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Abstract

In this paper we bring the tools of the Simultaneous Localization and Map Building
(SLAM) problem from a rigid to a deformable domain and use them to simulta-
neously recover the 3D shape of non-rigid surfaces and the sequence of poses of a
moving camera. Under the assumption that the surface shape may be represented
as a weighted sum of deformation modes, we show that the problem of estimating
the modal weights along with the camera poses, can be probabilistically formulated
as a maximum a posteriori estimate and solved using an iterative least squares opti-
mization. In addition, the probabilistic formulation we propose is very general and
allows introducing different constraints without requiring any extra complexity. As
a proof of concept, we show that local inextensibility constraints that prevent the
surface from stretching can be easily integrated.

An extensive evaluation on synthetic and real data, demonstrates that our method
has several advantages over current non-rigid shape from motion approaches. In
particular, we show that our solution is robust to large amounts of noise and outliers
and that it does not need to track points over the whole sequence nor to use an
initialization close from the ground truth.
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1 Introduction

Recovering the 3D shape of non-rigid objects from monocular image sequences
is known to be a severely ill-conditioned problem because very different shape
configurations may have a similar projection [14,35,38]. As shown in Fig. 1
the problem becomes even further underconstrained if the camera moves while
the shape deforms, and both non-rigid shape and camera motion have to be
simultaneously estimated. In order to resolve the inherent ambiguity between
camera motion and shape deformation and turn the problem into a tractable
one, prior knowledge about the object’s behavior or the camera dynamics is
then necessary.

Traditional approaches seek to reduce the space of possible shapes by intro-
ducing deformation models, either physically inspired ones [9,23,24,43,46] or
learned from training data [6,7,8,10,17,22,28,25,30,38,39,50]. Surface deforma-
tions are then expressed as weighted combinations of modes, and estimat-
ing the shape entails at retrieving the weights of this linear combination by
minimizing image based objective functions. However, since these objective
functions are often complex, their convergence is only guaranteed if the shape
is precisely initialized. In addition, most of these approaches either assume
the pose of the camera to be known or retrieve the shape with no camera
referential.
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Fig. 1. Simultaneous estimation of non-rigid shape and camera pose from input
images. Top: Three different frames of an input sequence with the reconstructed 3D
mesh overlaid. Bottom: Re-textured side view of the retrieved surface and sample
camera poses up to the current frame. Note that estimating the camera pose from
only the observation of the deforming shape is very difficult even for the human
eye. It would be much easier from the observation of the rigid objects, such as the
calibration box, although we do not contemplate this case in the current paper.
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Recent approaches in non-rigid structure-from-motion (NRSFM) have shown
that deformation modes can be learned along with the shape and motion
parameters [3,15,33,36,42,44,47,49]. Yet, while these techniques are especially
interesting in situations where training data is hard to obtain, they typically
require a number of points to be tracked throughout the whole sequence, which
is difficult to satisfy in practice, especially when dealing with non-rigid objects
that suffer from self occlusions. Furthermore, existing NRSFM approaches
have shown to be effective only for relatively small deformations and they are
quite sensitive to the presence of outliers and noisy observations.

In this paper, we propose a new formulation to the problem of simultaneously
retrieving non-rigid 3D shape and camera motion that overcomes some of the
limitations of previous approaches. We make two basic assumptions that are
widely used in previous literature [29,35,37,38]. First, we assume that the de-
formation modes are available. And second, we assume that some 2D-to-3D
correspondences can be established between the input images and a reference
image in which the shape is already known. Yet, in contrast to NRSFM meth-
ods, we do not require tracking the points along the whole sequence, that is,
each input image may have its independent set of matches. And most impor-
tantly, our method tolerates significant amounts of outliers and noise.

Our approach draws inspiration from a recent work on Simultaneous Local-
ization and Map Building (SLAM) [13] used to estimate camera pose while
mapping a rigid and static environment. We show that by appropriately pa-
rameterizing the shape and pose, the SLAM formulation can be extended to
non-rigid domains. More specifically, we formulate the problem of estimating
the modal weights describing non-rigid shapes and the pose parameters of the
camera as a Maximum a Posteriori (MAP) estimate which can be iteratively
solved using linearization and an efficient QR factorization for sparse linear
systems [12]. As we will demonstrate through testing on both synthetic and
real data, besides the robustness to outliers and noise, this formulation does
not require a precise initialization, which is another remarkable step-forward
when compared to the previous methodologies.

This work is an extended version of our earlier paper [27] where we already
proposed the probabilistic framework to integrate parameters describing both
the camera motion and the surface deformation. Here, we exploit the generality
of this methodology and show that it allows introducing additional constraints.
As a proof of concept we will show that enforcing local inextensibility naturally
fits within our formulation, yielding better accuracies on the reconstructed
shapes.
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2 Related Work

3D surface reconstruction from monocular images has been an active research
topic in Computer Vision for many years. Existing solutions may be roughly
classified into those based on pre-defined or pre-learned deformation modes
and those that learn the modes from input images and simultaneously retrieve
shape and pose parameters.

