
EG-RRT: Environment-Guided Random Trees for Kinodynamic
Motion Planning with Uncertainty and Obstacles

Léonard Jaillet, Judy Hoffman, Jur van den Berg, Pieter Abbeel, Josep M. Porta, Ken Goldberg

Abstract— Existing sampling-based robot motion planning
methods are often inefficient at finding trajectories for kino-
dynamic systems, especially in the presence of narrow passages
between obstacles and uncertainty in control and sensing. To
address this, we propose EG-RRT, an Environment-Guided
variant of RRT designed for kinodynamic robot systems that
combines elements from several prior approaches and may
incorporate a cost model based on the LQG-MP framework
to estimate the probability of collision under uncertainty in
control and sensing. We compare the performance of EG-RRT
with several prior approaches on challenging sample problems.
Results suggest that EG-RRT offers significant improvements
in performance.

I. INTRODUCTION

This paper presents an efficient motion planning algo-
rithm for robotic systems subject to both internal dynami-
cal constraints and external environmental or task specific
constraints. This appears, for example, with non-holonomic
robots moving in cluttered scenes with narrow passages or
when optimizing a path quality metric such as probability of
collision. Motion planning for such systems is known to be
very challenging and exact solvers have PSPACE complexity
making them unusable for practical applications [1].

An emerging class of sampling-based approaches have po-
tential for efficiently generating solutions that satisfy system
constraints [2], [3]. For systems with dynamical constraints,
path conversion techniques have been developed for some
non-holonomic systems, that first find a geometric path from
specific local methods and then impose time constraints on
velocities and accelerations [4]. For more general systems,
kinodynamic motion planning [5], which considers kinematic
and dynamic constraints within the same framework, is
more suitable. In particular, Rapidly-exploring Random Tree
(RRT) based methods [6] or the Expansive-Space Tree (EST)
planner [7], are promising as they provide a direct way to
incorporate the dynamics of the system by the use of forward
integration to search the state space. It has, however, been
shown that even RRT methods can become inefficient in
certain scenarios [8].

This work has been partially supported by the Spanish Ministry of Science
and Innovation under project DPI2010-18449 and by the U.S. National
Institute of Health under Award 1R01EB-006435-01A1 and by the U.S.
National Science Foundation under Award 0905344.

L. Jaillet and J. M. Porta are with the Institut de Robòtica i
Informàtica Industrial, CSIC-UPC, Barcelona, Spain. {ljaillet,
porta}@iri.upc.edu

J. Hoffman, P. Abbeel and K. Goldberg are with the Univer-
sity of California, Berkeley, USA. {judyhoffman, pabbeel,
goldberg}@berkeley.edu

J. van den Berg is with the University of North Carolina, Chapel Hill,
USA. berg@cs.unc.edu

Fig. 1. Performance comparison of four RRT-based planners in a maze-like
environment with two narrow passages (between yellow obstacles). Each
planner was allowed to generate up to 1500 nodes. In the upper left, standard
RRT produces poor coverage of the space. In the upper right, Reachability-
Guided RRT improves coverage but gets stuck in the narrow passages. In
lower-left, Resolution-Complete RRT fails to find a solution after generating
1500 nodes. In the lower-right, EG-RRT covers homogeneously the space
and finds a solution after generating in average less than 800 nodes.

A central issue with kinodynamic systems with substantial
environmental constraints comes from the disagreement be-
tween the distance evaluation based on the available metric
and the true cost-to-go [9]. Indeed, the cost-to-go from one
state to another depends on the system dynamics, the position
of the obstacles, as well as other possible constraints imposed
by the environment. None of these tend to be easy to account
for and are typically not accounted for at all in the metric.

To limit the role of the metric, several methods use
space decomposition and select the states to be expanded
according to the sample density [7], [10], [11]. It has also
been shown that a considerable speed-up can be obtained if
a workspace decomposition is used to guide the search [12]–
[14]. However the efficiency of such approach does not take
benefit of the potential exploratory strength of RRT methods
biased toward yet unexplored regions of the space.

