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Abstract

The conformational space of a exible molecular loop include s the set of conformations
ful lling the geometric loop-closure constraints and its e nergy landscape can be seen as
a scalar eld de ned on this implicit set. Higher-dimension al continuation tools, recently
developed in Dynamical Systems and also applied to Robotics, provide e cient algorithms
to trace out implicitly de ned sets. This paper describes th ese tools and applies them to
obtain full descriptions of the energy landscapes of short molecular loops that, otherwise,
can only be partially explored, mainly via sampling. Moreover , to deal with larger loops, this
paper exploits the higher-dimensional continuation tools t o nd local minima and minimum
energy transition paths between them, without deviating fro m the loop-closure constraints.
The proposed techniques are applied to previously studied molecules revealing the intricate
structure of their energy landscapes.

Keywords: Molecular loop modeling, Energy landscapes, Di erential g eometry, Higher-dimensional
continuation, Manifolds, Bifurcations.

This paper introduces the use of higher-dimensional contination tools to explore the
energy landscapes of the implicitly-de ned conformationd spaces of exible molecular
loops. These tools produce an atlas composed by coordinatetharts that parametrize
the conformational space. The atlas captures the structureof this space, which
determines the motion of the loop and the transition paths beéween conformations,
something that is hard to obtain using existing approaches.




1 Introduction

In Biochemistry, the loop modeling problem consist in detemining the energetically favorable
conformations of a molecular chain that ful Il a set of geomdric constraints on its extremes. This
problem appears in many relevant situations such as when detmining the valid conformations
of cyclic molecules, when analyzing the movements of an atorohain with xed ends, or when
trying to complete the missing fragments in protein modeling [26,[62,1[51[55,°36]. In general,
the loops are not rigid, but exible, since they can undergo nternal motions. Actually, the
function of many biomolecules depends on this exibility. Unfortunately, the internal motions
induce noisy data when trying to characterize the loops usig X-ray crystallography and similar
techniques. Therefore, loops are typically modeled usingamnputational methods.

Approaches focusing either on the energetic or on the geonrit aspects of the loop model-
ing problem provide complementary insights for such a cha#nging problem. Geometry-based
approaches typically use coarse-grained representationsf the problem to provide information
about the coordinated motions of the loop in idealized or aveage cases, an aspect that is hard
to apprehend using energy-based techniques. The mainstreaof geometry-based approaches is
based on sampling the set of valid conformations implicitlygiven by the loop-closure constraints.
Actually, the situation where a solution set is implicitly d e ned by some constraints appears in
many elds and, formally, such set forms a variety, possiblyinvolving several manifolds. This
fact and its possible e ects on the algorithms for computational chemistry have been largely dis-
regarded until recent works [6,/39]. The immediate consequee is that since the implicit variety
is usually intricate and non-parametric, sampling methodshave di culties in fully covering it.
Moreover, a collection of samples does not provide direct fiormation about the structure of the
variety, which is fundamental to determine the likely transitions between conformations. For
instance, conformations with similar potential energy andlow root mean square distance can be
actually far away when moving on the variety and, thus, the transition between them can be
unlikely, despite its apparent proximity.

From Di erential Geometry, it is well known that an implicit variety can be described by
an atlas containing a collection of charts, each chart proviling a local parametrization of the
variety [L9]. Higher-dimensional continuation techniques provide tools to generate the atlas of the
compact subset of a variety reachable from a given point. Thé paper applies recently developed
higher-dimensional continuation techniques to describelte conformational space of molecules (or
fragments of molecules) de ning one or more loops. For low dhensional problems, we describe
a systematic procedure to de ne an atlas that can be used to dsnate the energy landscape
readily identifying all the minima and the valid transition paths between them. This procedure
can address problems with moderate dimensions by incorpotimg additional constraints like the
ones derived from the Ramachandran plots or from the steric lashes. For larger dimensional
problems, the continuation tools can be used to enhance theompleteness and the e ciency of
existing local exploration techniques. The proposed proatures add new tools to the arsenal of
methods for molecular loop analysis that complement existig techniques, with the distinctive
feature that the atlas directly reveals the actual underlying structure of the conformation space.

The rest of this paper is organized as follows. Sectiol 2 chacterizes the proposed contribu-
tions in the context of existing work. Then, Section[3 outlines a technique to built an atlas over
an implicit set that is mainly adequate to describe short logs or strictly constrained problems.
Section[2 describes the extensions of this technique to dealith higher-dimensional solution
sets, and Sectior b applies the proposed methods to severalomolecules. Finally, Section[6
summarizes the contributions and limitations of the proposed approach.



2 Related work

The loop modeling problem has been studied in computationathemistry at least from the 60s[[30],
specially in the constext of protein completion. Next, we gve a brief review of the techniques
that have been used to address this problem and that are relad with the approach proposed
herein. For a more detailed survey on this subject we refer ta reader to [56].