The earliest works introduced physically-inspired deformation modes such as
superquadrics [24], thin-plate splines [23] or balloons [9], used in combination
with modal analysis [34] to reduce the degrees of freedom of the problem.
Yet, all these approaches are only effective to capture relatively small defor-
mations. More realistic deformations were described by complex non-linear
models [4,46], although their applicability is limited to very specific materials.

This limitation has been addressed by methods that learn the deformation
modes from training data, such as the Active Appearance and Shape Mod-
els [10,22] or the 3D Morphable Models [6]. These approaches represent surface
deformations as linear combinations of rigid modes, and retrieving shape en-
tails minimizing an image-based objective function. However, since this func-
tion is typically highly non-convex, it requires good pose and shape initializa-
tions to converge, which makes these methods appropriate for tracking shapes
with a small inter-frame deformation, such faces [30,50]. In [17] a similar ap-
proach is used to detect human shape and pose from just a single image,
although it requires manual pose initialization.

Several recent methods have been proposed to recover non-rigid shape from
single images, by using deformation modes in conjunction with local rigidity
constraints to reconstruct inextensible surfaces [14,28,35,37,38], and in con-
junction with shading constraints to reconstruct stretchable surfaces [29]. How-
ever, none of these approaches retrieves the camera pose, and either assume
that the deformation modes are aligned with the camera coordinate system
or provide a solution shape for which the pose is unknown. One interesting
exception is [39] which simultaneously retrieves point correspondences, pose
and shape from one single image. Yet, in order to do so, it assumes hard prior
constraints on the pose which may be difficult to hold in practice, and can
only handle a reduced amount of points of interest.

Constraining the surface motion by linear models is also at the core of non-rigid
structure-from-motion methods. Although the seminal work of Bregler et al. [8]
used known deformation modes, current approaches [3,15,33,36,42,44,47,49]
do not require to known them and, given a video sequence, they simultane-
ously compute modes, pose and shape. This generality, though, comes at the
price of having to impose several constraints that are difficult to hold in prac-
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tice, such as requiring a sufficient number of points to be tracked throughout
the whole sequence. In addition, most of these methods have only been effec-
tively used to retrieve relatively small deformations, and tend to be sensitive
to noisy correspondences, missing data, and outliers. Recently, in [2,1], the
strengths of both the NRSFM and the physic-based approaches based on Fi-
nite Elements are merged, yielding a system able to track the motion of the
camera and estimate 3D shape of potentially extensible surfaces. Yet, these
alternatives still lack an estimation of the absolute pose of the camera, and
the deformations that can be modeled using FEMs are relatively mild.

To tackle these issues, we propose a SLAM-inspired solution. SLAM refers to
the problem of localizing a robot or a camera in an unknown environment
while simultaneously building a consistent map of this environment. Although
dynamical aspects are sometimes considered [5,19,11], SLAM generally as-
sumes a robot moving in a static and rigid environment, even in their more
recent implementations [31]. In order to deal with the uncertainty, SLAM is
formulated using a probabilistic MAP problem which was initially addressed
as a filtering problem [20,40,41,48] or using iterative methods [16,32] closely re-
lated to bundle adjustment [45]. However, modern SLAM methods arise from
the insights gained by viewing the problem as inference in a graphical model.
This is the approach adopted in this paper. Using deformation modes and a
formalism similar to the SLAM approach by [13], we show that the problem
of simultaneously recovering pose and non-rigid shape can be formulated as a
MAP estimate, where the joint probability of both the camera poses and the
object deformations is maximized given a set of 3D-to-2D correspondences
between each input image and a reference configuration. Furthermore, this
solution is shown to have significant advantages in terms of robustness and
convergence properties.

3 Simultaneous Pose and Non-Rigid Shape

The method we present in this paper combines the strengths of the mathemat-
ical framework used to solve SLAM in robotics [13], and the linear formula-
tion of the non-rigid shape recovery problem proposed in recent works [28,38].
Given these main ingredients, we will next show that the problem of simultane-
ously recovering pose and non-rigid shape can be probabilistically formulated
as a maximum a posteriori estimate, where both pose and shape are estimated
given a set of 3D-to-2D correspondences. We then show that the solution can
be iteratively approximated solving a sequence of linear least squares prob-
lems.
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Fig. 2. Problem Formulation. We initially assume we are given a reference config-
uration in which the surface shape and camera pose are known and hence, the shape
may be registered to a reference image. At running time, we seek to recover the pose
of the moving camera and the shape of the deforming surface for each input image.
Our approach first establishes point correspondences between each input image and
the reference one. Note that these matches are in fact from 2D-to-3D, and are repre-
sented by points with the same color in the figures above. In addition, observe that
these correspondences are difficult to establish because of the non-linear appearance
deformations of the image, and thus, may contain gross errors and mismatches. Yet,
as will be shown in the results section, our algorithm is robust to these artifacts and
can handle large amounts of outliers.

3.1 Notations and Assumptions

We represent the surface as a triangulated 3D non-stretchable mesh with nv

vertices vi concatenated in a 3nv vector x=[v⊤
1 , . . . ,v⊤

nv
]⊤. The camera pose

is represented as a 6-dimensional vector ρ parameterizing a rotation matrix
R and a translation vector t. Given a sequence of input images I = {I k},
1 ≤ k ≤ nI , our goal is to estimate both the surface shape xk and the camera
pose ρk at each time instant k.