When using the RRT framework, the imperfect metric can
cause the same node to be selected many times although not
participating, or poorly, to the extension of the tree. The two



typical causes are (i) points chosen for extension based on
the imperfect metric are simply not able to grow the tree
in the direction the sample suggests it should grow per the
kinodynamic constraints; (ii) points close to obstacles that
only (or mostly) extend into obstacles are repeatedly chosen
for expansion.

Accordingly, there are two groups of variants of the basic
RRT [5]: the first group adapts the distribution bias to further
take into account the system dynamics. In [9], a heuristic
based on the Affine Quadratic Regulator (AQR) is designed
to approximate the exact minimum distance-time pseudomet-
ric. The Reachability-Guided RRT (RG-RRT) planner [15]
explicitly accounts for the local limitations of the system
dynamics to bias sampling towards states that have a high
probability of favoring diffusion of the tree.

The second group of RRT variants focuses on reducing the
weight of repetitive unfruitful expansions. In RRT-blossom
[16], potential new edges intruding upon already-explored
space are eliminated as the expansion is not considered useful
enough. The Resolution-Complete RRT planner1 (RC-RRT)
proposed by Cheng et al. [18] records exploration successes
and failures to avoid similar expansions and favors the most
promising states. A similar principle based on expansion
failures can also be found in [19].

In this paper we combine elements of RG-RRT and
RC-RRT into a new framework. In the resulting planner,
which we call Environment-Guided RRT (EG-RRT), the
Voronoi bias allocated to the nodes and inherited from the
RRT expansion mechanism is modified such that it integrates
also the local limitations of the system dynamics as well as
the risk of leading to unproductive expansions (Figure 1).

We then explore how EG-RRT can plan safe paths in the
presence of uncertainty. Few works have addressed planning
under uncertainty based on the RRT framework. Particle-
RRT [20] produces distributions of states derived from the
uncertainty rather than single states from which cost based
policy is built to select the most promising nodes. In [21],
a mobility-based extension of RRT is proposed where state
distributions are estimated based on the Stochastic Response
Surface Method. In our case, the EG-RRT planner is en-
hanced by a guiding mechanism that builds on the LQG-MP
framework [22], [23] to estimate incremental path quality.
LQG-MP is a tool that allows to evaluate a-priori distribution
of states along paths based on stochastic dynamics and
sensory models and assuming a Linear Quadratic Gaussian
(LQG) control policy, which consists of a Kalman filter and
an Linear Quadratic Regulator (LQR) feedback controller.

The remainder of the paper is organized as follows.
Section II, presents the two variants that inspired our planner
and analyzes advantages and limitations of each method
through the presentation of challenging scenarios. Section III
introduces the core of EG-RRT that is experimentally eval-
uated in Section IV. Finally, Section V extends the method
to the problem of planning safe paths under uncertainty.

1The method is called Resolution-Complete in [17] since it is shown that
it can comprise such property under some given conditions.

II. IMPROVING RRT EXPLORATION

A. Standard RRT

All RRT methods [5] build trees of nodes and edges that
correspond to states and small amplitude motions, respec-
tively. The exploration mechanism iterates over three main
steps, covering progressively the reachable regions of the
free state space: First, a random state is sampled in the state
space. Second, the state of the tree closest to the sample
is identified. Third, this state is expanded by simulating the
dynamics forward in time for a given input. If the expansion
is valid, i.e., it respects the state bounds and is free of
collision, a new node with its corresponding edge is inserted
in the tree.

RRTs have an (implicit) Voronoi bias that steers them
towards yet unexplored regions of the space [6]. However
in case of kinodynamic systems, the imperfection of the
underlying metric can compromise such behavior. Typically,
the metric relies on the Euclidean distance between points
which does not necessary reflect the true cost-to-go between
states. Finding a good metric is known to be a difficult
problem [9]. Simple heuristics can be designed to improve
the choice of the tree state to be expanded and to improve
the input selection mechanism without redefining a specific
metric. In the following, two variants of the literature based
on RRT are presented.

B. Reachability-Guided RRT

The Reachability-Guided RRT (RG-RRT) proposed by
Shkolnik et al. [15], [24] provides a way to improve tree
state selection by taking into account the system dynamics.
A reachability set is associated with each state in the tree.
This reachability set is a region of the space that can be
reached by the node within a given finite time, simulating the
dynamics forward in time using the set of available inputs U .
This set is computed (or approximated) each time a new node
is inserted in the tree.

