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Abstract— This paper presents a numerical method able to
isolate all configurations that an arbitrary loop linkage can adopt,
within given ranges for its degrees of freedom. The procedure
is general, in the sense that it can be applied to single or
multiple intermingled loops of arbitrary topology, and complete,
in the sense that all possible solutions get accurately bounded,
irrespectively of whether the analyzed linkage is rigid or mobile.
The problem is tackled by formulating a system of linear,
parabolic, and hyperbolic equations, which is here solved by a
new strategy exploiting its structure. The method is conceptually
simple, geometric in nature, and easy to implement, yet it
provides solutions at the desired accuracy in short computation
times.

I. INTRODUCTION

A robot linkage is a set of rigid links connected through

revolute or slider joints. We are interested in loop linkages,

formed by one or more kinematic loops (closed-chain se-

quences of pairwise articulated links). This paper presents a

new method for the position analysis of such linkages, i.e., for

the computation of the configurations they can adopt, within

specified ranges for their degrees of freedom. A configuration

is here understood in a kinematic sense: as an assignment

of positions and orientations to all links that respects the

kinematic constraints imposed by all joints, with no regard

to possible link-link interferences.

Several problems in Robotics translate into the above one, or

require an efficient module able to solve it. The problem arises,

for instance, when solving the inverse/forward displacement

analysis of serial/parallel manipulators [1], [2], when planning

the coordinated manipulation of an object or the locomotion

of a reconfigurable robot [3], or, as recently shown, in simul-

taneous localization and map-building [4]. The problem also

appears in other domains, such as in the simulation and control

of complex deployable structures [5], the theoretical study of

rigidity [6], or the conformational analysis of biomolecules [7].

The common denominator in all cases is the existence of one

or more kinematic loops in the system at hand, defining a

linkage whose configurations must eventually be sought for.

Rather than providing ad-hoc solutions for specific prob-

lems, this paper’s emphasis will be on developing a general,

complete procedure for arbitrary linkages, independently of

their loop topology and the structure of their configuration

space. Although the problem can be approached by geometric

constructive techniques [8], only the algebraic approaches

have proved general enough to this end. They consist in

characterizing the valid configurations of the analyzed linkage

into a system of algebraic equations that is then solved using

standard techniques. Reviews of such techniques in the context

of Robotics, CAD/CAM and Molecular Conformation can be

found for example in [9], [10], and [11], respectively. Broadly

speaking, the proposed methods fall into three categories, de-

pending on whether they use algebraic geometry, continuation

or interval-based techniques.

The idea of algebraic-geometric methods—including those

based on resultants and Gröbner bases—is to use variable

elimination to reduce the initial system to a univariate poly-

nomial. The roots of this polynomial, once backsubstituted

into other equations, yield all solutions of the original system.

These methods have proved quite efficient in fairly non-

trivial problems such as the inverse kinematics of general

6R manipulators [12], [1], distance computations of two-

dimensional objects [13], or the generation of configuration-

space obstacles [14]. Recent progress on the theory of sparse

resultants, moreover, qualifies them as a very promising set of

techniques [15].

The idea of continuation methods, on the other hand, is to

begin with an initial system whose solutions are known, and

then transform it gradually to the system whose solutions are

sought, while tracking all solution paths along the way. In

its original form, this technique was known as the Bootstrap

Method, as developed by Roth and Freudenstein [16], and

subsequent work by Garcia and Li [17], Garcia and Zang-

will [18], Morgan [19], and Li et al. [20], among others, led

the procedure into its current highly-developed state [21]. This

method has been responsible for the first solutions of many

long-standing problems in Kinematics. For example, using

them, Tsai and Morgan first showed that the inverse kinematics

of the general 6R manipulator has sixteen solutions [22],

Raghavan showed that the direct kinematics of the general

Stewart-Gough platform can have forty solutions [23], and

Wampler et al. solved nine-point path synthesis problems for

four-bar linkages [24].