As shown in Figure 2, we assume that we are given a set of 3D points Rref =
{ri}, 1 ≤ i ≤ nr on a reference configuration xref , and that for each input
image, we know nk

c ≤nr 3D-to-2D correspondences between a subset of points
of Rref and a set of 2D points Uk={uk

i } on I k.

Additionally, in order to reduce the dimensionality of the problem, we model
the plausible surface deformations as a linear combination of a mean shape x0

and nm deformation modes Q = [q1, . . . ,qnm]

xk = x0 +
nm∑

i=1

αk
i qi = x0 + Q αk , (1)

where αk = [αk
1, . . . , α

k
nm

]⊤ are unknown modal weights that define the surface
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Geometric Parameters
x Object shape
ρ Camera pose
v Mesh vertex
A Camera calibration matrix
R Rotation matrix
t Translation vector
p 3D point on the input surface
r 3D point on the reference surface
Rref Set of reference points
I Input image
u 2D projection of a point p
U Set of 2D points on the images
x0 Mean shape vector
Q Deformation modes matrix
α Modal weights vector
nI Number of input images
nv Number of mesh vertices
nr Number of 3D points in Rref
nc Number of 3D to 2D matches
nm Number of deformation modes
ne Number of edges in the mesh

Stochastic Parameters
φ State vector
f(·) Process model
F Jacobian of the process model
wφ Process noise
Σφ Process noise covariance matrix
h(·) Measurement model
H Jacobian of the measurement model
wu Measurement noise
Σu Measurement noise covariance matrix
l(·) Edge length estimation function
σl Variance in the estimated length

Table 1
Notation used in this paper. When necessary, superindices are used to refer to the
parameters for a particular frame.

where αk = [αk1, . . . , α
k
nm

]> are unknown modal weights that define the surface
shape at time k. We obtain these modes by applying Principal Component
Analysis over a training set of meshes which undergo similar deformations as
those considered during the test.

Finally, we also assume the camera to be calibrated and denote by A its 3× 3
matrix of intrinsic parameters. Table 1 summarizes of the notation we use.
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Fig. 3. Representation of the problem to solve in the form of a Bayesian belief
network, for a small problem with three states φk, and four reference points ri.

3.2 Probabilistic Formulation of the Problem

Let φk = [ρk⊤, αk⊤]⊤ be the augmented (6 + nm)-state vector that collects
the unknown pose and shape at frame k, where the shape is represented by
means of the modal weights. We can then formulate our problem as that of
estimating Φ= {φk} given the observations U = {Uk}, with 1≤ k ≤nI . This
can be expressed in terms of the following maximum a posteriori estimate

Φ∗ = arg max
Φ

P (Φ | U) ∝ arg max
Φ

P (Φ, U) , (2)

where for the second step we have assumed a uniform distribution of P (U).

The joint probability P (Φ, U) may be written as the product of a motion
component describing the camera dynamics and a measurement component
relating the observations with the configuration of the state vector for each
frame k

P (Φ, U) = P (φ1)
nI∏

k=2

P (φk|φk−1)
nk

c∏

i=1

P (uk
i |φk, rik) (3)

where P (φ1) is a prior on the initial pose and shape, P (φk|φk−1) is the dy-
namic model, and P (uk

i |φk, rik) is the measurement model of the 3D reference
point rik corresponding the i-th 3D-to-2D match at time step k. The depen-
dencies among variables of this joint probability can be represented as a belief
network. For instance, Figure 3, shows a simple case with a sequence of three
images, an thus three state vectors, and four reference points.

We define the dynamic model for the camera and modal weights as a stochastic
process φk = f(φk−1) + wk

φ, which may be probabilistically written as

P (φk|φk−1) ∝ exp −||f(φk−1) − φk||2Σk
φ

, (4)

where || · ||2Σ denotes the squared Mahalanobis distance, f(·) is the process
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Shape Priors Samples Pose Priors Samples

Fig. 4. Shape and pose priors samples we consider, obtained by adding Gaussian
noise to a given shape and pose. Note that the priors we use are fairly ambiguous
and allow representing many different configurations of shapes and poses.

model, and wk
φ is a zero mean Gaussian noise with covariance matrix Σk

φ. In
fact, this covariance is a block diagonal matrix, composed of a 6 × 6 covari-
ance matrix Σk

ρ for the poses, and a nm × nm covariance matrix Σk
α for the

modal weights. In practice, we set these covariance matrices to relatively large
values in order to be able to produce a large variety of shapes and poses. This
increases the generality of our approach to solve problems where input data
may considerably differ from the training data we used to compute the modes.
For instance, Figure 4 shows the kind of different shapes and poses that may
be generated by picking random samples of a Gaussian distribution with the
covariance matrices we consider in our experiments.

The measurement model is described in the form uk
i = h(φk, rik) +wk

u, which
as above can be probabilistically expressed as

P (uk
i |φk, rik) ∝ exp −||h(φk, rik) − uk

i ||2Σk
u

, (5)

where uk
i is the known 2D location of the 3D reference point rik , h(·) is the

measurement function, and wk
u is a zero mean Gaussian noise with 2 × 2

covariance matrix Σk
u. The function h(φk, rik), corresponds to the equation

that projects rik onto the image, after being mapped according to the pose ρk

and shape parameters αk.