The loop closure problem can be formalized as a search proloteand, thus, existing methods
can be analyzed considering three key aspects: the represation used for the search space, the
function used to guide the search, and the technique used toxplore the search space.

The most popular representation of the search space is prolady the one that encodes the 3D
coordinates for each atom, but other representations are psible [12] such as the one using dis-
tances between atoms, or the one using the internal coordirias, which only considers the dihedral
angles. This last represention relies on the rigid geometrjypothesis [26]44[25] in which bonds
lengths and angles are xed to their equilibrium values. Eat representation has its advantages
and drawbacks. The 3D coordinates allow for a detailed reprgentation of the conformations,
but they are redundant and prone to abrupt changes in the potatial energy. In contrast, the
dihedral angle representation is signi cantly more compat, and factors out high-frequency uc-
tuations of the potential energy due to small-amplitude atom vibrations, concentrating on the
uctuations caused by the coordinated motion of atoms.

As mentioned, in problems involving loops, the search shodl focus on the energetically and
geometrically valid conformations. Since the energy someaw accounts for the geometry too,
some methods guide the search considering only energeticpests. In contrast, other methods
focus rst on the geometric aspects of the problem, to avoid onsidering conformations that are
for sure invalid. Di erent representations t with particu lar functions to guide the search. For
instance, atom-based representations are more adequaterfall-atom potential energy functions
and dihedral angle representations are typically preferrd for geometric-based approaches.

Finally, both the guiding function and the representation have in uence in the choice of the
technique used to explore the loop conformational space. Fdnstance, in the context of energy-
guided approaches, close-and-relax[66] or Molecular Dymaics methods [7,[61] rely on atom-
based representation, but Monte Carlo methods[[54] use eitr atom-based [[8] or dihedral angle
representations[[10[-3I7]. The later is used, for instancenithe concerted motion approaches where
the Jacobian of the geometric conditions plays a central ra@ in the transformation necessary to
evaluate the Metropolis acceptance criterion[[1B]. Dihedal angle representations are also used
in systematic searches[|2, 42]. These methods can easily arporate additional constraints [48]
and provide exhaustive information on the conformational gace.

In contrast to the diversity of representations used in the eergy-guided methods, geometric-
guided approaches typically rely on the dihedral angle repesentation. Some of these approaches
exploit the parallelism between molecules and robots. In tis context, closed-form inverse kine-
matics have been applied to this problem[[26, 38, 15]. Howevgthese techniques are limited to a
single loops with at most six degrees of freedom, and they hawproblems at singularities [41]. To
address problems with more degrees of freedom, we can resdot numerical techniques like the
random tweak [22] or the Jacobian pseudo-inverse method [h%oth using the Jacobian and, thus,
also with problems at singularities. An alternative is the cyclic coordinate descent method[[9],
which is not a ected by them. Although these techniques can e iterated, they are designed to
obtain one solution at a time. Numerical methods able to ischte the whole conformational space
and that are not a ected by singularities also exist [4€]. Finally, problems with more degrees
of freedom can also be addressed with local perturbation témiques [58,35], with approaches
where some of the variables are sampled and the rest is solveth inverse kinematics [15/14] or
combining inverse kinematics, fragment assembly, and lodaptimization methods [26, [3€].



Following the previous review, we can say that the technique presented in this paper repre-
sents the loop closure problem using dihedral angles, and #t they are essentially geometric. For
strictly constrained problems, we present a systematic métod based on higher-dimensional con-
tinuation. This technique continues the research line initated in [46] which aims at developing
tools to isolate the full conformational space of moleculaloops. However, the method presented
in [46] is complete, while the method introduded here de nesan atlas of the connected component
of the conformational space reachable from a given point. Tis sacri ce in completeness, though,
results in a signi cant increment in computational e cienc y. Thus, whereas some of the existing
methods are local in nature [7[61], the proposed procedurerpvides a global description (of part)
of the loop-closure variety and, thus, it gives detailled irformation on its structure, something
only o ered by few of the existing methods [55,/ T3 6[°39]. Ths information is obtained directly
from the geometric equations, without the need of generatig dense sets of points from thent]6],
with the consequent gain in e ciency. The di erence of the proposed approach with respect to
other systematic methods using dihedral angles 2, 42] is #t the approach introduced here does
not explore the space of dihedral angles, but directly the vaety of loop-closed conformations.
This di erence allows us to consider more complex problemssince we exploit the fact that the
geometric constraints reduce the dimensionality of the se@h space. Like existing systematic ap-
proaches [[2]4R], though, the proposed technique can incoopate additional constraints so that
the exploration is focused on the biologically feasible cdiormations given by the Ramachandra
plots [48], or by the steric-clashes, both aspects di cult to incorporate in existing approaches
such as the ones relying on closed-form inverse kinematicgq, [38,[15]. A search even more fo-
cused on the feasible conformations would require the use dhatabase [Z1] or fragment assembly
methods [55,°36], something not considered in this work.