The node selected for expansion is the one that has the
closest reachable point to the randomly sampled tree state.
If this reachable point, however, is at a larger distance
than the current closest node, the extension is discarded
and a new state is sampled to attempt a new expansion.
Thus, the method selects the most promising expansions by
filtering those which do not participate effectively to the tree
expansion toward the sampled state.

By default the reachable set is built by simulating the
dynamics forward for the entire set of possible inputs but
without taking into account the obstacles. The possibility of
designing reachability sets taking into account the obstacles
is also mentioned in [15], however the computational cost
of such operation would be high since it would require
testing all potential expansions when inserting a new node. A
different RRT variant that takes into account obstacles during
the node selection/extension is presented below.

C. Resolution-Complete RRT

The RC-RRT planner proposed by Chang et al. [8],
[18] discretizes the input space U and considers expansion



failures in order to redefine the most promising nodes. A
data structure associated with each node stores the set of
inputs already applied to the node. When a given input has
been applied once to the state (with success or not), it is not
applied anymore. Moreover, when all possible inputs have
been applied, the node is discarded for future extension.

In addition, nodes are penalized to estimate when exten-
sions attempts are likely to fail, based on the notion of
Constraint Violation Frequency (CVF). Each new node is
initialized with a CVF of 0. Then, when the input leads to a
collision or a violation of the state restrictions (e.g. it exceeds
the speed bound) the CVF of the node is increased by 1

m ,
where m is the number of possible input of the discretized
set U . Moreover, the CVF of the parent state is increased by
1

m2 and by applying a recursion mechanism, the CVF of its
kth parent state is increased of 1

mk+1 . Thus, each node’s CVF
is bounded between 0 and 1, where the value 1 is reached
when no valid descendant can be generated. Then, during
the node selection, the probability of discarding a node of
the list of nearest neighbors is equal to the value of its CVF.

D. Analysis of Efficiency of the Variants

We first consider the exploration tree of Figure 2 for
a car-like robot with second order dynamics restricted to
forward motions. Solid lines are RRT edges, dots are RRT
nodes, dotted lines represent the Voronoi region boundaries
based on Euclidean distance, and colored quadrilaterals are
the reachables sets for the nodes of that color. The two red
nodes have large Voronoi region and thus a high probability
to be selected so an expansion scheme based on the basic
RRT will lead to a collision. These nodes decrease the
probability of finding a way through the narrow passage
since they reduce the Voronoi region of the more promising
green node. If RG-RRT is used instead of RRT, the bias
from the reachability regions of the red nodes will remain
predominant and the probability to extend the green node
will still be low. A penalty-based strategy, such as used
in RC-RRT, is better at overcoming this difficulty. As the
failed expansion attempts for the red nodes are recorded,
the probability of selecting them for extension decreases
compared to the benefit of the green node.

Consider now the same problem but with an exploration
tree as shown in Figure 3. Once again, a basic RRT will
have significant difficulty to go through the narrow passages
since the Voronoi bias associated with the two red nodes is
predominant, even though an extension of the green node is
more promising. RG-RRT highly increases the probability of
selecting the green node. Conversely, RC-RRT is unlikely to
improve the situation since red nodes which do not lead to
direct collisions will take long to be penalized by the method.

For each of the two challenging scenarios only one of the
RRT variants was well suited to overcome the difficulty. In
the following section, we describe a novel approach which
fuses the strengths of both variants.

x init

Fig. 2. Exploration tree for a car-like robot with 2nd-order dynamics
restricted to forward motions. With a basic RRT extension scheme, nodes
in red with strong Voronoi bias reduce the chance to find a way through the
narrow passage. In this situation, the reachability sets of RG-RRT (colored
quadrilaterals) do not change significantly the bias and the situation remains
difficult. In the case of RC-RRT, failures of expansion attempts are recorded,
increasing the chance for the green node to be selected, so the planner will
be more efficient.

x init

Fig. 3. Exploration tree for a car-like robot with 2nd-order dynamics
restricted to forward motions. With a basic RRT extension scheme, nodes
in red with strong Voronoi bias reduce the chance to find a way through the
narrow passage. In this situation, RG-RRT has good chance to overcome the
difficulty since the reachability set of the green node which is rightmost,
highly increases the chance of the node to be selected. On the contrary,
RC-RRT will hardly improve the situation, since red nodes which do not
lead to direct collisions will take long to be penalized by the method.

