial constraints solving ap-
proaches,” in Automated Deduction in Geometry: Third International
Workshop, ser. Lecture Notes in Computer Science, vol. 2061, 2000.

[6] I. Z. Emiris and B. Mourrain, “Computer algebra methods for studying
and computing molecular conformations,” Algorithmica, no. 25, pp.
372–402, 1999.

[7] D. Manocha and J. Canny, “Efficient inverse kinematics for general 6r
manipulators,” IEEE Trans. on Robotics and Automation, vol. 10, pp.
648–657, 1994.

[8] K. Sridharan, “Computing two penetration measures for curved 2d
objects,” Information Processing Letters, vol. 72, pp. 143–148, 1999.

[9] C. Bajaj and M.-S. Kim, “Generation of configuration space obstacles:
Moving algebraic surfaces,” The International Journal of Robotics
Research, vol. 9, no. 1, pp. 92–112, 1990.

[10] D. Kapur and T. Saxena, “Sparsity considerations in dixon resultants,”
in Conference Proceedings of the Annual ACM Symposium on Theory
of Computing, 1996, pp. 184–191.

[11] I. Emiris and J. Canny, “Efficient incremental algorithms for the sparse
resultant and the mixed volume,” Journal of Symbolic Computing,
vol. 20, no. 2, pp. 117–149, 1995.

[12] J. Canny and I. Emiris, “A subdivision-based algorithm for the sparse
resultant,” Journal of the ACM, vol. 47, no. 3, pp. 417–451, 2000.

[13] B. Roth and F. Freudenstein, “Synthesis of path-generating mechanisms
by numerical methods,” ASME Journal of Engineering for Industry,
vol. 85, pp. 298–307, 1963.

[14] C. B. Garcia and T. Y. Li, “On the number of solutions to polynomial
systems of equations,” SIAM Journal of Numerical Analysis, vol. 17,
pp. 540–546, 1980.

[15] C. B. Garcia and W. I. Zangwill, Pathways to solutions, fixed points,
and equilibria. Upper Saddle River, NJ: Prentice Hall, 1981.

[16] A. P. Morgan, “A homotopy for solving polynomial systems,” Applied
Mathematics and Computation, vol. 18, pp. 87–92, 1986.

[17] T. Y. Li, T. Sauer, and J. A. York, “The cheater’s homotopy: An efficient
procedure for solving systems of polynomial equations,” SIAM Journal
of Numerical Analysis, vol. 18, no. 2, pp. 173–177, 1988.

[18] C. Wampler, A. Morgan, and A. Sommese, “Numerical continuation
methods for solving polynomial systems arising in kinematics,” ASME
Journal of Mechanical Design, vol. 112, pp. 59–68, 1990.

[19] L.-W. Tsai and A. Morgan, “Solving the kinematics of the most general
six- and five-degree-of-freedom manipulators by continuation methods,”
ASME Journal of Mechanisms, Transmissions, and Automation in De-
sign, vol. 107, pp. 189–200, 1985.

[20] M. Raghavan, “The Stewart platform of general geometry has 40
configurations,” ASME Journal of Mechanical Design, vol. 115, pp. 277–
282, 1993.

[21] C. Wampler, A. Morgan, and A. Sommese, “Complete solution of the
nine-point path synthesis problem for four-bar linkages,” Journal of
Mechanical Design, vol. 114, pp. 153–159, 1992.

[22] E. Sherbrooke and N. Patrikalakis, “Computation of the solutions of
nonlinear polynomial systems,” Computer Aided Geometric Design,
vol. 10, no. 5, pp. 379–405, 1993.

[23] R. S. Rao, A. Asaithambi, and S. K. Agrawal, “Inverse kinematic
solution of robot manipulators using interval analysis,” ASME Journal
of Mechanical Design, vol. 120, pp. 147–150, 1998.

[24] O. Didrit, M. Petitot, and E. Walter, “Guaranteed solution of direct
kinematic problems for general configurations of parallel manipulators,”
IEEE Trans. on Robotics and Automation, vol. 14, no. 2, pp. 259–266,
1998.

[25] A. Castellet and F. Thomas, “An algorithm for the solution of inverse
kinematics problems based on an interval method,” in Advances in
Robot Kinematics, M. Husty and J. Lenarcic, Eds. Kluwer Academic
Publishers, 1998, pp. 393–403.

[26] J.-P. Merlet, “A formal numerical approach to determine the presence of
singularity within the workspace of a parallel robot,” in Proceedings of
the 2nd Workshop on Computational Kinematics, Seoul, South Korea,
May 2001, pp. 167–176.