While methods in the two previous categories are in theory

complete (they are able to find all solutions if these exist in a

finite number) and general (they can tackle any system of

multivariate polynomial equations), they have a number of

limitations in practice. For example, algebraic-geometric meth-

ods usually explode in complexity, may introduce extraneous

roots and can only be applied to relatively simple systems

of equations. Beyond this, they may require the solution

of a high-degree polynomial, which may be a numerically

ill-conditioned step in some cases. Also, as noted in [25],

continuation techniques must be implemented in exact rational

arithmetic to avoid numerical instabilities, leading to important

memory requirements because large systems of complex initial



value problems have to be solved. For an arbitrary problem,

moreover, neither of these approaches is able to isolate the

whole solution set, if its dimension is one or higher.

Interval-based methods are also complete and general, and,

although they may eventually be slower, they present a num-

ber of advantages that make them a competitive alternative:

(1) Contrary to elimination methods, the equations are tackled

in their input form, thus avoiding the need of intuition-guided

symbolic reductions, (2)-they don not need to work on the

complex domain, (3) they are numerically stable, (4) they also

work if the dimension of the solution variety is greater than

zero, (5) they deal with variable bounds in a natural way,

and (6) they are simple to implement. These are mainly the

reasons that motivated the quest for the algorithm we present

here, which belongs to this third class.

Two main classes of interval-based methods have been

explored in the Robotics literature: those based on the interval

version of the Newton method (also known as the Hansen

algorithm) and those based on polytope approximations of the

solution set. To our knowledge, the first applications of the

Hansen algorithm in this field were due to Rao et al. [26]

and Didrit et al. [27], who respectively applied the interval

Newton method to the inverse kinematics of 6R manipula-

tors and the forward analysis of Stewart-Gough platforms.

Rather than plunging into specific mechanisms, Castellet and

Thomas then tackled general single-loop inverse kinematics

problems [28], showing that the Hansen algorithm can be

sped up if it is used in conjunction with other necessary

conditions drawn from the problem itself. Later on, successful

applications of the interval Newton method were also reported

by Merlet in singularity analysis and mechanism design of

parallel manipulators [29], [30]. Polytope-based techniques,

on the other hand, were developed in the early nineties by

Sherbrooke and Patrikalakis in the context of constraint-based

CAD [25]. These exploit the convex-hull and subdivision prop-

erties of Bernstein polynomials, which avoid the computation

of derivatives while maintaining the quadratic convergence of

the Hansen algorithm.

The method we present here can be seen as part of the

latter family. Like [25], we iteratively approximate the solution

space by a convex polytope, but this polytope is here derived

by simple, linear approximations of trivial functions, rather

than by resorting to the theory of Bernstein polynomials.

The result is a simpler, easier-to-implement algorithm, able to

compute complete discretizations of the configuration space in

shorter times. These discretizations are given in the form of

small boxes containing all points of this space, and they can be

refined to the desired accuracy. A precise map is then obtained,

where isolated boxes correspond to rigid configurations, sets of

connected boxes correspond to assembly modes with internal

degrees of freedom, and bifurcation points get easily detected.

The rest of the paper is organized as follows. Section II

shows how the position analysis of a loop linkage can be

formulated as a system of linear, parabolic and hyperbolic

equations. A new algorithm to solve this system is next pre-

sented in Section III, based on using polytope bounds of their

solution space, in a series of linear programs that iteratively

chop off regions containing no solution. Then, Section IV

provides the algorithm’s pseudocode, and Section V includes

several experiments illustrating its performance. The paper

concludes in Section VI summarizing the main contributions

and highlighting some points deserving further attention.

II. KINEMATIC LOOPS AS VECTOR EQUATIONS

This section will provide an unusual formulation of the

kinematic equations for a loop linkage. This formulation,

however, will turn out an ideal input for the root finding

strategy employed later on. For ease of explanation, we will

assume for the moment that the linkage contains a single loop

with n links, and that all joints are revolute pairs. Figure 1(a)

depicts one such loop, with n = 6 links. It arises, for example,

when solving the inverse kinematics of a 6R robot arm.

To start with, let us number the links and joints from 1 to

n, and define two unit vectors for each link: the vector di,

directed along the i-th joint, and the vector ai directed along

the normal line through joint axes i and i + 1. The vectors

are oriented so that they follow a unique circulating sense on

the loop, as shown in Figure 1(b). This setting corresponds

to the classic model by Denavit and Hartenberg, which views

the loop as an alternating sequence of joints and common

normals [31], where the shape of each link is defined by three

constant parameters:

- The link length ai, measuring the distance between the

joint i to joint i + 1 along their common normal.