III. ENVIRONMENT-GUIDED RRT

Algorithm 1 gives a high-level description of our hy-
brid planner called Environment-Guided RRT (EG-RRT),
which combines the strengths of RG-RRT and RC-RRT.
The method is initialized with the InsertNode function
which computes the reachable set of xinit and adds it to the
tree. Then, similarly to the basic RRT, an iterative procedure
is performed until a stop condition is achieved (typically a
state generated inside Xgoal or a maximum number of nodes
reached). First, a random state xrand is sampled. Then, the
BestState function selects the most promising candidate
state, xbest as well as the input unear generating the state the
closest to xrand (see details in subsection III-A). BestState
possibly returns a null state, meaning that no relevant expan-
sion has been found. In that case, the method reiterates the
sampling and the search of another promising state and input.
Finally, when a state xbest has been found, BestInput
returns an input ubest and the associated expanded state
xnew, such as xnew respects the state restrictions, is free of
collision, and is the closest feasible state to xrand that could
be generated from xbest (see details in subsection III-B). If



Algorithm 1: BUILD EG RRT(xinit)
input : the state space X;
the root state xinit, and the goal region Xgoal;
output: the tree T ;
T ← InsertNode (xinit, T );
while not StopCondition(T , Xgoal) do

xrand ← RandomState() ;
(xbest, unear)← BestState(xrand, T ) ;
if xbest 6= ∅ then

(ubest, xnew) ← BestInput(xbest, unear, xrand);
if ubest 6= ∅ then
T ← InsertNode(xnew, T );
T ← InsertEdge(xbest, xnew, ubest, T );

no admissible ubest has been found, a new random state has
to be sampled. Otherwise, the node with its reachable set
is inserted in the tree. Finally, the InsertEdge function
labels the input ubest of xbest as expanded before adding an
edge linking xbest to xnew within the tree.

A. Best State Selection

The BestState function is described in Algorithm 2. A
node of the tree is candidate for expansion only if it is not
fully expanded (some inputs have not been tried yet) and if its
CVF is lower than a random number between 0 and 1. This
corresponds to the penalty-based part of the node selection.
If the node is a candidate, its distance to xrand is evaluated as
well as the distance of the reachable set to xrand. This process
is repeated for all the nodes in order to estimate both the
distance to the closest node and the distance to the closest
point of the reachable sets. Then, if no node has been selected
or if the distance to the closest reachable state is higher than
the distance to the closest node, the expansion is filtered and
the function returns null elements. Otherwise, following the
reachability-guided principle, it returns the state xbest and the
input unear that leads to the closest reachable point.

Algorithm 2: BestState(xrand, T )
drmin ←∞, dnmin ←∞;
xbest ← ∅ ;
for all x ∈ T do

if not FullyExpanded(x) then
if CVF(x)< Random(0, 1) then

(dr, ur)← ReachSetDist(xrand, x);
dn ← Dist(xrand, x);
if dr < drmin then

drmin ← dr;
xbest ← x;
unear ← ur;

if dn < dnmin then
dnmin ← dn;

if xbest = ∅ or dnmin < drmin then
return (∅,∅);

return (xbest, unear);

B. Best Input Selection

The BestInput function described in Algorithm 3 finds
among the input generating valid states (valid meaning that
it respects the state bounds and it is collision free), the
one that leads to the closest state to xrand. Since unear and
the associated state xbest generated by the BestState
function correspond to the expansion that gets the closest
to xrand without considering bounds and collision checks, the
function tests first the feasibility of ubest. If it leads to a valid
state then unear is returned as ubest. Otherwise, all the inputs
of U not already expanded are considered and the function
returns among the valid one closest to xrand. Moreover, each
time an invalid input u is detected, the UpdateCVF function
updates the CVF of the states similarly to what is done in
[18], and labels as expanded the input u for the state x.
Finally, if all the node’s inputs are expanded, the node is
labeled as FullyExpanded.

