
Appearance-based Concurrent Map Building

and Localization

J.M. Porta ∗ B.J.A. Kröse
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Abstract

Appearance-based autonomous robot localization has some advantages over landmark-
based localization as, for instance, the simplicity of the processes applied to the
sensor readings. The main drawback of appearance-based localization is that it re-
quires a map including images taken at known positions in the environment where
the robot is expected to move. In this paper, we describe a concurrent map-building
and localization (CML) system developed within the appearance-base robot local-
ization paradigm. This allow us to combine the good features of appearance-base
localization without having to deal with its inconveniences.

Key words: Appearance-based localization, concurrent map building and
localization.

1 Introduction

Robot localization methods can be divided in two families: methods based on
landmark extraction and tracking [8,14,15], and methods based on an appear-
ance modeling of the environment [6,12,13].

A comparison between the two families of localization methods using vision as
sensory input can be found in [20], showing that appearance-based methods
are more robust to noise, certain type of occlusions, and changes in illumina-
tion (when a edge detector is used to pre-process the images) than landmark
based-methods. The main drawback of appearance-based methods is that they
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rely on a data base of position-observations pairs (called the appearance-map)
and, therefore, localization in only possible in previously mapped areas. The
construction of an appearance map is a supervised process that can be quite
time-consuming and that is only valid as far as no important modifications of
the environment occur. While much work has been done on Concurrent Map-
ping and Localization (CML) using landmarks [7,9,22], this is not the case
within the appearance-based approach. Recent work in this line [19] does not
exploit all the potential of the appearance based framework as, for instance,
the ability to perform global localization (i.e., the localization without any
prior information on the robot’s position).

In this paper, we replace the supervised map of the environment used in
appearance-based localization by an approximation to it autonomously ob-
tained by the robot. The basic idea we exploit is that, if the robot re-visits an
already explored area, it can use the information previously stored to reduce
the uncertainty on its position. Additionally, the improvements on the robot’s
position can be back-propagated to map points stored in previous time slices
using trajectory reconstruction techniques. The result is a correction of both
the robot’s position and the map and, thus, we achieve the objective of con-
currently localize and build a correct map of the environment. Similar ideas
are exploited in map building based on cyclic trajectories [2,10]. However,
these works aim at building a geometric map of the environment and not an
appearance-based one.

In next sections, we first describe how to estimate the position of the robot
(assuming we have a map). After that, we describe how to extract features
from the input images and how to on-line approximate the feature-based map
necessary for localization. Finally, we show the results obtained with the new
CML system, and we summarize our work and we extract some conclusions
out of it.

2 Robot Position Estimation

The probabilistic localization methods aim at improving the estimation of the
pose (position and orientation) of the robot at time t, xt, taking into account
the movements of the robot {u1, . . . , ut} and the observations of the environ-
ment taken by the robot {y1, . . . , yt} up to that time 1 . The Markov assump-
tion states that the robot’s position can be updated from the previous state
probability p(xt−1), the last executed action ut, and the current observation

1 In our notation, the Markov process goes through the following sequence x0
u1−→

(x1, y1)
u2−→ . . .

ut−→ (xt, yt).
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yt. Applying Bayes, p(xt|ut, yt) reads to

p(xt|ut, yt) ∝ p(yt|xt) p(xt|ut), (1)

where the probability p(xt|ut) can be computed propagating from p(xt−1|ut−1, yt−1)
using the action model

p(xt|ut) =
∫

p(xt|ut, xt−1) p(xt−1|ut−1, yt−1) dxt−1. (2)

Equations 1 and 2 define a recursive system to estimate the position of the
robot.

To compute the integral in equation 2 we have to take some assumption on the
representation of p(xt−1|ut−1, yt−1). Sometimes this probability is represented
as a Gaussian[14], but is is a rather restrictive assumption on the shape of
p(xt−1|ut−1, yt−1). When a probabilistic occupancy grid [3,22] or a particle
filter [17,24] is used, we can represent probabilities with any shape. However,
occupancy grids and particle filters are computationally expensive in memory
and in execution time per time slice.