- The link offset di, measuring the distance between

consecutive normals along joint i.
- The link twist αi, measuring the angle between di and

di+1.

A fourth variable parameter is further defined: the angle θi

between ai and ai+1, which fixes the orientation of link i with

respect to its predecessor link i − 1. Now, instead of setting

the standard loop closure condition that equates the product

of link-to-link transformations to the identity, we will employ

the following set of equivalent conditions. First, if (as said)

‖ai‖ = 1, ‖di‖ = 1, i = 1, . . . , n, (1)

then it must be
n∑

i=1

didi + aiai = 0, (2)

since the loop must be closed. Also, since ai is simultaneously

orthogonal to di and di+1, we must have

di × di+1 = sin(αi) · ai, i = 1, . . . , n, (3)

with dn+1 = d1. Finally, the fact that di forms an angle αi

with di+1 implies

di · di+1 = cos(αi), i = 1, . . . , n. (4)

Equations (1)-(4) express all geometric constraints on the loop

and, hence, their solutions provide all configurations it can

adopt. It is worth remarking here that, although they are non-

redundant, some of them can be simplified or eliminated,
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Fig. 1. A 6-link loop (a), and the vectors involved in its equations (b). Although for a better understanding the loop lines here follow the edges of a regular
prism, all orthogonality relationships among the depicted vectors will hold for a general loop.

taking into account that one of the links is fixed to the ground.

In any case, we observe that all equations are polynomial and,

if xi and xj refer to any two of their variables, the involved

monomials can only be of the form cx2
i , cxixj , or cxi, where

c refers to a constant value. In other words, they can only be

quadratic, bilinear, or linear terms. Let us define the changes

of variables qi = x2
i for each quadratic term, and bk = xixj

for each bilinear term. Clearly, by substituting the qi’s and

bk’s into Eqs. (1)-(4) above, the resulting expressions become

linear and we obtain a new system of equations of the form:

L(v) = 0, P(v) = 0, H(v) = 0, (5)

where:

- v = (x1, . . . , xvl
, q1, . . . , qvq

, b1, . . . , bvb
) is a tuple

including the original and newly defined variables,

- L(v) = (l1(v), . . . , lnl
(v)) is a block of linear func-

tions,

- P(v) = (p1(v), . . . , pnp
(v)) is a block of parabolic

functions of the form qi − x2
i , and

- H(v) = (h1(v), . . . , hnh
(v)) is a block of hyperbolic

functions of the form bk − xixj .

Hereafter, the xi’s will be refeered to as primary variables,

and the qi’s and bi’s as dummy ones.

Note that since the ai and di are unit vectors, the maximum

ranges for the xi’s are [−1, 1], for the qi’s are [0, 1], and for the

bi’s are [−1, 1]. Then, the search space B where the solutions

of System (5) must be sought for is the Cartesian product

of such ranges. In the text below, any subset of this space

defined by the Cartesian product of a number of intervals will

be referred to as a box, and we will write [xl
i, x

u
i ] to denote

the interval of a box along dimension i.
Finally, we mention that one can arrive at a similar system

if the linkage contains more than one kinematic loop, or if

it contains slider joints. In the former case, one can create a

bipartite graph G whose left and right vertex sets correspond to

the existing links and joints, respectively, and whose edge set

records all link-joint incidence pairs. It is well-known that by

gathering the loop equations for a cycle basis of G, one ends

up with a set of independent equations describing the valid

postures of the linkage. This changes the size of System (5)

but not its structure. Moreover, if slider joints are present, only

slight modifications must be added to the formulation. If joint

i is a slider, then θi is fixed and di varies, as link i can only

translate with respect to link i−1. The two facts can be readily

enforced using similar dot- and cross-product equations and,

again, these will only involve linear, bilinear and quadratic

terms.

III. SEARCH STRATEGY

The algorithm starts with the initial box B, and isolates

the valid configurations it contains by iterating over two oper-

ations, box shrinking and box splitting. Using box shrinking,

portions of B containing no solution are eliminated by narrow-

ing some of its defining intervals. This process is repeated until

either (1) the box is reduced to an empty set, in which case

it contains no solution, or (2) the box is “sufficiently” small,

in which case it is considered a solution box, or (3) the box

cannot be “significantly” reduced, in which case it is bisected

into two sub-boxes via box splitting—which simply divides

its largest interval at its midpoint.