Algorithm 3: BestInput(xbest, unear)
xcur ← Integrate (xbest, unear);
if IsValid (xbest, unear, xcur) then

return (unear, xcur);
dmin ←∞;
ubest ← ∅, xnew ← ∅ ;
for all u ∈ U do

if u 6= unear and not Expanded(xbest, u) then
xcur ← Integrate (xbest, u);
d← Dist(xcur, xrand);
if d < dmin then

if IsValid(xbest, u, xcur) then
dmin ← d;
ubest ← u;
xnew ← xcur;

else
UpdateCVF(xbest, u);

return (ubest, xnew);

C. Remarks on the Algorithm

In order to efficiently combine RG-RRT and RC-RRT,
some elements of each variant have been adapted. In
RG-RRT, the distance between xrand and the closest reach-
able point is compared to the distance between xrand and
the closest node. In our method the test is limited to the
nodes passing the CVF test. It reduces the influence of
the discarded nodes and limits the distance computations.
Moreover, in RC-RRT, when all the nodes are discarded
by the CVF filtering process (BestState function), the
closest node not fully expanded is returned, which ensures
the selection of at least one node. In our case, the function
returns empty elements and a new random state is sampled
which filters even further low interest expansions and again
avoids involving all nodes for the distance computation.
Finally, when an input fails to generate a valid state, the
reachability set of the associated node could be updated by
cropping the corresponding region. However, since the cost
of updating the set appeared to be more expensive than the
gain due to a better evaluation of the reachability sets we



discard this strategy. Moreover the importance of such nodes
is already decreased through the updating of the CVFs.

IV. EXPERIMENTS

We applied the EG-RRT planner to a non-holonomic car-
like robot with 2nd-order dynamics restricted to forward
motions, evolving in environments of various difficulty.
The planner is compared to the basic RRT, RG-RRT and
RC-RRT. The dynamics is propagated using forward inte-
gration with a time step of 0.5s. Regarding the sampling
process, and following [2], we sample states for extension
within the goal region with a probability of 0.05. Computa-
tional times in seconds are presented in the tables and were
averaged over 100 runs. Numbers in parentheses indicate
the percentage of failures to find a solution after a maximal
running time of t = 600s.

A. Model Description

The vehicle is represented by a 4 dimensional state vector
x = (x, y, θ, v) consisting of its position (x, y), its orienta-
tion θ, and its speed v. Its control input u = (a,Φ) is a 2-D
vector consisting of the acceleration a and the steering wheel
angle Φ. The model satisfies the kinodynamic constraints
according to the state transition function ẋ = f(x, u) of the
form: 

v cos θ
v sin θ

v
d tan(Φ)

a

 (1)

where d is the distance between the front and rear axle
of the car [6]. The set of input U is discretized into 25
elements such that five accelerations and five steering wheel
angles are possible for each integration step. The reachable
set is estimated by taking into account the bounds of U as
suggested in [15]. In the results presented, we used the 2-D
Euclidean distance based on (x, y) coordinates to compute
distance between the states. Note that we also performed
experiments introducing the orientation θ in the metric. It
resulted in a loss of performance in all RRT variants except
for the basic RRT where the performance remained rather
similar to those presented next.2

B. Cluttered Environment

The method was first tested on an environment cluttered
by circular obstacles. Three levels of difficulty are considered
that are function of the radius of the obstacles (see Figure
4). Table I gives computational times for EG-RRT and the
other methods it is compared to.

A first remark is that all variants outperform the basic RRT.
In this scenario, RC-RRT gets better results than RG-RRT
when the difficulty increases. EG-RRT is faster than both
RC-RRT and RG-RRT, except in the easy scenario where the
cost of the additional operations in EG-RRT slightly exceeds
the performance gain due to a better exploration.

2This phenomenon can be explained by a lower Voronoi bias when
introducing θ, which partially alleviates the blocking situations appearing in
Figure 2 and Figure 3 but at the cost of a much lower exploratory strength.