More specifically, let pk
i be a point on the mesh xk corresponding to the point

rik in the reference configuration. We can write pk
i in terms of the barycentric

coordinates of the face it belongs as

pk
i =

3∑

j=1

aijv
k
ij

, (6)

9

Fig. 4. Shape and pose priors samples we consider, obtained by adding Gaussian
noise to a given shape and pose. Note that the priors we use are fairly ambiguous
and allow representing many different configurations of shapes and poses.

model, and wk
φ is a zero mean Gaussian noise with covariance matrix Σk

φ. In
fact, this covariance is a block diagonal matrix, composed of a 6 × 6 covari-
ance matrix Σk

ρ for the poses, and a nm × nm covariance matrix Σk
α for the

modal weights. In practice, we set these covariance matrices to relatively large
values in order to be able to produce a large variety of shapes and poses. This
increases the generality of our approach to solve problems where input data
may considerably differ from the training data we used to compute the modes.
For instance, Figure 4 shows the kind of different shapes and poses that may
be generated by picking random samples of a Gaussian distribution with the
covariance matrices we consider in our experiments.

The measurement model is described in the form uki = h(φk, rik) + wk
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rik in the reference configuration. We can write pki in terms of the barycentric
coordinates of the face it belongs as

pki =
3∑

j=1

aijv
k
ij
, (6)

9



where the aij are the barycentric coordinates and vkij are the vertices of the
face in xk containing the point pki . Since we assume the mesh does not stretch,
these barycentric coordinates remain constant for each point and can be easily
computed from points rik and the reference mesh xref .

The measurement equation h(φk, rik) returns ũki , the 2D projection of pki onto
the image given the current pose and shape parameters. If we expand φk into
a rotation matrix Rk, translation vector tk, and modal weights αk we can
write such a projection as

wi

[
ũki
1

]
= A

[
Rk|tk

] [pki
1

]
, (7)

where wi is a projective scalar. Finally, by injecting the barycentric coordinates
of Equation (6) and the modal description of Equation (1), the measurement
equation ũki = h(φk, rik) can be written in terms of the pose parameters and
modal weights

wi

[
ũki
1

]
= ARk

3∑

j=1

aij
(
x0ij + Qijα

k
)

+ Atk , (8)

where x0ij and Qij are the subvectors of x0 and Q corresponding to the coor-
dinates of the vertex vij .

3.3 Least Squares Formulation

Equation (2) expresses the problem of simultaneously retrieving pose and
shape as a MAP estimate of the joint probability P (Φ,U). We next show
that this can be iteratively solved as a simple Least Squares problem.

By taking the negative logarithm of Equation (2), and considering Equa-
tions (3), (4) and (5), the MAP problem may be reduced to the following
non-linear least-squares estimation

Φ∗ = arg min
Φ

nI∑

k=1

εmot(φ
k−1,φk) + εmeas(φ

k), (9)

where
εmot(φ

k−1,φk) =
∥∥∥f(φk−1)− φk

∥∥∥
2

Σk
φ

(10)

is the dynamic estimation component of the error, for which we define f(φ0) =
φ1, and

εmeas(φ
k) =

nk
c∑

i=1

∥∥∥h(φk, rik)− uki
∥∥∥

2

Σk
u

(11)
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is the measurement error component, that is, the sum of squared distances
between the predicted location of the reference points in the image and their
true position.

Since the measurement function h(·) is nonlinear and the process function f(·)
may also be non-linear, the minimum of Equation (9) is iteratively approxi-
mated by linearizing the dynamic and measurement terms. Let us assume that
Φ0 = [φ1>

0 , . . . ,φnI>
0 ]> is a given estimation of Φ∗. We then approximate f(·)

and h(·) linearizing at Φ0

f(φk−1) ≈ f(φk−1
0 ) + Fk−1δk−1, (12)

h(φk, rik) ≈ h(φk
0, rik) + Hk

ik
δk, (13)

where δk = φk − φk
0 is the update term, Fk−1 is the (6 + nm) × (6 + nm)

Jacobian of f(·), and Hk
ik
is the 2× (6 + nm) Jacobian matrix of h(·), both of

them evaluated at the corresponding element of Φ0

Fk−1 =
∂f(φk−1)

∂φk−1

∣∣∣∣∣
φk−1

0

(14)

Hk
ik

=
∂h(φk, rik)

∂φk

∣∣∣∣∣
φk

0

(15)

If we denote the error in the dynamic prediction by ck = φk
0 − f(φk−1

0 ), and
the error in the measurement by dki = uki − h(φk

0, rik), Equation (9) becomes

ε(δk−1, δk) ≈
∥∥∥Fk−1δk−1 −Gδk − ck

∥∥∥
2

Σk
φ

+
nk
c∑

i=1

∥∥∥Hk
ik
δk − dki

∥∥∥
2

Σk
u

, (16)

where G is a (6 + nm) × (6 + nm) identity matrix, introduced to simplify
subsequent notation. Finally, the original least-squares problem is re-written
as

δ∗ = arg min
δ
‖B δ − b‖2

Σ , (17)

where δ = [δ1>, . . . , δnI>]>, and Σ is a matrix made of all the Σk
φ and Σk

u

noise terms. The matrix B collects all Jacobian matrices and the vector b is
made of all errors in dynamic and measurements predictions. Their structure
is as follows:
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B =




G
F1 G

F2 G
. . . . . .