Provided box shrinking is efficient enough, the third case

above is symptom that the box contains two or more solution

points, with some of them lying close to its walls. Thus, box

splitting allows separating such solutions. To converge to all

solutions, the whole process is then repeated for the newly

created sub-boxes, and for the sub-boxes recursively created

thereafter, until one ends up with a collection of solution boxes

whose sizes are under a specified size threshold, σ.

Before further precising this process, we will first see how

to eliminate portions of a box that cannot contain any solution.

Detailed pseudo-code of the whole strategy will be given later,

in Section IV below.

When reducing any box Bc ⊆ B note first that, since any

solution inside Bc must be in the linear variety L(v) = 0,

we may shrink Bc to the smallest possible box bounding the

portion of this variety falling inside Bc. The limits of this new

box along, say, dimension xi can be easily found by solving
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Fig. 2. (a) Shrinking Bc to fit the linear variety L(v) = 0. (b) Half-planes approximating the part of the parabola inside Bc. (c) Smallest box enclosing the
intersection of L(v) = 0 with the half-planes in (b).
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Fig. 3. The tetrahedron defined by the Pi’s is a convex bound of this surface
inside B′′

c .

the two linear programs

LP1: Minimize xi, subject to: L(v) = 0,v ∈ Bc,

LP2: Maximize xi, subject to: L(v) = 0,v ∈ Bc,

giving, respectively, the new lower and upper bounds for xi.

Figure 2-(a) illustrates the process on the xi-qi plane, in the

case that L(v) = 0 is a straight line. Note however that Bc can

be further reduced, as the parabolic and hyperbolic equations

must also be satisfied.

Regarding the parabolic equations, qi = x2
i , we incorporate

them into the previous linear programs as follows. The section

of the parabola lying inside the rectangle [xl
i, x

u
i ]× [ql

i, q
u
i ] is

bounded to lie in the shaded area between lines s and t in

Figure 2-(b). Line s is defined by the intersection points, Qi

and Pi, of the parabola with the box. Line, t is the tangent

to the parabola parallel to s. The two inequalities defining the

area between these lines can be added to LP1 and LP2, and

using them in conjunction with L(v) = 0 usually produces a

much larger reduction of Bc, as illustrated in Figure 2-(c). Also

half-planes got from the parabola tangents at points Pi and Qi

can be added to the linear programs to further constraint the

feasible solution set.

Regarding the hyperbolic equations, we linearize them as

follows. If we consider one of these equations, say bk = xixj ,

and we know that its variables can take values inside the ranges

xi ∈ [a, b], xj ∈ [c, d], and bk ∈ [e, f ], all we need is a

collection of half-planes tightly delimiting the set of points

that satisfy bk = xixj inside the box B′c = [a, b]×[c, d]×[e, f ].
Initially, the ranges of xi and xj can be adjusted so that they

are compatible with the range for bk yielding a new box B′′c =
[a′, b′]× [c′, d′]× [e, f ]. Consider the vertices of the rectangle

[a′, b′] × [c′, d′] and lift them vertically to the points P1, P2,

P3 and P4 on the hyperbolic paraboloid bk = xixj , as shown

in Figure 3. Using the fact that this is a doubly-ruled surface,

it is easy to see that the tetrahedron defined by P1, P2, P3

and P4 completely contains the portion of the surface inside

B′′c . Hence, to prune portions of a box that do not satisfy the

hyperbolic equations, one can simply introduce the half-planes

defining this tetrahedron into LP1 and LP2 above.

Note also that, altogether, the linear constraints for the

parabolic and hyperbolic equations define a convex polytope

bounding the solution space of System (5). The smaller Bc,

the tighter this polytope approximates the solution space or, in

other words, the smaller the error introduced in the parabola

and hyperbolic approximations. For small enough boxes, the

error will become negligible and, therefore, the algorithm will

converge to the solutions.