Both the proposed technique and the one introduced in[[46] we initially developed as nu-
merical inverse kinematics approaches, but designed to igiify all the possible solutions and not
just few of them, as in existing works [22[59[B]. Like some ofhese methods, the procedure
presented here is strongly based on the use of Jacobians torgate linear spaces tangent to the
loop-closure variety, but in contrast with existing Jacobian-based techniques[2Z, 18, 59, 36], the
proposed procedure is aware of the presence of bifurcationthe only type of singularities that,
to the best of our knowledge, has been shown to play a role in #context of Biochemistry [39].
Other types of singularities might a ect the performance of the presented system, although their
analysis is out of the scope of this paper.

Despite the e ciency of the proposed method, the generationof the atlas for a large dimen-
sional variety is computationally expensive. Therefore, v propose to trade o exhaustiveness
by e ciency, exploiting the higher-dimensional continuat ion tools to perform either a local op-
timization on the space of closed conformations or a tree-lmed Monte Carlo like [54,[40/ 10, 37]
randomized exploration of this space. The advantage of the iposed local optimization tech-
nigue is that the higher-dimensional continuation techniques provide a parametrization that
changes when necessary and, thus, that is valid all over theomformational space except at sin-
gularities, which are partially considered by detecting bfurcations. This aspect is not treated
in existing approaches|[[356]. In the tree-based exploratiorthe higher-dimensional continuation
tools allow addressing problems with geometric constrairg, while the original approach is only
valid for unconstrained systems[[31].

All the techniques introduced in this paper can deal with multi-loop problems, something
only considered in few of the previous works'[58, 3%, 13]. Fally, note that, like in these works,
the proposed techniques require an initial sample from wher to start the exploration of the
conformational variety. Any of the existing sampling-basel methods can be used to generate
this initial point [22,159] 9].



Figure 1: Higher-dimensional continuation method appliedto a 2D manifold embedded in a 3D
dihedral space. Left A chart at a given point, ;, is de ned using the tangent space at this
point. The area of applicability in the tangent space of the dart is denoted asP;. A point, ; ,is
de ned using the tangent space and is orthogonally projectd on the manifold to determine j,
the center of a neighboring chart. Right The areas of applicability of the rst chart, P;, and

the new one,P;j, are coordinated so that their projections on the manifold dightly overlap.

3 Higher-dimensional Continuation

Each molecular loop de nes six constraints xing the relative position and orientation between
the extremes of the loop. Thus, the loop constraints deternme a system of equations

F()=0; (1)

implicitly de ning a variety of valid conformations, with F:R"! R" X n >k > 0, n the
number of dihedral angles andk the dimension of the variety. In a non-redundant formulation,
the number of equations inF ism = n k =61, with | the number of independent loops in the
problem.

Next, we brie y summarize the main algorithmic tools to generate atlas of implicitly de ned
varieties introduced by [28,[29,[5] in the context of Dynami@l Systems and also applied to
Robotics [45,[32]. To simplify the description, we will assme that the variety is actually a
manifold until Section B3, where we consider the presencef bifurcations.

3.1 Dening a Chart

A chart, G, locally parametrizes thek-dimensional manifold around a given valid conformation ;
with a bijective map, | = ;(u}), between parametersuf in R* and conformations ; on the
manifold, with  ;(0) = ;. Such a map can be implemented using thé&-dimensional tangent
space at ; [49]. An orthonormal basis for this tangent space is given bythe n  k matrix, i,
satisfying

>- i = I ! (2)
with J( ;) the Jacobian of F evaluated at ;, and I, the identity matrix. Using this basis, the

mapping ; is computed by rst computing the dihedral angles corresporing to a given vector
of parameters in the tangent space

=it U (3)



Figure 2: Progressive re nement of the applicability area d a chart for a 2D manifold. Left
The applicability area, P;j, of chart G is initialized as a box in tangent space including a ball of
radius r around ;. Right The polytope is re ned using a ball Bji that approximates q the
projection on the current chart of the area of the manifold corered by the neighboring chart.

! on the manifold to obtain i (see Fig.[1-left). This projec-

and then, orthogonally projecting |

tion can be computed by solving
i)=0; 4
using a Newton procedure where ; is initialized to J' If the process does not converge, the

input parameters u} are out of P;, the applicability area for chart G. The areas out of the scope
of the chart are to be parametrized by other charts.