In our work, we use a Gaussian Mixture (GM) Xt with parameters {xi
t, Σ

i
t, w

i
t},

i ∈ [1, N ] to represent the position of the robot since, as noted by many
authors [1,5,11] GM provide a good trade off between flexibility and efficiency.
Thus

p(xt|ut, yt) ∝
N

∑

i=1

wi
t φ(xt|x

i
t, Σ

i
t),

with φ(xt|x
i
t, Σ

i
t) a Gaussian centered at xi

t and with covariance matrix Σi
t.

The weight wi
t (0 < wi

t ≤ 1) provides information on the certainty of the
hypothesis represented by the corresponding Gaussian.

The motion of the robot is modeled as xt = f(xt−1, ut, vt), with vt a Gaussian
noise with zero mean and covariance Q. Thus, using a linear approximation,
we can express p(xt|ut) in equation 2 as a GM Xut

= {xi
ut

, Σi
ut

, wi
t}, i ∈ [1, N ]

applying f to the elements on Xt−1

xi
ut

= f(xi
t−1, ut),

Σi
ut

= FΣi
t−1F

> + GQG>, (3)

with F the Jacobian of f with respect to xi
t−1, and G the Jacobian of f with

respect to vt−1.

After we have p(xt|ut), we need to integrate the information provided by the
sensor readings (see equation 1). At this point, we assume we have an ap-
pearance map of the environment from which we can define p(yt|xt). Using
the reasoning presented by Vlassis et al in [24]-sec 5.2, this probability can be
represented using a GM with parameters Xyt

= {(xj
yt

, Σj
yt

, wj
yt

)}, j ∈ [1, N ′].
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In the next section, we describe how to create and update the set Xyt
. If Xyt

has no components (N ′ = 0), the estimation on the robot’s position obtained
applying equation 3 can not be improved and we have Xt = Xut

. If N ′ > 0,
we have to fuse the Gaussian functions in Xut

with those in Xyt
. The direct

application of equation 1 amounts to multiply each one of the elements in Xut

with those in Xyt
. This would produce a quadratic (N × N ′) number of hy-

potheses. Too keep the number of hypotheses under a reasonable limit, we will
only associate elements of Xut

and Xyt
that are alternative approximations of

the same positioning hypothesis. This arises the problem of data association:
to determine which elements on Xyt

and on Xut
to be combined. We perform

the data association using an innovation-based criterion. For each couple (i, j)
with (xi

ut
, Σi

ut
, wi

t) ∈ Xut
and (xj

yt
, Σj

yt
, wj

yt
) ∈ Xyt

we compute the innovation
as

υi,j = xi
ut
− xj

yt

Si,j = Σi
ut

+ Σj
yt

,

and we assume that hypotheses on the robot position i and sensor reading j
match if the following condition holds

υi,jS
−1
i,j υ>

i,j ≤ γ, (4)

with γ a user-defined threshold.

If there is a match, the update of positioning hypothesis i with the sensor
information j is done using the Covariance Intersection rule [23], since it
permits estimation even with unmodeled correlations in the sensor readings.
This rule updates the covariance matrix and the average as

(Σi
t)

−1 = (1− ω)(Σi
ut

)−1 + ω(Σj
yt

)−1

xi
t = Σi

t[(1− ω)(Σi
ut

)−1xi
ut

+ ω(Σj
yt

)−1xj
yt

], (5)

with ω = |Σi
ut
|/(|Σi

ut
|+ |Σj

yt
|).

Hypotheses on the state not matched with any Gaussian on Xyt
are just keep

without any modification, but the weight update described below. Sensor com-
ponents not matched with any state hypothesis have to be introduced as new
hypotheses on Xt. This allow us to deal with the kidnap problem.