IV. PSEUDOCODE

Algorithm 1 gives the main loop of the process. It receives

as input the box B, the lists L, P, and H containing the

equations L(v) = 0, P(v) = 0, and H(v) = 0, and

two threshold parameters σ and ρ, and it returns as output

a list of solution boxes. The functions VOLUME(B) and

SIZE(B) compute the volume and the length of the longest

side of B, respectively. These and other low-level procedures

of straightforward implementation will be left unspecified in

the algorithms below.

Initially, two lists are set up in lines 1 and 2, an empty list

S of “solution boxes”, and a list P of “boxes to be processed”

containing B. A while loop is then executed until P gets

empty (lines 3-18), by iterating the following steps. Line 4

extracts one box from P . Lines 5-9 repeatedly reduce this

box as much as possible, via the SHRINK-BOX function, until

either the box is an empty set (IS-VOID(Bc) is true), or it



SOLVE-LINKAGE(B,L,P,H, σ, ρ)

1: S ← ∅
2: P ← {B}
3: while P 6= ∅ do

4: Bc ← EXTRACT(P )

5: repeat

6: Vp ← VOLUME(Bc)

7: SHRINK-BOX(Bc,L,P,H)

8: Vc ← VOLUME(Bc)

9: until IS-VOID(Bc) or SIZE(Bc) ≤ σ or Vc

Vp
> ρ

10: if not IS-VOID(Bc) then

11: if SIZE(Bc) ≤ σ then

12: S ← S ∪ {Bc}
13: else

14: SPLIT-BOX(Bc,B1,B2)

15: P ← P ∪ {B1,B2}
16: end if

17: end if

18: end while

19: return S

Algorithm 1: The top-level search scheme.

SHRINK-BOX(B,L,P,H)

1: T← L

2: for all equations qi = x2
i in P do

3: T← T∪{ One secant and three tangent lines bounding

feasible area of the equation for the ranges of qi, xi }
4: end for

5: for all equations bk = xixj in H do

6: T ← T ∪ { Four planes bounding the feasible area of

the equation for the ranges of bk, xi, xj }
7: end for

8: for each i ∈ {1, . . . , vl} do

9: xl
i ← min. xi subject to all eqs. in T and v ∈ B

10: xu
i ← max. xi subject to all eqs. in T and v ∈ B

11: end for

Algorithm 2: The SHRINK-BOX procedure.

cannot be significantly reduced (Vc/Vp > ρ), or it becomes

small enough (SIZE(B) ≤ σ). In this last case, the box is

considered a solution for the problem If a box is neither a

solution nor it is empty, lines 14 and 15 split it into two sub-

boxes and add them to P for further processing (line 15).

Notice that this algorithm implicitly explores a binary tree

of boxes, the internal nodes being boxes that have been split at

some time, and its leaves being either solution or empty boxes.

Solution boxes are collected in list S and returned as output in

line 19. Clearly, the tree may be explored in either depth-first

or breadth-first order, depending on whether line 15 inserts the

boxes at the head or tail of P , getting identical output in any

case.

The SHRINK-BOX procedure is sketched in Algorithm 2.

It takes as input the box B to shrink, and the lists L, P

and H. The procedure starts by gathering into a list T all

linear constraints in L (line 1), all half planes approximating

the parabolic equations in P (lines 2-4) and all half spaces

approximating the hyperbolic equations in H (lines 5-7). Then,

the procedure uses these constraints to reduce every dimension

of the box, solving the linear programs in lines 9 to 12, which

possibly give tighter bounds for the corresponding intervals.

Observe that the linear programs need only be solved for the

primary variables (x1, . . . , xvl
) and not for the dummy ones.

This largely reduces the cost of the process since the number

of primary variables is small with respect to the total number

of variables in the problem.

If System (5) has a finite number of isolated solutions,

the previous algorithm returns a collection of small boxes

containing them all, with each solution lying in one, and only

one box. If, on the contrary, the solution space is an algebraic

variety of dimension one or higher, the returned boxes will

form a discrete envelope of the variety. The accuracy of the

output can be adjusted at will by using the σ parameter, which

fixes an upper limit for the width of the widest interval on all

returned boxes.