3.2 Dening an Atlas

Since the applicability area for each chart is limited, the ull description of the set of valid
conformations requires to de ne an atlas, i.e., a collectio of charts properly coordinated (see
Fig. MHight). The algorithm proposed in [28] gives a systematic way to add new charts to the
atlas and to bound their associated applicability areas. Inthis work, P; is represented as a
polytope which is initialized as an hypercube enclosing a b B;, of radius r, de ned in the
tangent space associated with the charG, as shown in Fig.[2-left. A vector,v, pointing toward
a vertex of P; external to B; is used to generate a new chart. Fronv, a vector of local parameters
giving a point on B; is computed as

(5)

- .
U ek
with initialized to r. A new neighboring chart, G, is then de ned on the point ; = i(uJi ).
If ; is too far away from G or if the curvature between G and the new chart G is too large,
i.e., if

K j }k> ; (6)
or if
k 7 jk<cos(); (7



Algorithm 1 : Computation of the atlas of a loop-closure variety.
AtlasComputation (F; 1;r,; )
input : The functions de ning the loop's geometric constraints, F, the initial

conformation 4, and the parametersr, , and used to build the atlas.

output : An atlas A of the connected component of the variety including ;.

1 A f NewChartt (F; 1;r)g

2 while not Bounded (A) do

3 G NotBoundedChart  (A)

4 r

5 v Vertex (P;) such that v 2B;

6

7

8

9

repeat
Uy eV
= i)
10 if kj jk then
1 | G NewChart (F; j;r)
12 0:9
13 untl k ;  ;k and k 7 ;k cos()

14 | A A[fC jg
15 Return (A)

for given parameters and , G is discarded and a new chart is generated from parametens}
closer to i, i.e., with a smaller in Eqg. (B). This adapts the distribution of the charts to the
local curvature of the manifold.

The applicability area of each new chart, G, has to be properly coordinated with the ap-
plicability areas of the neighboring charts already in the alas. Note that to determine the
neighboring charts, the topology of each variable has to beaken into account and, thus, charts
de ned around in the dihedral angles are also considered neighbors. In thexample in
Fig. Bright, a neighboring chart G is used to re ne P; from the intersection betweenB; and Bji ,
a ball of radius r that approximates q , the projection on the tangent space ofG of the part of
the manifold covered by G. The hyperplane de ned by the intersection of B; and Bji de nes a
new face ofP; that eliminates some of its vertexes (in particular the one gving v) and generates
new ones. Similarly,P;j, the polytope associated toB;, is cropped using an approximation of the
projection of G on G. The applicability areas of the two neighboring charts are rot necessarily
continuous, but under mild conditions [28] their projections smoothly cover the manifold.

When a chart is fully surrounded by other charts, all the vertexes of its polytope are inside
the associated ball and the chart is not further expanded sine its applicability area is considered
bounded. This process of chart expansion continues as far @dkere are non-bounded charts in
the atlas. At the end of the process, the part of the conformatonal space containing the initial
conformation is fully covered by a set of charts forming an alas.

Algorithm [Isummarizes the steps to build an atlas. The atlasis initialized with a chart at
the given conformation, ;. Each new chart G includes the center of the chart, ;, the basis
of the tangent space at this point, i, the approximation of the validity area, P;, and a ball of
radius r, B;, initially included in P;. The algorithm iterates while there are non-bounded charts
i.e., charts with vertices of P; out of B;. In the loop (lines 2 to 14) we select one of those non-
bounded charts (line 3), take one of its vertices that are outof the ball (line 5), and generate a



Figure 3: A bifurcation in the conformational space. Left Once a bifurcation point, , is
located using the indicator function , a point, g, on the new branch is obtained to estimate
the tangent space of this new branch at ,. Right Two new charts, G, and C.f,’ are dened on

and coordinated with the charts already in the atlas. In this example, G, is coordinated with G

and G, whereasQ is the rst chart on the new branch.

new chart in the direction of this vertex (lines 6 to 13). If necessary, the vector of parameterqui
used to generate the center of the new chart is scaled so thaté transition between charts is
smooth, as de ned by Egs. [6) and [T). Finally, the new chart is added to the atlas (line 14)
coordinating it with the charts already forming it.

The number of charts in an atlas scales exponentially with tre dimensionality of the set of
valid conformations. Thus, the cost of the algorithm at eachstep is dominated by the cost of
two searches among the set of charts: one to nd a non-boundedhart (line 3) and another to
nd the potential neighbors when adding a chart to the atlas (line 14). The rst search can be
saved keeping the non-bounded charts in a list. The cost of ta second search can be reduced
using a kd-tree [65].