The confidence on each hypothesis in Xt is represented by the corresponding
weight wi

t. Following [21], we increase wi
t for the hypothesis that are properly

matched in the data association process

wi
t+1 = wi

t + α(1− wi
t), (6)

with α a learning rate in the range [0, 1]. For the not matched hypothesis, the
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confidence is decreased as

wi
t+1 = (1− α)wi

t. (7)

Hypotheses with a weight below a given threshold (0.01 in our test) are re-
moved from Xt.

3 Image Feature Extraction

Our sensory input for localization are images taken by the camera mounted
on the robot. A problem with images is their high dimensionality, resulting in
large storage requirements and high computational demands. For this reason,
in appearance-base modeling [16] images z are compressed to few features y
using a linear projection, y = W z. The projection matrix W is obtained by
Principal Component Analysis on a supervised training set. However, in our
case, we don’t have a training set. For this reason, we use a standard linear
compression technique: the discrete cosine transform (DCT) [4,18]. We select
this transform since, PCA on natural images approaches the discrete cosine
transform in the limit. The DCT computes features using a d× n projection
matrix W defined as

Wj,k = zk cos
(

π

n
j(k − 1/2)

)

(8)

with j the number of the feature to be extracted, zk the k-th pixel of image
z (considering the image as a vector) and n the total number of pixels in the
image. For a given image we compute a set of d features (d is typically around
10).

4 Environment Mapping

The manifold of features y can be seen as a function of the pose of the robot
x, y = g(x). The objective of a appearance-based mapping is to approximate
g−1 since this gives us information about the possible positions of the robot
given a set of features.

Using the localization system introduced previous section, at a given time,
we have a pair (Xt, yt) with yt a set of features and Xt the estimation of the
position of the robot. We can use the sequence of such pairs obtained as the
robot moves as a first approximation to the map needed for localization. Thus,
our map can be initially defined as M = {(Xyt

, yt)}, with Xyt
= Xt.
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As explained in Section 2, when the robot re-observes a given set of features yt,
we can use Xyt

to improve the location of the robot. Due to noise a given ob-
servation is never exactly re-observed. So, we considerer that two observations
y and y′ are equivalent if

‖y − y′‖ < δ. (9)

Thus, if y (±δ) is re-observed, we can use an old estimation on the robot’s
position to improve the current one. However, we can also use the information
the other way around, we can improve Xyt

using the additional information
provided by the current Xut

. What we need to do is to introduce new infor-
mation into a given GM. Therefore, we can improve Xyt

using the procedure
described in Section 2, but with the roles swapped: in previous section we up-
date the position of the robot using the sensor information and now we adjust
the map using the information provided by the position of the robot. So, we
have to swap Xut

with Xyt
, xut

with xyt
, and i with j. The only difference is

that we assume the environment to be static and, thus Xyt
is not updated by

any action model.

At a given moment, the robot is at a single position. So, when the state Xut

includes more than one hypothesis, we are uncertain about the robot’s loca-
tion and, consequently, any map update using Xut

will include incorrect map
modifications that we will need to undo later on. To avoid this problem, we use
a conservative strategy in the map update: when Xut

is not a single hypothesis
(i.e., a single Gaussian) no map update is done. If Xut

is a set of Gaussian
functions (or a uniform distribution) and, due to the state update (equation 5)
or the weight update (equation 7), it becomes a single Gaussian, we use the
path followed by the robot and the backward action model to add new points
to the map corresponding to the time slices where the robot was unsure about
its location (and that now we now can unambiguously determine). Addition-
ally, if Xt is a single Gaussian and the state update results in a reduction of
its covariance, we backpropagate this error reduction to previous map points.
This backpropagation is performed applying the action model back along the
path followed by the robot and using the normal state update procedure, while
the update reduces the covariance of the map points. The result of these two
backpropagation process is to add new points to the map (i.e., to extend the
map) and to improve the estimation of previously stored map points (i.e., to
improve the quality of the map).