Fig. 4. EG-RRT trees for a car-like robot in environments cluttered by
circular obstacles. The benefit of such a planner gets even stronger when
the difficulty of the scene increases.

RRT RG-RRT RC-RRT EG-RRT
Easy 2.3 0.5 1.2 0.7
Medium 133.1 (20) 15.6 4.6 2.5
Difficult 598.0 (99) 253.1 (10) 22.1 12.6

TABLE I
COMPUTATIONAL TIMES IN SECONDS FOR RRT VARIANTS FOR THE

CLUTTERED SCENES OF FIGURE 4. (NUMBERS IN PARENTHESES

INDICATE NUMBER OF TIMES IN 100 RUNS THAT PLANNER FAILED TO

FIND A SOLUTION AFTER 600 SECONDS).

C. Maze Environment

The second environment is shown in Figure 1. It involves a
maze where two narrow passages (due to obstacles in yellow)
can be added which increases the difficulty of the motion
planning problem. Table II gives the computational time of
the RRT variants as a function of the number of narrow
passages involved (in case of single narrow passage, the one
on the right of the scene is considered). Contrarily to the
previous case, the scene contains regions where the tree can
be locally trapped and the path leading to the goal requires
significant detours.

In this environment, RG-RRT outperforms RC-RRT.
Again the combination of both methods increases the ex-
ploration efficiency. For the more challenging environments
(in which the scenario presented in Figures 2 and 3 gets more
probable), the benefit of using EG-RRT is even stronger.

Nb. narrow pass. RRT RG-RRT RC-RRT EG-RRT
0 52.6 10.8 32.6 10.4
1 138.3 29.6 67.9 15.9
2 251.2 (23) 52.6 109.4 (6) 19.5

TABLE II
COMPUTATIONAL TIME IN SECONDS OF RRT VARIANTS FOR THE MAZE

OF FIGURE 1, WITH 0, 1 OR 2 NARROW PASSAGES. (NUMBERS IN

PARENTHESES INDICATE NUMBER OF TIMES IN 100 RUNS THAT

PLANNER FAILED TO FIND A SOLUTION AFTER 600 SECONDS).

V. PLANNING UNDER UNCERTAINTY

Taking advantage of the efficiency of EG-RRT, we pro-
pose an extension of the method to find safe paths in
the presence of sensing and motion uncertainty. First, the
LQG-MP method [22] is applied to each path of the RRT to
characterize the a-priori probability distributions over states
in that path. Then, the distributions are used to assign costs to
the nodes of the tree based on evaluations of the probability
of collision for each portion of the path.



A. LQG-MP Costs

LQG-MP is a tool that predicts a-priori distributions of
states along paths based on stochastic dynamics and sensory
models and assuming a Linear Quadratic Gaussian (LQG)
control policy, which consists of a Kalman filter and an
Linear Quadratic Regulator (LQR) feedback controller. In
our case, the distributions are evaluated over a limited
time horizon which is sufficient to estimate the collision
risk when passing through a given state while limiting the
computational effort (in our experiments, we fixed a maxi-
mal backward horizon equivalent to 12 propagation steps).
Moreover, Kalman filter matrices that are used for evaluating
a-priori probability distributions are computed only once for
each state and stored in the node data structure which reduces
even further the computational effort (see Figure 5).

From the LQG-MP distributions, it is possible to compute
at each step the number of standard deviations cs, that one
can deviate from the path before the robot may collide with
an obstacle3. Then, a lower bound on the probability of
avoiding a collision at a stage s is given by Γ(n/2, c2s/2),
where n is the dimension of the Gaussian distribution and
Γ is the regularized Gamma function. This gives us the
following lower bound on the probability of avoiding a
collision along a portion of path of length l + 1:

Π =

l∏
s=0

Γ(n/2, c2s/2). (2)

Finally, we set the cost of a node to c = 1−Π.

Fig. 5. The cost of a new state depends on the risk of collision of the
last states traveled (dot region), for which LQG-MP can be applied to
estimate their a-priori probability distributions within the space. Estimated
distribution based on Kalman filter matrices are computed only once per
state and stored in the nodes.