3.3 Dealing with Bifurcations

Typically, the conformational spaces of loops appearing inmolecular systems were assumed
to be manifold, but it has been shown recently that this is not always the case[[6/_39]. If
the conformational space is not a manifold everywhere, we & to consider the presence of
singularities. Mathematically, a singularity occurs at those points where the Jacobian of is
not full rank. Although many types of singularities exist [B], we only consider situations where
the variety bifurcates in two branches, that are the only type of singularities that have been
shown to play a role in the context of Biochemistry [39]. In these cases, the atlas construction
process evolving in one of the branches needs to detect thegsence of the other branch and to
generate a chart on it from where to extend the atlas. Otherwse, the connected component of
the conformational space reachable from the initial point mght not be completely represented.
Points on the bifurcation can be located by monitoring a scar indicator function, ( ),
whose value is di erent for two points ; and ; at opposite sides of the bifurcation, and that



vanishes at the bifurcation. One possible indicator functon is

()=sign ) ®

where | is an approximation of the tangent space at the bifurcation br the branch including
both ; and ;. This approximation can be computed, for instance, interpdating between |
and . Thus, if when adding a chart to the atlas (line 14 of Algorithm[I), varies, the transition
between the new chart,G , and its parent, G, crosses a bifurcation. In this case and since cha

is generated from chartG using ; = i(u}), a point on the bifurcation, 4, is located using
a dichotomic search along vectoru}. At a bifurcation point, the kernel of the Jacobian of F
includes k + 1 vectors. The rst k vectors, 4;:::; |, correspond to those in . The last

vector, ., provides a direction to expand the new branch. Thus, the tamgent space for the
new branch, 2, can be approximated using the tangent space at a pointg on the other branch
close to p, that can be computed solving

F()=0
T<+1( b) ="

with " small (10 2 in our implementation) and using a Newton process initializd at ,+" ,.;,
as illustrated in Fig. BHeft. This procedure works well in practice, but it might fail for bifurcations
where the two tangent spaces are almost coplanar. In this c& more sophisticated procedures
can be used[[29,15]. Finally, the two charts de ned at , using p and { are added to the atlas
and coordinated with previously added charts, as shown in Fj.[3-right.

(9)

4 Local Exploration of the Conformational Manifold

The tools presented in the previous section are only practial to trace low dimensional confor-
mational spaces. Nevertheless, these tools can be used toagd existing algorithm able to deal
with high-dimensional problems so that they can also considr the loop-closure constraints.

4.1 Local Optimization on the Energy Landscape

The potential energy optimization of a conformation is typically addressed with gradient-based
techniques. However, the potential energy functions are usally expressed in terms of the atoms
coordinates and following their gradient might lead to an urdesired deformation of the loop.
When dealing with molecular loops from a geometric perspedte, the gradient should be re-
stricted to the variety of valid conformations. Analytical ly, this can be formulated using the

chain rule as
@c_ @@ @ . 10)
@ @@ @
with ethe scalar atom-based potential energy functionu the internal coordinates of the variety, a
the atom positions, and the dihedral angles de ning the conformation. Eq. (I0) projects the
gradient from the space of atom coordinates to the space of Hedral angles and, then, to the
tangent space de ning the current chart. The projection gives a displacement on this tangent
space that has to be projected on the variety with the correspnding  mapping to obtain a
valid conformation. This conformation can be used to de ne anew chart from where to continue
the minimization process, until it reaches a point where thegradient vanishes. Note that, in
practice, the gradient can be approximated numerically cosidering small displacements on the
tangent space.



This local minimization technique is similar, for instance, to the one used in [[36]. However,
in [36] a xed parametrization is used, whereas here the pammetrization is changed as the min-
imization process moves on the variety. Using a x parametrzation, any degeneracy of the sub-
matrix of the Jacobian formed by the columns corresponding ¢ the variables used as parameters
induces a singularity and, thus, restricts the minimization process. When the parametrization
changes, only points where the full Jacobian is rank-de ciat might cause problems. Some of
these points corresponds to bifurcations. When the minimiation path crosses a bifurcation, two
gradients are possible, one for each intersecting branch d@he conformational space and, thus,
the minimization path should branch. The possibility of crossing a bifurcation during gradient
minimization is something not usually considered in algorihms for computational chemistry.

4.2 Randomized Exploration of the Energy Landscape

If instead of locally optimizing a conformation, we are interested in a more global exploration of
the energy landscape or in determining low energy paths coretting two given conformations, the
T-RRT approach can be used[[31]. T-RRT is a sampling-based ntbod for e ciently exploring
energetically favorable regions of an energy landscape. Bwally, the method is driven by a
double strategy. On the one hand, a tree-based explorationtsategy inspired from Robotics
eagerly explores yet unexplored regions of the space grovgrthe tree toward randomly sampled
conformations. On the other hand, a Monte Carlo like transition test rejects samples with too
high energy, and guides the expansion toward energeticalljavorable regions. Moreover, an
important feature of the method is the automatic balance betveen these two strategies achieved
thanks to a self-tuning mechanism.

