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Abstract— The main drawback of appearance-based robot
localization with respect to landmark-based one is that it
requires a map of the area where the robot is expected
to move including images taken at known positions. In this
paper, we describe a concurrent map-building and localization
(CML) system developed within the appearance-base robot
localization paradigm. This allows us to combine the good
features of appearance-base localization such as simple sensor
processing or robustness without having to deal with its
inconveniences. Our localization system is based on a multi-
Gaussian representation of the position of the robot. Using
this kind of representation, we can deal with the global
localization problem while being efficient both in memory
and in execution time.

I. INTRODUCTION

Robot localization methods can be divided in two fam-
ilies: methods based on landmark extraction and track-
ing [1]–[4], and methods based on an appearance modeling
of the environment [5]–[7]. Landmark-based localization
methods rely on the assumption that the position of the
landmarks can be accurately extracted from the raw sensors
readings. However, the transformation from sensor read-
ings to geometric information is, in general, complex and
prone to errors. As a counterpart, in the appearance-based
methods the environment is not modeled geometrically, but
as an appearance map that includes a collection of sensor
readings obtained at known positions. The advantage of
this representation is that the raw sensor readings obtained
at a given moment can be directly matched with the
observations stored in the appearance-based map.

A comparison between the two families of localization
methods (using vision as sensory input) can be found
in [8], showing that appearance-based methods are more
robust to noise, certain type of occlusions and changes
in illumination1 that landmark based-methods. The main
drawback of appearance-based methods is that localization
is only possible in previously mapped areas. The con-
struction of a map is a supervised process that can be
quite time-consuming and that is only valid as far as no
important modifications of the environment occur. While
much work has been done on Concurrent Mapping and
Localization (CML) using landmarks [9]–[11], this is not

1When a edge detector is used to pre-process the images.

the case within the appearance-based approach. Recent
work in this line [12] use a Kalman filter formulation to
estimate the position of the robot. Using a Kalman filter
only one hypothesis can be tracked at at time and, due
to this, this work does not exploit all the potential of the
appearance based framework as, for instance, the ability to
perform global localization (i.e., the localization without
any prior information on the robot’s position).

In this paper, we introduce a system that is able to
perform CML within the appearance-based approach. With
this aim, we replace the static, pre-defined map of the
environment used in appearance-based localization by an
approximation to it obtained and refined by the robot as
it moves in the environment. The basic idea we exploit
in our system is that, if the robot re-visits an already
explored area, it can use the information previously stored
to reduce the uncertainty on its position. Additionally,
the improvements on the robot’s position can be back-
propagated to map points stored in previous time slices
using trajectory reconstruction techniques [13]. The result
is a correction of both the robot’s position and the map and,
thus, we achieve the objective of concurrently localize and
build a correct map of the environment.

Our approach is closely related with the work on map
building on cyclic trajectories [14], [15] that is usually done
using range sensors [16]. Range sensors (such as sonars
or laser scanners) provide distance information (position
of obstacles w.r.t. the robot) that can be integrated into a
geometric map of the environment. Our sensor readings
(images) do not provide geometric information and, thus,
our map is not a geometric/explicit map of the environment
but an implicit map in the space of features derived from
images. Due to the different nature of the maps, the main
issues of our approach are different form the relevant
issues in existing work. For instance, when using range-
based sensors, one of the main issues is that of sensor
matching (i.e., to determine the translation and rotation for
a given sensor reading so that the match with the map is
maximal). In our case, no sensor matching is necessary
(images are directly compared in the feature space) but the
map representation becomes more complex (it is not just
a collection of 2D points, but a set of Gaussian mixtures
with associated image features).



We first describe the formalism we use in our lo-
calization framework both for robot’s position and for
map representation. Next, we describe how to estimate
the position of the robot (assuming we have a map).
After that, we describe how to extract features from the
input images and how to on-line approximate the feature-
based map necessary for localization. Finally, we show
the results obtained with the new CML system, and we
conclude summarizing our work and and extracting some
conclusions out of it.

II. MULTI-GAUSSIAN BASED LOCALIZATION

Probabilistic systems for robot localization can be clas-
sified according to the flexibility of the mechanism used
to represent the probability distribution on the robot’s
position. Systems based on the Kalman filter [3] represent
the robot’s position using a single Gaussian. These systems
are effective avoiding the error on the robot’s location to
grow without any bound (as it would happen using only
odometry for localization). Additionally, the simplicity
of the model used on these systems allows for formal
demonstration on the convergence of the localization (and
of the associated mapping process, if any). However, using
a single Gaussian, it is not possible to track more than
one hypothesis at the same time and, due to this, the
Kalman-based localization systems are unable to deal with
the global localization problem (i.e., to determine the
location of the robot without any prior knowledge on the
robot’s position) or with the kidnap problem. Probabilistic
occupancy grids [11], [17] and particle filters [18], [19] can
be used to solve the global localization problem. In the
probabilistic occupancy grids framework, the area where
the robot is expected to move is discretized in small cells
and the system maintains the probability for the robot to
be in each one of these cells. In the particle filter, the robot
position is estimated using a set of discrete samples, each
one with an associated weight to represent its importance.
Both occupancy grids and particle filters are extremely
flexible but also computationally expensive in memory and
in execution time per time slice.