[27] ——, “An improved design algorithm based on interval analysis for
parallel manipulator with specified workspace,” in Proc. of the IEEE
Int. Conf. on Robotics and Automation, vol. 2, Seoul, South Korea, May
2001, pp. 1289–1294.

[28] C. Bombı́n, L. Ros, and F. Thomas, “A concise Bézier clipping technique
for solving inverse kinematics problems,” in Advances in Robot Kine-
matics, J. Lenarcic and M. Stanisic, Eds. Kluwer Academic Publishers,
2000, pp. 53–61.

[29] J. M. Porta, L. Ros, F. Thomas, and C. Torras, “Solving multi-loop
linkages by iterating 2d clippings,” in Advances in Robot Kinematics,
F. Thomas and J. Lenarcic, Eds. Kluwer Academic Publishers, 2002,
pp. 255–264.

[30] A. Cayley, “A theorem in the geometry of position,” Cambridge Math-
ematical Journal, vol. II, pp. 267–271, 1841.

[31] K. Menger, “New foundation for euclidean geometry,” American Journal
of Mathematics, no. 53, pp. 721–745, 1931.

[32] L. Blumenthal, Theory and Applications of Distance Geometry. Oxford
University Press, 1953.

[33] A. Rikun, “A convex envelope formula for multilinear functions,” J. of
Global Optimization, vol. 10, pp. 425–437, 1997.

[34] P. V. Hentenryck, D. McAllester, and D. Kapur, “Three cuts for ac-
celerating interval propagation,” MIT, Artificial Intelligence Laboratory,
Tech. Rep., 1995.

[35] ——, “Solving polynomial systems using a branch and prune approach,,”
SIAM Journal on Numerical Analysis, vol. 34, no. 2, pp. 797–827, 1997.

[36] A. Morgan and V. Shapiro, “Box-bisection for solving second-degree
systems and the problem of clustering,” ACM Transactions on Mathe-
matical Software, vol. 13, no. 2, pp. 152–167, 1987.

[37] A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis,
2nd ed. Mc Graw-Hill, 1978.

[38] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software.
Prentice Hall, 1989.

[39] M. Griffis and J. Duffy, “A forward displacement analysis of a class
of Stewart platforms,” Journal of Robotic Systems, vol. 6, pp. 703–720,
1989.

[40] P. Nanua, K. Waldron, and V. Murthy, “Direct kinematic solution of
a Stewart platform,” IEEE Trans. on Robotics and Automation, vol. 6,
no. 4, pp. 438–444, 1990.

[41] F. Thomas, E. Ottaviano, L. Ros, and M. Ceccarelli, “Coordinate-free
formulation of a 3-2-1 wire-based tracking device based on Cayley-
Menger determinants,” in IEEE Int. Conf. on Robotics and Automation,
vol. 1, Taipei, Taiwan, May 2003, pp. 355–361.



SUBMITTED TO THE IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 13

[42] R. Bricard, “Mémoire sur la théorie de l’octaèdre articulé,” Journal de
Mathématiques Pures et Appliquées, no. 3, pp. 113–148, 1897.

[43] D. Larman, 1990, Problem posed in the problem session of the DIMACS
workshop on arrangements, Rutgers University, New Brunswick, NJ.

[44] A. Karger, “Classical geometry and computers,” Journal for Geometry
and Graphics, vol. 2, no. 1, pp. 7–15, 1998.

[45] J. Verschelde, “Polynomial homotopies for dense, sparse and determi-
nantal systems,” Department of Mathematics, Michigan State University,
Tech. Rep. 1999-041, 1999.

[46] O. Devillers, V. Dujmović, H. Everett, X. Goaoc, S. Lazard, H.-S. Na,
and S. Petitjean, “The expected number of 3D visibility events is linear,”
INRIA, Tech. Rep. 4671, December 2002.

[47] P. Agarwal, B. Aronov, and M. Sharir, “Line transversals of balls
and smallest enclosing cylinders in three dimensions,” Discrete and
Computational Geometry, no. 21, pp. 373–388, 1999.

[48] C. Durand, “Symbolic and numerical techniques for constraint solving,”
Ph.D. dissertation, Purdue University, 1998.

[49] I. Macdonald, J. Pach, , and T. Theobald, “Common tangents to four
unit balls in R3,” Discrete Computational Geometry, vol. 26, no. 1, pp.
1–17, 2001.