The T-RRT method cannot be applied straightforwardly to mol ecules involving loops since
the conformations randomly generated will not respect the bop-closure constraints. However,
it is possible to intertwine the T-RRT exploration with the a tlas construction, where the atlas
constructed so far is used to sample new conformations for 8 T-RRT, and the T-RRT is used
to determine directions of expansion for the atlas. More preisely, to generate a random sample
rst a chart G is selected at random and then rejection sampling is used toed a point in P;,
that is projected on the conformational space using the corsponding ; mapping. The atlas
is initialized with just one chart and new charts are added asthe tree branches escape from the
balls associated with the charts. Note that recently, a reldaed technique also using the tangent
space to generate samples has proved useful in studying thedal exibility of proteins with
several loops and hundreds of degrees of freedom[63] 64]t louthis approach, only one tangent
space is used and the projection from the tangent space to theariety is not considered.

5 Experiments

The tools described in Section§13 andl4 have been implementdéd C and integrated into the
CuikSuite [34], using the GNU Scientic Library for the line al algebra operations [24] and
SOLID [e0] for the collision detection. The management of tle molecular information as well as
the evaluation of potential energies is done via version 2.3 of OpenBabel [43]57]. In all cases,
the energies are evaluated using the MMFF94 force eld[[27]although the presented approach
is independent of the actual force eld used. The experimerd reported below were executed on
a single CPU of an Intel Core i7 at 2.93 Ghz running Mac OS.

Figure [ shows the four molecules used in the experiments. &h rst one is a multi-loop
academic benchmark previously used in[35]. Its structure d nes a tetrahedron composed of 4
carbon, 4 hydrogen, and 14 sulfur atoms. For this particular experiment and following the
previous work, the bond distance for carbon-sulfur, carborhydrogen, and sulfur-sulfur are set
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Figure 4: The four molecules used in the experiments(a) A synthetic tetrahedron like molecule.
Carbon atoms are represented in cyan, hydrogen in white, andulfur in gold. (b) The cyclooctane
using the same color code as in the previous exampldc) The FTSJ of escherichia coli (PDB
code 1EJO). The loop marked by a dashed ellipse formed by theesidues 74 to 77 is analyzed.
(d) The dihydrofolate reductase of the lactobacillus casei (PB code 3DFR). The loop in the
dashed region formed by the residues 120 to 124 is analyzed.

to 1.804 A, 2.019 A, and 1.120 A, respectively. Moreover, the carbon and sulfur bond angle
are set to 109.5 and 135. These values are not the canonical ones for the energy eldhut
they are used to avoid excessive van der Waals overlap[58]. hE second molecule used in the
experiments is the cyclooctane, a cyclic molecule includig eight carbon and sixteen hydrogen
atoms. This molecule has received signi cant attention [16[33,[50,20[4[ 11| 47, 46, 39] because it
has a complex energy landscape, despite its structural sintigity. The third test case is the loop
formed by the residues 74 to 77 of the FTSJ of escherichia colPDB code 1EJO). This loop has
been also studied previously[]9,36] and it is used here to stwthe potential applicability of the
proposed method to the protein completion problem. Finally we consider the loop formed by the
residues 120 to 124 of the dihydrofolate reductase of the l&mbacillus casei (PDB code 3DFR).
This loop that has been analyzed before [23,17], is used hete demonstrate the applicability of
the proposed techniques to problems with conformational saces of higher dimensionality. In all
cases, the initial point to start the analysis is obtained with a Jacobian pseudo-inverse numerical
inverse kinematics procesd [59].
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Figure 5: Two complementary views of the full atlas of the terahedron molecule projected on 4,
2, and 3 (see Fig. 4-a). Each polygon is a chart. Red and green correspd to conformations
with high and low energy, respectively.

Figure 5 shows two complementary views of the atlas of the tehedron molecule projected
on the three dihedral angles 1, », and 3 labeled in Fig. 4-a. In Fig. 5, each polygon is a chart
and the colors correspond to the energy of the conformationtathe center of the chart, using red
for high energies and green for low ones. The full atlas inclles about 15500 charts computed
in 34 seconds withr =0:4, =0:4,and =0:9 radians. As a reference, the sampling procedure
introduced in [35], takes 60 minutes to generate 500 sampleslthough using a signi cantly
di erent software and hardware infrastructure, which makes the direct comparison di cult. The
atlas reveals a very intricate structure that would be hard to cover via sampling. Moreover,
a collection of samples without any further post-process wald not provide information about
the possible transitions and might led to incorrect analyss. However, once the structure of the
conformational space is captured in the atlas, it clearly gés easier to compute the local minima
of the associated energy landscape and the expected transihs between them, ful lling the loop-
closure conditions at any time. This is the advantage of sysgmatic methods and, in particular of
the one proposed herein, with respect to basic sampling-basl methods. Additionally, analytic
tools could be used to infer the topology of the conformatioal space from the atlas structure [39],
but this analysis is out of the scope of this paper. In this exanple no bifurcation is detected,
but this does not mean that the conformational space is manifld. Singularities other than
bifurcations might exist. However, the singularities typically lead to numerical problems around
them and we did not observe any numerical issue at the used rehition.