FnI−1 G
J1

J2

. . .
JnI




b =




c1

c2

c3

...
cnI

d1

d2

...
dnI




(18)

where we defined the matrix Jk = [Hk
1, · · · ,Hk

nk
c
]> and the vector dk =

[dk>1 , . . . ,dk>nk
c

]>.

In order to solve Equation (17) we differentiate with respect to δ and equate
to zero. Then, δ∗ may be found as the solution of

B̂> B̂ δ∗ = B̂> b̂, (19)

with B̂ = Σ−1/2 B and b̂ = Σ−1/2 b.

Note that B is a large but very sparse matrix. Assuming a constant number nc
of 3D-to-2D correspondences per image, B would be a nI(6+nm+2nc)×nI(6+
nm) matrix. Typical values in our experiments are nI = 50 images, we detect
about nc = 100 correspondences per image, and use nm = 30 deformation
modes. These values would yield a 11800 × 1800 matrix, although with only
a 2.3% of non-null entries. Taking advantage of this sparsity, B̂ and b̂ can
be directly defined pre-multiplying Fk, G, and cki by (Σk

φ)−1/2, and Hk
i and

dki by (Σk
u)−1/2. The resulting B̂ is also sparse and we can use a sparse QR

factorization [12] on B̂ to efficiently obtain δ∗ without explicitly having to
compute B̂> B̂.

The solution δ∗ is then used to update the estimation Φ0 and the procedure
described in this Section is repeated until convergence.

4 Improving the Robustness

In this section we will show how to improve the robustness of the proposed
method along two directions. First, we will show that imposing inextensibility
constraints on the retrieved surface, nicely fits within our framework. This is
in contrast to the formulation proposed in [38,29] for which introducing these
kind of constraints causes an explosion in the complexity of the system. In the
second place, we propose a simple extra stage that allows to iteratively detect
and remove 3D-to-2D correspondences with very large errors.
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4.1 Inextensibility Constraints

Although representing the surface shape as a linear combination of modes
and imposing temporal coherence will in general provide meaningful solu-
tions, introducing additional constraints may accelerate the convergence and
even provide more accurate results. One typical constrain used in previous
works [28,38] consists in preventing the surface from stretching by preserv-
ing distances in local neighborhoods. Note that by doing this, any possible
inaccuracy in the barycentric coordinates is minimized and, thus, there is a
reduction in the overall error.

Inextensibility constraints may be readily introduced within our formulation
by considering in Equation (3) an additional term that measures length errors.
Let l(φk, i) = ‖vki1 −vki2‖ be the length of the edge defined by the neighboring
vertices vki1 and vki2 whose coordinates are computed from the modal weights
and modes using Equation (1). If we denote by lrefi the original length of
the edge on the reference mesh and by ne the number of edges of the mesh,
we can expand Equation (9) with an additional multiplying term enforcing
inextensibility constraints,

ne∏

i=1

P (l(φk, i)|φk, lrefi ) . (20)

Defining this measurement function as a stochastic process with Gaussian
noise, Equation (9) can then be rewritten as

Φ∗ = arg min
Φ

nI∑

k=1

εmot(φ
k−1,φk)

+ εmeas(φ
k) + εinext(φ

k), (21)

where εmot and εmeas were defined above and

εinext(φ
k) =

ne∑

i=1

∥∥∥l(φk, i)− lrefi
∥∥∥

2

σ2
l

. (22)

The variance σ2
l corresponds to the uncertainty of the Gaussian noise corrupt-

ing the function that computes the length of an edge.

In order to solve this optimization problem we follow the iterative least squares
procedure described in Section 3.3, i.e, we linearize the function l(·) and turn
the inextensibility constraints into ne · nI additional rows for the matrix B of
Equation (17). The top-left graph of Figure 5 depicts the block structure of
the matrix B after considering all of the constraints for a simple case with
nI = 5 images, nc = 20 matches per image, nm = 15 modes and ne = 30 edges
per mesh.
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Initialization Iteration #1 Iteration #2 Iteration #10