V. EXPERIMENTS

We illustrate the performance of the algorithm in the three

test cases shown in Figure 4. The one on the left was used

by Manocha and Canny in [1] to test a general method for

the inverse kinematics of 6R manipulators. We use it to verify

the correctness of the presented system. Despite its efficiency,

Manocha and Canny’s method is not able to deal with solution

sets containing infinite points. To show the applicability of

our approach even to this case, we employ the example

in Figure 4-(b), a special 6R loop with a one-dimensional

configuration space. Another shortcoming of many position

analysis methods is their inability to deal with multiloop

mechanisms. The example if Figure 4-(c) will be use to show

our method’s performance in such cases. This linkage arises in

the bicyclohexane molecule and it is formed by two 6R loops

sharing two links and a common joint. With this example we

also emphasize the applications of the developed technique to

fields different from robotics. All tests are performed with

a C implementation, using the glpk simplex library [32],

and executed on a Pentium 4 at 2.6Ghz. Denvit-Hartenberg

parameters for the three examples are given in Table I, with

all angles given in radiants.

As shown in [1], the 6R loop of the first example has 16

solutions, the maximum number of configurations that such

a linkage can adopt [22]. The problem can be formulated as

described in Section II with 28 linear, 21 parabolic and 23

hyperbolic equations, involving 23 primary variables and 44

dummies ones. By setting the parameters σ = 10−4 and ρ =
0.95, we isolate the 16 solutions in Figure 5 in about 100

seconds. In this case, the system processes 47 boxes 16 of

which contain a solution, 8 are found to be empty, and 23 are

split for recursive processing. The number of empty boxes is

pretty small, taking into account the total amount of processed

boxes and solutions, indicating that the box-shrinking strategy

is efficient. Note that, ideally, by iterating box-shrinking, one
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Fig. 4. (a) A 6R rigid loop solved in [1] that has 16 isolated solutions, (b) a 6R mobile loop with a one-dimensional configuration space, and (c) the
bicyclohexane molecule, a mobile linkage with two intermingled 6R loops.

Parameter Rigid 6R Mobile 6R Bicyclohexane

a1 0.3 0.5 0
a2 1 0 0
a3 0 0 0
a4 1.5 0.5 0
a5 0 0 0
a6 1.1353 0 0
d1 0.0106 1 1.526
d2 0 1 1.526
d3 0.2 1 1.526
d4 0 1 1.526
d5 0 1 1.526
d6 0.1049 1 1.526
α1 π/2 π/3 1.23
α2 0.0175 π/3 1.23
α3 π/2 π/3 1.23
α4 0.0175 π/3 1.23
α5 π/2 π/3 1.23
α6 1.4716 π/3 1.23

TABLE I

DENVIT-HARTENBERG PARAMETERS OF THE THREE TEST CASES.

should end up with a box with solutions lying on its walls

and, therefore, splitting a box at such point should always

separate portions of the search space containing solutions. In

other words, the ideal algorithm should not generate empty

boxes.

Choosing the DH parameters in the third column of Table I,

a general 6R loop becomes an overconstrained mechanism.

While existing methods like [1] can not deal with this de-

generate case, the proposed procedure is immune to such

situations and obtains a complete box discretization of the

whole configuration space, as shown in Figure 6-left. For each

box, we can recover the linkage configuration as shown in

Figure 6-right. This mechanism presents two bifurcation points

that are clearly identifiable in the figure. The problem has been

formulated with 22 primary and 29 dummy variables. With

σ = 0.1 and ρ = 0.95, we obtain the shown 387 boxes in 180

seconds, after processing 833 boxes, 30 of which were found

to be empty.

A model for the third example is given in Figure 7. It

has two loops and each one of them is a specialization of

Fig. 5. The sixteen configurations of the 6R loop shown in Figure4-(a).

the one in Figure 1 with the parameters given in the fourth

column of Table I. The two loops are mutally constrained

by fixing the angles between vectors d2, d
′

2 and d6, d
′

6 to

β = 1.91. In principle, such a linkage should be rigid, but its

symmetries allow a self-motion with one-degree of freedom.