The full atlas of the second example, the cyclooctane molede, is shown in Fig. 6, projected
on 1, 2, and 3. In this case, the atlas includes about 14000 charts computein 6 seconds
with r =0:2, =0:2,and = 0:65 radians. This short execution time is in contrast with the
more than 9000 CPU hours required by our previous techniqued obtain a full description of
the cyclooctane conformational space [46]. The ne resolubn of the obtained atlas leads to a
smooth estimation of the energy landscape. This estimations overlaid over the atlas in Fig. 6,
using red and green for high and low potential energies, regtively.

12



Figure 6: The full atlas of the cyclooctane made of two maniftds. Each polygon is a chart. Red
and green correspond to conformations with high and low engyy, respectively.

Figure 7: The two manifolds that compose the conformationalspace of the cyclooctane. Each
polygon is a chart. Red and green correspond to conformatian with high and low energy,
respectively. The bifurcations are represented in black.

When generating the atlas of the cyclooctane, two bifurcatons are detected, which con rms
that its conformational space is not manifold. This is consstent with the thorough analysis re-
cently provided in [39], departing from a set of samples gemated from the loop-closure equations.
Figure 7 shows the two manifolds forming the cyclooctane cdiormational space together with
the bifurcation connecting them, shown in black. Accordingto [39], the manifold in Fig. 7-left
has the topology of a sphere and the one in the right has a Klehbottle topology.

The generation of the atlas is an expensive process for higiimensional conformational
spaces. However the tools introduced in Section 4 can be uséal partially explore these spaces.
As a proof of concept, Fig. 8 shows in blue the path followed by local energy minimization over
the cyclooctane conformational space. Note that in this exgriment, a bifurcation is crossed,
and, thus, the minimization path branches leading to two di erent local minima. In the gure,
the full atlas is only overlaid as a reference, since it is notomputed during the minimization.
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Figure 8: In blue, the projection on 1, s, and 7 of the paths followed by a local minimization
constrained to the set of valid conformations of the cyclootane. Note that when traversing
the bifurcation, the minimization path branches and each sibpath leads to a dierent local
minimum. The insets show: a) the initial conformation with high energy due to steric clashes,
b) the conformation at the bifurcation, c) a boat conformati on that is the local minimum reached
on the same manifold as the initial conformation, and d) a TCB conformation that is the local
minimum at the other manifold. This second local minimum hasa lower potential energy than
the rst one. The lower-left inset shows the energy pro le along the two paths. The path between
conformations b) and d) seems to follow an intersection bet@en the two manifolds, but this is
just an artifact of the projection.

If we are not just interested in a local minimization, but in d etermining the minimum potential
energy transition between local minima, we can use the T-RRTapproach. Figure 9 shows the
transition path between two local minima on the cyclooctane This transition agrees with the
diagram given in Fig. 5 in [39].

In the minimization and in the T-RRT experiments on the cyclooctane only 120 and 425
charts are generated, respectively. This is a signi cant lav number taking into account that the
full atlas includes about 14000 charts.

In the third benchmark reported in this paper, we analyze theloop formed by the residues 74
to 77 in the 1EJO protein, where only the degrees of freedom ahe backbone are modeled.
Figures 10 left and center show two complementary views of th atlas including 2700 charts
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Figure 9: Transition path (in blue) between two local minima in the cyclooctane obtained using
T-RRT. This algorithm only generates a partial atlas, but here, the full atlas is shown as a
reference. The insets show: a) the initial conformation (a town), b) the transition state, and c)
the nal conformation (a boat). The lower-left inset shows the energy pro le along the transition
path.

Figure 10: Representations of the conformational space ofhe 1EJO-74-77 protein loop. Left
and center Two complementary views of the full atlas. Right The atlas without considering
steric clashes. Each polygon is a chart. Red and green corgend to conformations with high
and low energy, respectively.
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Figure 11: Transition path between two local minima in the analyzed loop of the 1EJO protein
obtained using T-RRT. The path is shown in blue and the full atlas is not actually generated,
but displayed as a reference. The insets show: a) the initiadonformation, b) the transition state,
and c) the nal conformation. In the conformations, only the atoms in the loop are shown and
carbon atoms are represented in cyan, hydrogen in white, nibgen in blue, and oxygen in red.
The lower-left inset shows the energy pro le along the trangtion path.

obtained in 10 seconds withr = 0:2, =0:1, and = 0:45 radians projected on the dihedral
angle of residue 75 and on the and angles of residue 76. The topology of the conformational
space seems to be a Klein bottle, but futher analysis is requéd to con rm this point [39].
The minimum root mean square error (RMSE) of the charts centes with respect to the crystal
structure in the PDB considering all the atoms in the loop, including side chains, is about 0.2A,
which is comparable to the error obtained with other methods[23, 17]. The conformation in the
atlas giving the minimum RMSE is the one with minimum energy al over the conformational
space at the given resolution. Settingr = 0:1, the full atlas is obtained in about 30 seconds and
the minimum RMSE is lowered to 0.1 A.