Fig. 5. Iterative fitting and outlier rejection. Top: Block structure of the matrix B
for a simple case. The upper part of the matrix –blue blocks– correspond to the Ja-
cobians of the dynamic models; the central part –green blocks– are the Jacobians of
the matching constraints. In both cases, darker blocks are the constraints applied to
the pose parameters and lightly colored blocks are applied on the shape parameters.
The lower part of the matrix –red blocks– are the Jacobians that enforce intextensi-
bility. Note how these Jacobians are only applied on the shape parameters. This is
because length constraints only depend on the distances between vertices, and are
independent of the pose. After each iteration our approach automatically detects and
removes outliers from the computation. Each outlier correspondence corresponds to
two rows on B which are black-colored on the graphs. As may be observed, we are
able to handle large percentages of outliers. Center: Representation of the inlier
–blue dots– and outlier –red crosses– correspondences for one sample frame of the
input sequence. Note that we iteratively detect the outliers –green circles–. Bottom:
Fitting the shape on one sample frame of the sequence. Our approach simultaneously
resolves this fitting for several frames while computes the poses of the camera.
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Fig. 6. Results on shape and pose recovery for a sequence of a deforming synthetic
mesh. The upper graphs compare the accuracy on the shape and pose estimation
when considering uniquely the constraints introduced by the 3D-to-2D matches or
when considering additional inextensibility constraints. Dealing with these addi-
tional length constraints yields improved results while requiring a similar number
of iterations to converge. The second and third rows, show different levels of er-
ror to give significance to the errors we obtain. Note that even with quite vague
initializations, the proposed algorithm converges to reasonably good solutions.

15

Fig. 6. Results on shape and pose recovery for a sequence of a deforming synthetic
mesh. The upper graphs compare the accuracy on the shape and pose estimation
when considering uniquely the constraints introduced by the 3D-to-2D matches or
when considering additional inextensibility constraints. Dealing with these addi-
tional length constraints yields improved results while requiring a similar number
of iterations to converge. The second and third rows, show different levels of er-
ror to give significance to the errors we obtain. Note that even with quite vague
initializations, the proposed algorithm converges to reasonably good solutions.

15



4.2 Detecting and Removing Outliers

If the input correspondences are corrupted by outliers, the least squares solu-
tion we proposed in the previous section may become unreliable, as it simul-
taneously minimizes the reprojection error of all correspondences. In order
to detect and remove outliers we have implemented a weighted least squares
procedure that penalizes those matches with large residuals. More specifically,
for each 3D-to-2D correspondence we define

λki =
dki

median(dki , 1 ≤ k ≤ nI , 1 ≤ i ≤ nkc )
, (23)

where dki is the residual reprojection error of Equation (16). We then reduce
the influence of the more noisy correspondences by multiplying the rows of B
and b associated to the matching constraints with the weight

wki =

{
exp(−λki ) if λki < λ
1 otherwise (24)

where the parameter λ is chosen large enough (we set λ = 3 in all our ex-
periments) to ensure that only those measurements with large errors dki are
penalized. Yet, we initially do not remove these observations, because their
gross error might come from a wrong estimate of shape and pose at the current
iteration. Instead, following [37], we remove them if after having contributed
in the current estimate, their reprojection error remains outside a radius, that
is reduced at each iteration. In practice, we start with a 100 pixel radius that
progressively reduce until a value of 10 pixels.

Figure 5 shows how outliers are iteratively detected. On the upper graphs, the
black horizontal lines indicate the matching constraints that are removed after
each iteration because they have large reprojection errors. These constraints
correspond to matches that are classified as outliers, as seen in the middle-
row figures. Usually, after a few iterations most of the outliers are detected,
although the fitting procedure has not yet converged.

5 Experimental Results

In this section we evaluate the performance of our approach against noise in
the correspondences, the presence of outliers, or its dependence on the quality
of the initialization. We show results on both synthetic and real images. For
the synthetic sequences we compare the results of our approach when uniquely
considering the constraints introduced by the 3D-to-2D correspondences, and
when considering them in conjunction with inextensibility constraints.
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Fig. 7. Detection of outliers. P: true number of outliers. N: true number of inliers. TP:
Number of outliers correctly detected. FP: Number of inliers misclassified as outliers.
True Positives(%)=TP

P . False Positives(%)=FP
N . Observe that even for large levels

of noise, our algorithm correctly detects most of the outliers. For the description
of the colors and line-styles, we refer the reader to the legend on the top-right of
Figure 6.

In addition, and in order to position the current approach within the state-of-
the-art, we also provide a comparison against the approach proposed by [33],
which is representative of the non-rigid shape from motion techniques. Al-
though the two methods are not directly comparable, as they require from
different assumptions, we enforce the comparison and show the benefits of
using combined priors on the shape deformation and camera dynamics, even
when they are very weak and initialized far from the ground truth solution.

5.1 Synthetic Data

We first applied our approach to a 50 frames synthetic sequence of a 9 × 9
mesh, simulating the deformation of a wave with increasing amplitude. The
reference configuration was represented by a 30 × 30 cm planar shape. The
camera was allowed to move according to random Brownian paths on the
surface of a 80 cm sphere centered on the mesh, and with the optical axis
pointing to the center of the sphere. The left-most graph in the middle row of
Figure 6 shows one example of shape and camera poses generated this way. 1

For each pair of camera pose and mesh shape, we then synthetically produced
150 random 2D-to-3D correspondences, between a 640 × 480 image acquired
for that particular shape and pose, and the reference configuration. Given this
setup, we performed two different types of experiments, to evaluate both the
robustness and convergence performance of the proposed algorithm.