Actually, this motion has two disconnected paths as can be

appreciated in Figure 8. Interestingly enough, it additionally

has fifteen isolated solutions out of those paths, corresponding

to rigid assembly modes of the molecule. These are shown

as red boxes in Figure 8. The size of these boxes has been

magnified to make them visible. Using σ = 0.1 and ρ = 0.95,

the solution manifold gets discretized into 248 boxes, after

processing 663 boxes in 650 seconds. Only 84 boxes were



Fig. 6. Left: The one-dimensional configuration space of the 6R mobile loop in Figure4-(b). Right: Configurations corresponding to the boxes on the left.
The depicted configuration corresponds to the center of each box.
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Fig. 7. Vector model of bicyclohexane’s linkage.

found empty along the way.

On the three test cases, the presented method is more than

one order of magnitude faster than general polytope methods

like [25], whose implementation is notably intricated.

Finally, a note is in order regading the method’s convergence

rate. The asymptotic performance of a root finding algorithm

is normally evaluated by examining its convergence order. An

algorithm is said to exhibit a convergence of order r if there

exists a constant k ∈ (0, 1), such that

d(xi+1,x
∗) ≤ k · d(xi,x

∗)r,

where xi and xi+1 are estimations of the exact root x
∗ at

iterations i and i + 1, and d(xi,x
∗) and d(xi+1,x

∗) indicate

their distance to x
∗. The algorithm is said to exhibit linear

or quadratic convergence when r = 1 or r = 2, respectively.

The previous definition is valid for algorithms converging to

a single root, and adapting it to our case requires defining

d(xi,x
∗) and the scope of an iteration. To this end, note that

the diagonal of a box is an upper bound of the distance from

any point inside that box, to any root in it. Thus, assuming that

the search tree explored by Algorithm 1 is traversed in breadth-

first order, it seems reasonable to define d(xi,x
∗) as the

longest diagonal among all boxes waiting to be processed in

the list P . An iteration will then be defined as the application

of lines 4-14 to all boxes in the ith level of such tree.

Fig. 8. The configuration space of the bicyclohexane has two disconnected
one-dimensional components and fifteen isolated solutions (in red).

Measuring the performance in this way, we have empirically

found that the algorithm converges quadratically to the roots,

if these are a finite number of isolated points, or linearly to

them, if they form a one-dimensional algebraic variety. In the

former case, the convergence order is the same as that of fast

single-root-finding procedures, like e.g. the Newton-Raphson

method. Although the performance seems worse in the latter

case, we should mention that a linear rate is the best one

could expect. Think for example of the behavior of an optimal

shrink-and-split algorithm discretizing a line (the simplest one-

dimensional variety one could consider). At each iteration, any

box Bc adjusted to the line would be split into two half-boxes,

and then, ideally, these would be shrunk to fit the line again.

Note that, in such perfect behavior, d(xi,x
∗) would decrease

by half at each iteration, yielding the linear convergence order

we observe.



VI. CONCLUSIONS

We have presented a complete method able to give box

approximations of the configuration space of arbitrary loop

linkages with revolute and slider joints. The method is general,

in the sense that it can manage any number of links, jointed to

form kinematic loops of arbitrary topology. It is also complete,

in the sense that every solution point will be contained in

one of the returned boxes. Moreover, in all experiments done

so far the algorithm was also correct, in the sense that all

output boxes contained at least one solution point. Although

the latter property still lacks a formal proof, returning boxes

with no solution seems rather improbable due to the fact

that the linearization of parabolic and hyperbolic equations

introduce errors smaller than the size of the considered boxes.

Moreover, the fact that all equations are simultaneously taken

into account during box reduction (whether directly or in

a linearized form) palliates the so-called cluster effect, a

known problem of bisection-based techniques of this kind [33],

whereby each solution is obtained as a compact cluster of

boxes instead of a single box containing it. In the experiments

performed so far, we never encountered such spurious output.

A main contribution with respect to previous work is the

method’s ability to deal with configuration spaces of general

structure. This is accomplished by maintaining a collection

of boxes that form a tight envelope of such spaces, which

can be refined to the desired accuracy in a multi-resolutive

fashion. Empirical tests show that the method is quadratically

convergent to all roots if these are isolated points, and linearly

convergent to them if these form one-dimensional connected

components. Although the method’s performance is notable

for a general technique of this kind, an extensive study should

be endeavored to determine how it scales with the complexity

of the tackled linkages, to compare it with other approaches,

and to formally proof the algorithm’s properties.
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