The conformational space as shown in Figs. 10 left and centeincludes many areas with
high energy due to steric clashes. The atlas construction nteod introduced in this paper can
explore the conformational space avoiding the regions wittsteric clashes. To this end, collisions
between atoms are detected representing the atoms as sphsravith a radius proportional the
corresponding van der Waals radius (the proportional facte is 0.4 in our experiments). Charts
whose center is in collision are considered bounded and noaken for further expansion at line 3
of Algorithm 1. Figure 10-right shows the conformational space free of steric clashes for the
considered loop of the 1EJO protein. This atlas only include 1900 charts, a signi cant reduction
with respect to the full atlas for this loop. Any path on this s ubset of the conformational space has
an acceptable energy, however, to determine minimum energyansitions between conformations
an approach like the T-RRT should be used. Figure 11 shows théransition path between two
conformations of the analyzed loop.
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Figure 12: Energy pro le along the transition path between two local minima in the analyzed
loop of the 3DFR protein obtained using T-RRT. The insets shav: a) the initial conformation,
b) the transition state, and c) the nal conformation. In the conformations, only the atoms in
the loop are shown using the same color code as in Fig. 11.

Finally, we analyzed the loop formed by the residues 120 to 12 of the 3DFR protein. Since
the conformational space is four-dimensional, it cannot bevisualized in 3D like the previous
benchmarks. In this case, settingr = 0:4, = 0:1, and = 0:45 the coverage of the confor-
mational space was not achieved after 90 minutes and, at thipoint, the atlas included more
than half a milion charts. With r = 0:8, the full atlas is computed in about 50 minutes and it
includes 230000 charts. However, when we activate the cddiion detection to avoid steric clashes,
the atlas with r = 0:4 can be computed in only 500 seconds, including about 4300@arts. This
is a clear example of how the extra constraints can dramaticidy reduce the search space. A sim-
ilar reduction could be obtained adding the constraints deived from the Ramachandran plots.
In the presented approach, this can be achieved de ning the dequate ranges for the variables
representing the dihedral angles or considering inequaliés involving these variables.

In the 3DFR experiment, setting r = 0:8 and avoiding the steric clashes we obtain a RMSE
with respect to the crystal structure that is below 0.45 A in less than 50 seconds. Withr = 0:4,
the RMSE reduces to 0.2A, but, as mentioned, the computational time increases to 50 seconds.
A multi-resolution technique where rst the area with minim um energy is identi ed at a coarse-
grained resolution and then it is re ned at a ne-grained resolution, could signi cantly speed up
the identi cation of the most stable conformation, but we leave this as a future work.

Figure 12 showcases the transition path between two conforations of the analyzed loop of the
3DFR protein obtained using the adaptation of the T-RRT algorithm introduced in Section 4.2.
This shows that this algorithm can be used to obtain relevantinformation about the energy
landscape, even when the conformational spaces are of higlingensionality.

6 Conclusions

In this paper, we have introduced the use of higher-dimensioal continuation tools to explore the
energy landscape of molecules (or fragments of moleculegjciuding loops. We have shown how
these tools can be applied to generate an atlas representirggconformational space, including the
case where this space has bifurcations and, thus, it is not nrafold everywhere. The atlas provides
a complete information about the energy landscape, somethg that is not readily available when
using other types of exploration. Thus, the atlas can be usedo determine the local minima and

17



the transitions between them, information that is crucial for understanding the biological function
of the molecule under consideration. For low dimensional atformational spaces, the quality of
the information provided by the atlas and the low computational e ort required to compute it
are remarkable.

This paper also proposed to exploit the higher-dimensionatontinuation tools to adapt ex-
isting algorithms so that they can operate on the varieties aising in the presence of molecular
loops. In this line, we presented and evaluated the gradienbased local minimization restricted
to the variety, and an adaptation of the T-RRT to nd low energ y transition paths between local
minima. These tools only provide partial information about the conformational space, but they
can be used even on high-dimensional varieties, where the mstruction of the full atlas would be
prohibitively expensive.

In the future, we aim to exploit the symmetries that appear in many problems [53] and to
speed up the steric clash detection [52]. These improvemesntmight help to reduce the compu-
tational burden of the approach in more challenging problens.
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