1 The videos with the experimental results can be downloaded from
http://www.iri.upc.edu/people/fmoreno/Publications/2014/IVC.zip
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5.1.1 Robustness to noise and outliers

In the first experiment we analyzed and compared the performance of our
approach when using uniquely the constraints introduced by the 3D-to-2D
matches, and when additionally enforcing inextensibility. We evaluated both
situations against noise in the 2D correspondences and the presence of outliers.
More specifically, we performed 10 different experiments by adding noise with
standard deviation of {0, 1, 2, 3, 4, 5} pixels, and by introducing a percentage of
outliers of {0, 5, 10, 20, 30, 40}%. In addition, this combination of parameters
was repeated for 10 different random camera paths.

In each of these experiments all the shapes in the sequence were initialized with
the reference mesh. The poses were initialized by adding random noise to the
ground truth poses such that the initial percentage of rotation and translations
errors were approximately of 50%. The right-most graphs in the second and
third rows of Figure 6 show that these initializations are significantly far from
the ground truth solutions.

In all experiments we used the same set of parameters to describe the dynamic
and measurement models. As a dynamic model, we used simple Brownian mo-
tion, and the function f(·) in Equation (4) was taken to be the identity, that
is, f(φ) = φ. The covariance matrix Σρ for the poses was set to a constant
diagonal matrix, with a 0.1 radiants of standard deviation for the rotation
components, and 3 cm for the translational ones. The covariance matrix Σα

for the modal weights was computed from the training data used to estimate
the deformation modes, scaled by a factor of 3 to handle larger deformations
and increase the generality of the method. The covariance Σu of the measure-
ment model, was set to a diagonal matrix with a 3 pixels standard deviation.
When considering the additional length constraints, we set the corresponding
standard deviation σl of Equation (22) to 0.5 cm.

Figure 6 reports the mean results of the experiment. In the upper plots, we
depict accuracy of the two configurations of our approach as a function of the
percentage of outliers and for different levels of noise in the correspondences.
Observe that even for large levels of noise and outliers, the results are within
reasonable bounds. We can assess the quality of these results by observing
the graphs in the middle and bottom rows, that give significance of the errors
we obtain. For instance, observe that a mean reconstruction error of 1.0 cm,
still represents a good approximation to the true shape. In addition, note
that considering the inextensibility constraints introduced in Section 4.1 yields
improved results, and as expected, this improvement is more remarkable in
the accuracy of the reconstructed shape. It is also worth to mention that
using both approximations the number of iterations remains practically the
same, and the algorithm typically converges in less than 50 iterations. One
surprising exception is the noiseless case, which requires from a larger number
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Fig. 8. Shape and pose errors at convergence, as a function of the error in the
initialization.

of iterations. This is because our stopping criterion is based on relative, and
not absolute, reductions of the error, and for the noiseless case, although the
error is very small it decreases relatively slowly.

In terms of computation time, each iteration requires between 3 and 5 seconds,
and thus the shape and poses for the 50 frames of the input sequences are
computed in about 2 to 3 minutes. All the execution times correspond to a
non-optimized implementation in Matlab.

In Figure 7 we evaluate the methodology described in Section 4.2 to detect
outliers. Observe that we obtain very large rates of true positives and low
rates of false positives. This means that our approach correctly detects most
of the outlier correspondences, while only misclassifies a very small percent-
age of correct correspondences. Of course, the results slightly fall when the
noise in the correspondences is increased, because then, correct but very noisy
correspondences are classified as outliers. In addition, note that the outlier re-
jection results when using either matching or matching plus length constraints
are virtually the same.

5.1.2 Convergence of the algorithm

In a second experiment with the synthetic data we evaluated the convergence
behavior of our approach. With this purpose, we initialized our algorithm with
very different poses and shapes, either relatively close to the true solutions or
very far away. Figure 8 shows the reconstruction and pose errors at convergence
as a function of the errors in the initialization. Errors above specific bounds
are saturated and shown in black, such that we can consider the black regions,
as non-convergence areas. In fact these non-convergence values are reasonable
values for which the retrieved solutions are visually disturbing. Observe that
convergence almost does not depend on the quality of the initial shapes, and
the initial pose is the dominant factor. That being said, our algorithm tolerates
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values for which the retrieved solutions are visually disturbing. Observe that
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the initial pose is the dominant factor. That being said, our algorithm tolerates
errors in the initial pose of up to 80%, which is relatively large, specially
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Fig. 9. Results on two real sequences. In each case, the upper plots depict the errors
per frame obtained after initialization, 4 iterations and convergence. The bottom
plots show the poses corresponding to the previous time instances.

errors in the initial pose of up to 80%, which is relatively large, specially
considering that the pose error shown in the middle-right plot of Figure 6 is
of about 50%.
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considering that the pose error shown in the middle-right plot of Figure 6 is
of about 50%.
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5.2 Real Images

We also tested our method on a 120-frames sequence of a bending paper
and a 100-frames sequence of a deforming T-shirt, acquired with a Pointgrey
Bumblebee stereo camera. In both cases the camera was moved around the
deforming shape while capturing the sequence. The upper images in Figure 1
show three different frames of the “bending paper” sequence, where the move-
ment of the camera can be clearly appreciated from the viewpoint change of
the calibration box, which does not change its position.