B. Cost-Guided Exploration

Our planner uses the costs computed from uncertainty
to guide the search in a similar way as the Transition-
RRT approach [25]. During the search, an additional test is
performed before inserting a new state to the tree that aims
to filter highest cost states. The probability pij to accept a
new state j of cost cj reached from a parent state i of cost
ci is set as follows:

3To compute costs efficiently, we used the method proposed in [22], that
first scales the environment and the uncertainty ellipse such that this last
one becomes a unit disc and then estimates the distance between the disc
and the scaled obstacles.

pij =

{
exp(− ci−cj

K·T ) if ci > cj ,
1 otherwise,

(3)

where K is a fixed parameter and T is a variable called
Temperature that is automatically tuned during the search in
order to adaptively control the filtering strength, and ensures
a constant growth of the tree (see [25] for further details).

C. Experimental Evaluation
We integrated the cost-guided exploration mechanism into

all RRT variants for comparison. These variants are identified
using the “+” superscript. Experiments were performed
on the same car-like robot as used in Section IV, where
additional process uncertainty is modeled by corrupting the
steering wheel angle and the acceleration with Gaussian
process noise as in [22]. The adaptive temperature variable
that appears in Equation 3 is initialized to T0 = 10−4 and is
increased by 5% every 50 extension failures.

In the first scenario, represented in Figure 6, the robot
receives feedback on its position from 8 sensors (in yellow).
The noise in the measurement increases quadratically with
the distance from the sensors. Results are presented in
Table III, with time in seconds in the top row. Quality is
the estimate of the probability of avoiding collision along the
whole solution path, which is computed once the exploration
reached the goal by applying Equation 2 on the entire path.
% Success is the percentage averaged over 1000 simulations
of paths successfully executed in presence of uncertainty.
Note that in this problem, there is only an 8% probability of
successfully executing a path from a basic RRT without cost-
guidance. The data suggests that EG-RRT+ is significantly
faster and finds significantly safer paths.

Fig. 6. EG-RRT+ tree leading to a solution path in a problem with
uncertainty where 8 sensors represented in yellow are distributed in the
space. The noise of the measurement increases quadratically with the
distance from the sensors. The solution found with EG-RRT+ remains close
to sensors and far from obstacles to limit the risk of collision.

In the second scenario (Figure 7) two cameras provide
partial information on the position of the robot in the regions
of same color. The orange camera measures the x-coordinate
whereas the green one measures the y-coordinate. In this
problem, there is only a 2% probability of successfully exe-
cuting a path from a basic RRT instance if the cost-guidance



RRT+ RC-RRT+ RG-RRT+ EG-RRT+

time (s) 67.1 109.2 49.7 25.0
Quality 0.07 0.41 0.50 0.71
% Success 36 66 75 87

TABLE III
COMPARATIVE RESULTS FOR COST-GUIDED VARIANTS OF RRT IN THE

PROBLEM ILLUSTRATED IN FIGURE 6.

scheme is not incorporated. Results presented in Table IV
show that EG-RRT+ outperforms other variants by providing
much safer paths while requiring less computational effort.

Fig. 7. Comparison of solution paths in a second problem with uncertainty.
Two cameras at lower left and lower right provide partial information on
the position of the robot. The orange camera measure the x-coordinate
whereas the green one measures the y-coordinate. The path at left found by
EG-RRT+ is safer than the path at right found by RRT+ (right).

RRT+ RC-RRT+ RG-RRT+ EG-RRT+

time (s) 187.7 (2) 46.9 68.3 17.6
Quality 0.36 0.50 0.56 0.72
% Success 50 68 69 81

TABLE IV
COMPARATIVE RESULTS FOR COST-GUIDED VARIANTS OF RRT IN THE

PROBLEM ILLUSTRATED IN FIGURE 7.

VI. CONCLUSION

This paper presents EG-RRT, an Environment-Guided
variant of RRT designed for kinodynamic systems that
combines elements from several prior approaches and may
incorporate a cost model based on the LQG-MP framework
to estimate the probability of collision under uncertainty
in control and sensing. We compare the performance of
EG-RRT with several prior approaches on challenging sam-
ple problems. Results suggest that EG-RRT offers significant
improvements in performance. We also describe how to
enhance the method by a guiding mechanism that builds on
the LQG-MP framework to plan in the presence of uncer-
tainty. Results suggest that the better exploration strength of
EG-RRT produces paths faster and with a lower probability
of collision.