The mapping strategy just outlined allow us to build an appearance-based map
of a given environment along the paths followed by the robot. When the map
M is empty, we need to now the initial position of the robot, but when M has
some elements, global localization is possible. To perform global localization
we have to initialize the system with X0 containing a uniform distribution. As
soon as the robot observes features already stored in the map (i.e., it visits an
already explored area) new hypotheses are added to Xt using the data stored
in the corresponding map points. Eventually, one of these new hypotheses
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Multi Hypotheses CML(M):
Input: M, the map.

If M is empty X ← {(x = 0, Σ = 0, w = 1)}.
else X ← Uniform distribution.

Do forever:
Update X according to the action model (Eqs. 3).
Get an image z.
Compute the features y of z using the DCT (Eq. 8).
(y, Y )← arg min∀(y′,Y ′)∈M ‖y − y′‖

if ‖y − y′‖ > δ then
M ←M ∪ {X, y}

else
Associate elements in X and Y (Eq. 4).
Update X:

For the associated elements use Eqs. 5, 6.
For the non-associated decrease weight (Eq. 7).
Remove elements in X with too low weight.

if X is a single Gaussian (x)
if x associated with y ∈ Y

Update y using Eqs. 5, 6.
else

Add x to Y .
Decrease weight for y′ ∈ Y, y′ 6= y (Eq. 7).
Remove elements in Y with too low weight.

Fig. 1. The multi hypothesis tracking, appearance-based CML algorithm.

will becomes relevant enough to be considered as the correct position of the
robot. At this point the rest of tentative hypothesis are removed, and the
new information on the robot position is backpropagated adding points to the
map.

Figure 1 summarizes the CML algorithm we introduce in this paper.

5 Experiments and Results

We first tested the proposed CML system mapping a corridor 25 meters long.
We drive the robot using a joystick all along the corridor and back to the
origin. Figure 2-A shows the path followed by the robot according to odomet-
ric information. As we can see there is a large error in the final position of
the robot (about 40 cm in the X axis, 300 cm in the Y, and 20 degrees in
orientation). In the figure, each one of the arrows correspond to a robot’s pose
where a map point is stored.
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Fig. 2. Path of the robot in a 25 meter corridor. A- Using only odometry, B- The
map is corrected when the loop is closed C- Adding new portions the map (to do
that the robot performs global localization).

Our CML system detects that the final point in the trajectory is close to the
initial one (see equation 9). This coincidence allows a drastic reduction on the
uncertainty on the robot’s location and this reduction can be back-propagated
improving the quality of the map. Figure 2-B show the corrected map points
after the loop is closed. We can see that the correction affects mainly to the
points close to the end of the trajectory, where the back-propagated informa-
tion is more certainty that the previously stored one: close to the beginning of
the trajectory the initial information is more reliable than the back-propagated
one and the map points are not modified. In Figure 2-B, the light grey arrows
correspond to poses where there is perceptual aliasing: the same set of features
are observed from all the positions plotted in red. Perceptual aliasing is one
of the reasons why we need to keep track of many hypotheses simultaneously.

Another situation where multiple hypothesis should be considered is when
performing global localization: when the robot is started at a unknown posi-
tion (but in a previously mapped area) or after a kidnap. In the experiment
reported in Figure 2-C, we started the robot in a non-mapped area and we
drive it to the beginning of the corridor previously mapped. In this case, the
robot operates with a uniform distribution about its position. When consis-
tent matches with already existing map points occur, the robot determines its
position, the uniform distribution is replaced by a Gaussian defined from the
map and new map points along the robot path are added.