Multi-Gaussian probability representations [20]–[22] are
an option that is between Kalman-filter systems and parti-
cle filter. These systems can track more than one hypothesis
simultaneously but they do not reach the degree of flexi-
bility of particle filters. However, for practical purposes,
an approximation of the probability on the robot’s position
as a set of Gaussian functions is accurate enough and it
has the advantage of being highly intuitive. Additionally,
Multi-Gaussian systems use less resources (in memory and
time) than particle filters and, of course than occupancy
grids. A comparison between multi-Gaussian representa-
tions and other formalisms for robot’s localization can be
found in [23] showing the advantages of multi-hypotheses
trackers in terms of localization accuracy and efficiency.
As a drawback, working with a multi-hypothesis tracker
poses the problem of data association (i.e., to determine
which piece of the sensory information to use to update
each Gaussian hypothesis). This data association problem

is not present in particle filtering or probabilistic occupancy
grids.

In this paper, we use the multi-Gaussian approach intro-
duced by Jensfelt and Kristensen in [22]. Our contribution
is that, while Jensfelt and Kristensen use a pre-defined map
of the environment, our system is able to on-line build the
map as the robot moves.

III. ROBOT POSITION ESTIMATION

The probabilistic localization methods aim at improving
the estimation of the pose (position and orientation) of
the robot at time t, xt, taking into account the move-
ments of the robot {u1, . . . , ut} and the observations of
the environment taken by the robot {y1, . . . , yt} up to
that time2. Formally, we want to estimate the posterior
p(xt|{u1, y1, . . . , ut, yt}). The Markov assumption states
that this probability can be updated from the previous
state probability p(xt−1) taking into account only the last
executed action ut and the current observation yt. Thus,
we only have to estimate p(xt|ut, yt). Applying Bayes we
have that

p(xt|ut, yt) ∝ p(yt|xt) p(xt|ut), (1)

where the probability p(xt|ut) can be computed propagat-
ing from p(xt−1|ut−1, yt−1) using the action model

p(xt|ut) =

∫

p(xt|ut, xt−1) p(xt−1|ut−1, yt−1) dxt−1.

(2)
Equations 1 and 2 define a recursive system to estimate the
position of the robot.

We use a Gaussian mixture Xt = {(xi
t,Σ

i
t, w

i
t) | i ∈

[1, N ]} to represent the position of the robot. Thus

p(xt|ut, yt) ∝
N

∑

i=1

wi
tφ(xt|x

i
t,Σ

i
t),

with φ(xt|x
i
t,Σ

i
t) a Gaussian centered at xi

t and with
covariance matrix Σi

t. The weight wi
t (0 < wi

t ≤ 1)
provides information on the certainty of the hypothesis
represented by the corresponding Gaussian.

The motion of the robot is modeled as

xt = f(xt−1, ut, vt), (3)

with vt a Gaussian noise with zero mean and covariance
Q. With this, the application of the action model (equa-
tion 2) amounts at applying equation 3 to each one of the
components in Xt. Using a linear approximation,

xi
ut

= f(xi
t−1, ut),

Σi
ut

= FΣi
t−1F

> + GQG>, (4)

with F the Jacobian of f with respect to xi
t−1 and G the

Jacobian of f with respect to vt−1. With the set Xut
=

{(xi
ut

,Σi
ut

, wi
t) | i ∈ [1, N ]} we define

p(xt|ut) ∝
N

∑

i=1

wi
tφ(xt|x

i
ut

,Σi
ut

).

2In our notation, the Markov process goes through the following
sequence x0

u1
−→ (x1, y1)

u2
−→ . . .

ut
−→ (xt, yt).



After we have p(xt|ut), we have to integrate the infor-
mation provided by the sensor readings (see equation 1).
At this point, we assume we have a map of the environment
from which we can define p(yt|xt) as a set of Gaussian
functions with parameters Yyt

= {(xj
yt

,Σj
yt

, wj
yt

) | j ∈
[1, N ′]}. In next section, we describe how to create and
update the set Yyt

. From Yyt
we can define

p(yt|xt) ∝

N ′

∑

j=1

wj
yt

φ(xt|x
j
yt

,Σj
yt

).

If Yyt
has no components (N ′ = 0), the estimation on the

robot’s position obtained applying equation 4 can not be
improved and we have

xi
t = xi

ut
,

Σi
t = Σut

.