We would like as future work to investigate how the
size of the discretized input set affects the performance of
EG-RRT. Also, we plan to compare performance with other
planners and on other kinodynamic systems and scenarios.
In particular we would like to further investigate how the
method scales with problems of higher dimensionality.

REFERENCES

[1] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” J. ACM, vol. 40, pp. 1048–1066, November 1993.

[2] S. LaValle, Planning Algorithms. New York: Cambridge University
Press, 2006.

[3] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. Cambridge: MIT Press, 2005.

[4] J.-P. Laumond, Robot Motion Planning and Control. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 1998.

[5] S. M. LaValle and J. J. K. Jr., “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[6] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” in Algorithmic and Computational Robotics: New
Directions, B. Donald, K. Lynch, and D. Rus, Eds. Boston: A.K.
Peters, 2001, pp. 293–308.

[7] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” International Journal
of Robotics Research, vol. 21, pp. 233–255, 2000.

[8] P. Cheng, “Sampling-based motion planning with differential con-
straints,” Ph.D. dissertation, University of Illinois, 2005.

[9] E. L. Glassman and R. Tedrake, “A quadratic regulator-based heuristic
for rapidly exploring state space,” in IEEE International Conference
on Robotics and Automation, 2010, pp. 5021–5028.

[10] A. M. Ladd and L. E. Kavraki, “Fast tree-based exploration of
state space for robots with dynamics,” International Workshop on
Algorithmic Foundations of Robotics VI, pp. 297–312, 2005.

[11] ——, “Motion planning in the presence of drift, underactuation and
discrete system changes,” in Robotics: Science and Systems. MIT
Press, 2005, pp. 233–241.

[12] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Discrete search leading con-
tinuous exploration for kinodynamic motion planning,” in Robotics:
Science and Systems. MIT Press, 2008, pp. 326–333.

[13] ——, “Impact of workspace decompositions on discrete search leading
continuous exploration (DSLX) motion planning,” IEEE International
Conference on Robotics and Automation, pp. 3751–3756, 2008.

[14] ——, “Motion planning with dynamics by a synergistic combination
of layers of planning,” IEEE Transactions on Robotics, vol. 26, no. 3,
pp. 469–482, 2010.

[15] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sam-
pling for planning under differential constraints,” in IEEE international
conference on Robotics and Automation, Piscataway, NJ, USA, 2009,
pp. 4387–4393.

[16] M. Kalisiak, “Toward more efficient motion planning with differen-
tial constraints,” Ph.D. dissertation, University of Toronto, 2007.

[17] P. Cheng and S. M. LaValle, “Resolution complete rapidly-exploring
random trees,” in IEEE International Conference on Robotics and
Automation, 2002, pp. 267–272.

[18] P. Cheng and S. M. Lavalle, “Reducing metric sensitivity in ran-
domized trajectory design,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 43–48, 2001.

[19] J. Kim and J. M. Esposito, “An RRT-based algorithm for testing and
validating multi-robot controllers,” in Robotics: Science and Systems,
2005, pp. 249–256.

[20] N. Melchior and R. Simmons, “Particle RRT for path planning
with uncertainty,” in IEEE International Conference on Robotics and
Automation, 2007, pp. 1617–1624.

[21] G. Kewlani, G. Ishigami, and K. Iagnemma, “Stochastic mobility-
based path planning in uncertain environments,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2009, pp. 1183–
1189.

[22] J. van den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” Robots, Science and Systems, 2010.

[23] J. van den Berg, S. Patil, R. Alterovitz, P. Abbeel, and K. Goldberg,
“LQG-based planning, sensing and control of steerable needles,” Proc.
Workshop on Algorithmic Foundation of Robotics, pp. 373–389, 2010.

[24] A. Shkolnik, “Sample-based motion planning in high-dimensional and
differentially-constrained systems,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2010.

[25] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning
on configuration-space costmaps,” IEEE Transactions on Robotics,
vol. 26, pp. 635–646, 2009.