Next experiment was aimed to test the performance of the CML system in
front of large errors in odometry, We manually drive the robot along a closed
circuit, starting the robot at O = (0, 0) pointing to the X positive axis (see
Figure 3-left). The first loop is used to initialize the map. In the second itera-
tion, an large error in odometry was artificially induced by slightly lifting and
rotating the robot clockwise when it is at position D = (0, 0.75). This makes
the information provided by odometry invalid and the position of the robot
must be estimated by exploiting the map built in the first loop. Figure 3-right
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Fig. 4. Error in localization per time slice when the robot is kidnapped at t = 50.

shows the path of the robot according to odometry (dotted line) and according
to our localization method (solid line). After the introduction of the odome-
try error at point D, matches of the images taken by the robot and those in
the map, result in the introduction of a new hypothesis on the robot’s posi-
tion. This new hypothesis is reinforced as the robot gets more images while
the weight of the hypothesis supported by odometry slowly decreases (equa-
tion 7). At time t, the odometry related hypothesis is finally abandoned and
the one supported by the map becomes the estimation on the robot’s position.

In the last experiment, we tested the ability of our system to deal with the
kidnap problem, even while the map is in early phases of its construction. We
move the robot in the circuit of Figure 3-left. At the first loop, at position A
the robot is kidnapped: lifted and displaced to position B and rotated 180◦.
Thus, according to odometry the robot moves from A to C while it is actually
is moving from B to O. Due to the kidnap observations initially assigned to
points in the path from A to C are actually occurring in the path from B to O.
When the robot gets to O a new hypothesis (the correct one) is introduced into
the state. This new hypothesis is reinforced by the observations and, after few
time slices, it becomes the most relevant one, the wrong hypothesis is removed
and, in the following iterations over the circuit, the map is corrected. We can
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use an example to show how the map correction works. Initially, the incorrect
association {(x1, Σ1, w1 = 1), y} is stored in the map. In the second loop, this
map point is updated to {(x1, Σ1, w1 = 1), (x2, Σ2, w2 = 1), y}. In the following
iterations, the weight of the association (x1, y) decreases since it is not observed
again while the correct association (x2, y) is reinforced. After few loops, the
association (x1, y) is eventually removed from the map. Figure 4 shows the
error in localization as the robot moves around the circuit. The large errors at
time slices 40 − 90 are caused by the initial kidnap but, as the robot gets to
O again, the error is canceled and is maintained low. Every loop around the
circuit takes 100 time slices, but the first one that is sorter due to the kidnap.

6 Discussion and Future Work

We have introduced a system that is able to simultaneously build an appearance-
map of the environment and to use this map, still under construction, to im-
prove the localization of the robot. The on-line construction and update of the
map allow us to overcome the major hurdles of traditional appearance-based
localization. First, the robot can operate in previously unknown areas. Second,
we can deal with changes in the environment: new observations obtained at
already explored positions are added to the map, the old observations at those
position are not used any more and they are slowly forgotten. Finally, the way
in which the map is built guarantees a uniform sampling of the feature space
and not of the geometric space, as it happens in normal appearance-based
localization. Sampling uniformly the feature space is essential for achieving a
good localization since the sensor model is based on the similarities (i.e., the
distances) in that space.

An implicit assumption in our mapping strategy is that the robot moves repet-
itively through the same areas/paths. However, this is a quite reasonable as-
sumption for service robots moving in relatively small offices or houses, that
are the kind of environments in which we plan to use our system.

Observe that the proposed CML approach does not provides an exact position
for the robot, but an approximation to it. However, this kind of rough infor-
mation on the robot position is enough for most tasks, assuming that the low
level behaviors of the robot controller are able to deal with local aspects of
the environment (obstacles, doors, etc). Due to the way in which we define the
map, the map error will be small close to the areas where the map is started
and growing for points far away from the origin. Actually, the error for a given
map point p is is lower bounded by the error in odometry for a direct displace-
ment from the origin of the map O to p. As a reference, our Nomad Scout
robot can map an area of 20×20 meters with an accuracy below 1 meter. Since
the error in odometry limits the area that we can map with a given accuracy,
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we would like to complement our localization system with additional odomet-
ric sensors (accelerometers, vision-based motion detection, etc) to determine
more accurately the relative displacements of the robot. Another solution to
enlarge the mapped area is to perform the CML in contiguous areas and, then,
integrate the resulting sub-maps.
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