We used the stereo rig to estimate the ground truth shape. For this, we com-
puted the 3D position of a few points of interests on the surface and then
inferred the position of the mesh vertices using linear interpolation. Since our
algorithm just requires monocular sequences we ran it with only the images
from one of the cameras. The ground truth camera pose was computed by
applying the Perspective-n-Point (PnP) algorithm [26] over a small set of
manually introduced correspondences between points on a 3D model of the
calibration box and points in each of the input images. The 3D-to-2D corre-
spondences between the reference configuration and the input images of the
mesh were computed using SIFT [21]. Yet, as the reference and input images
can be significantly different, these correspondences could have an arbitrarily
large amount of outliers. The capability of our approach to handle outliers
was therefore important to handle this situation.

Since the distance between the camera and the surface was roughly the same
as for the synthetic experiments, and the inter-frame camera displacement was
also very similar we used the same dynamic and measurement models defined
in the previous section.

Yet, an issue we had to resolve was that the number of frames of the real
sequences was much larger than for the synthetic case, and the size of the
matrix B in Equation (18) became very large to be tractable. To handle this
situation we implemented an incremental version of our algorithm, in which
the sequence was split into several parts, and each part solved independently.
However, in order to avoid jumps between the different parts, we allowed cer-
tain overlapping of the frames and shared their solution among sub-sequences.
For the real experiments we considered 50 frames at a time from which 5 were
repeated with the previous set. Note that the number of new frames considered
at each iteration and the size of the overlap with previous processing steps al-
low trading off accuracy for speed, adjusting the efficiency to the requirements
of the application at hand.

Figure 9 depicts the results for the two real experiments. In each case, the
upper-row graphs plot the errors per frame, at initialization, after 4 iterations,
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Fig. 10. Shape recovery on two real sequences. For each experiment, the upper figures
correspond to the recovered mesh overlaid on the original image and the figures right
below are the 3D mesh seen from a constant point of view, after eliminating the
camera movement.

and at convergence. Since the results have been obtained by applying our
algorithm to several sub-sequences the number of iterations to converge is not
unique. However, all sub-sequences converged in about 50 to 70 iterations.
The bottom plots show the configuration of retrieved camera poses. Observe
that our algorithm yields fairly good results, specially considering the large
error of the initial set of poses. Finally, in Figure 10 we show the detail of the
recovered shape for different frames of each sequence.

5.3 Comparison with NRSFM techniques

We finally compare our method with the method proposed by [33], a recent
Non-Rigid Shape From Motion algorithm. As said above, there are substantial
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and at convergence. Since the results have been obtained by applying our
algorithm to several sub-sequences the number of iterations to converge is not
unique. However, all sub-sequences converged in about 50 to 70 iterations.
The bottom plots show the configuration of retrieved camera poses. Observe
that our algorithm yields fairly good results, specially considering the large
error of the initial set of poses. Finally, in Figure 10 we show the detail of the
recovered shape for different frames of each sequence.
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Fig. 11. Comparison with NRSFM aproaches. Left: Reconstruction error of our
approach and that by [33] for the synthetic sequence in Section 5.1, as a function of
the input noise. Right: Sample reconstructions showing the error bounds for both
methods. Observe that even the solution with largest error of our approach represents
a better approximation than the solution with smallest error obtained by [33]. This
additional accuracy is a consequence of using known deformation modes.

differences between our approach and NRSFM methods. The most important
is that we make use of a deformation model, computed from training data,
while NRSFM methods do not assume that training data is available, and
simultaneously estimate 3D shape and modes. This obviously makes these
algorithms more general, but at the price of being more sensitive to noise and
constrained to relatively small deformations.

Figure 11 shows the results of the comparison for the synthetic sequence used
in Section 5.1. In order to satisfy the input data requirements of the method
by [33], we provided the tracks of all the vertices of the mesh, and projected
them onto the image using an orthographic camera model. We then computed
the reconstruction error for increasing levels of input noise. As expected, the
behavior of the NRSFM methods is quite poor, and becomes specially unstable
for large amounts of noise. In contrast, the use of the deformation modes yields
a remarkable robustness and stability to our algorithm. In addition, besides
shape, our algorithm also provides an accurate estimation of the camera pose,
which we did not show here because the method by [33] does not explicitly
compute the pose.
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6 Conclusions

In this paper we have shown that the problem of simultaneously retrieving
pose and non-rigid 3D shape given a set of 3D-to-2D correspondences can be
probabilistically formulated as a MAP estimate. We then introduce dynamic
and measurement models accounting for noisy data, and reduce the MAP es-
timate to a non-linear least squares optimization that we solve using standard
techniques. In the results section, we have shown that we obtain satisfactory
results under situations where current methods are prone to fail, such as,
large rates of outliers and noise in the input data, or very poor quality of the
initializations.

The formulation of the problem we propose is very general, and allows intro-
ducing additional constraints either on the structure of the mesh or on the
dynamic models. In particular, we have shown that length constraints on the
edges of the mesh naturally fit within the proposed framework, and yield im-
proved results compared to when uniquely using the constraints enforced by
the 3D-to-2D correspondences.

As part of future work, we aim at developing online versions of the current
approach following [18], which do not require from batch processing all the
constraints. We believe that using more accurate dynamic models and the
shape estimated in previous frames, will let our approach to converge in very
few iterations. This would allow real time applications and even relax the
dependence of the method on using deformation modes learnt from training
data.
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