If N ′ > 0, we have to fuse the Gaussian functions in Xut

with those in Yyt
. The direct application of equation 1

amounts to associate (i.e., to find a Gaussian that represents
the multiplication of) each one of the elements in Xut

with
those in Yyt

. This would produce a quadratic (N × N ′)
increment of the number of hypotheses. Too keep the num-
ber of hypotheses under a reasonable limit, we will only
associate elements of Xut

and Yyt
if they are close each

enough meaning that they are different approximations of
the same positioning hypothesis. This arises the problem
of data association: to determine which elements on Yyt

and on Xut
refer to the same hypothesis. We perform

the data association using the same criterion used in [22].
For each couple (i, j) with (xi

ut
,Σi

ut
, wi

t) ∈ Xut
and

(xj
yt

,Σj
yt

, wj
yt

) ∈ Yyt
we compute the innovation as

υi,j = xi
ut

− xj
yt

Si,j = Σi
ut

+ Σj
yt

,

and we assume that hypotheses on the robot position i and
sensor reading j match if the following condition holds

υi,jS
−1

i,j υ>

i,j ≤ γ. (5)

If there is a match, we update of hypothesis i with the
sensor information j is done using the Covariance Inter-
section rule [24]. This rule permits filtering and estimation
to be performed even with the presence of the unmodeled
correlations in the sensor readings that are so common
in real-world problems. This rule updates the covariance
matrix and the average as

(Σi
t)

−1 = (1 − ω)(Σi
ut

)−1 + ω(Σj
yt

)−1

xi
t = Σi

t[(1 − ω)(Σi
ut

)−1xi
ut

+ ω(Σj
yt

)−1xj
yt

], (6)

with ω = |Σi
ut
|/(|Σi

ut
|+|Σj

yt
|). If the information provided

by the sensors is more reliable than the current one,
this update results in a reduction of the uncertainty of
hypothesis i (a reduction in the size of Σi

t w.r.t. Σi
ut

).
Hypotheses on the state not matched with any Gaussian

on Yyt
are just keep without any modification, but the

weight update described below. Sensor components not
matched with any state hypothesis have to be introduced

as new hypotheses on Xt. This allow us to deal with the
kidnap problem.

The confidence on each hypothesis in Xt is represented
by the corresponding weight wi

t. Following [?], it seems
clear that, the more the sensor readings recently supporting
a given hypothesis the larger the confidence. Thus, we
increase wi

t for the hypothesis that are properly matched
in the data association process

wi
t+1 = wi

t + α(1 − wi
t), (7)

with α a learning rate in the range [0, 1]. For the not
matched hypothesis, the confidence is decreased as

wi
t+1 = (1 − α)wi

t. (8)

Hypotheses with too low weight are removed from Xt.

IV. IMAGE FEATURE EXTRACTION

Our sensory input for localization are images taken by
the camera mounted on the robot. A problem with images
is their high dimensionality, resulting in large storage
requirements and high computational demands. To alleviate
this problem, Murase and Nayar [25] proposed to compress
images (z) to low-dimensional feature vectors (y) using a
linear projection

y = W z.

In the work of Murase and Nayar, the projection matrix
W is obtained by principal component analysis (PCA)
on a supervised training set (T = {(xi, zi)| i ∈ [1, L]})
including images zi obtained at known states xi. However,
in our case, we don’t have a training set. For this reason, we
use a standard linear compression technique: the discrete
cosine transform (DCT) [26], [27]. We select this transform
since, PCA on natural images approaches the discrete
cosine transform in the limit. The DCT computes features
from images in a linear way using a projection matrix W
defined as

Wj,k = zk cos
(π

n
j(k − 1/2)

)

(9)

with j the number of the feature to be extracted, zk the
k-th pixel of image z (considering the image as a vector)
and n the total number of pixels in the image. For a given
image we compute a set of d features (d is typically around
10). Those features capture a very general description of
the image, omitting the low level details and making the
comparison between images more meaningfully.

V. ENVIRONMENT MAPPING

The manifold of features y can be seen as a function
of the pose of the robot x, y = g(x). The objective of
a appearance-based mapping is to approximate g−1 since
this gives us information about the possible positions of
the robot given a set of features.

At a given time, we have a pair (Xt, yt) with yt a set
of features and Xt the estimation of the position of the
robot. We can use the sequence of such pairs obtained as
the robot moves as a first approximation to the map needed



for localization. Thus, our map can be initially defined as
M = {Yyt

, yt)}, with Yyt
= Xt.

As explained in section III, when the robot re-observes a
given set of features yt, we can use Yyt

to improve the lo-
cation of the robot after the application of the action model
Xut

. Due to noise a given observation is never exactly re-
observed. So, we considerer that two observations y and y′

are equivalent if ‖y−y′‖ < δ. This discretizes the space of
features with granularity δ. Thus, if y (±δ) is re-observed,
we can use an old estimation on the robot’s position to
improve the current one. However, we can also use the
information the other way around, we can improve Yyt

using the additional information provided by the current
Xut

. What we need to do is to introduce new information
into a given Gaussian mixture and a procedure to do that is
exactly what we have described in section III. Therefore,
we can improve Yyt

using this same procedure but here
the roles are swapped: in previous section we update the
position of the robot using the sensor information and now
we adjust the map using the information provided by the
position of the robot. So, we have to swap Xut

with Yyt
,

xut
with xyt

, and i with j. The only difference is that we
assume the environment to be static and, thus Yyt

is not
updated by any action model.

At a given moment, the robot is at a single position. So,
when the state Xut

includes more than one hypothesis, we
are uncertain about the robot’s location and, consequently,
any map update using Xut

will include incorrent map
modifications that we will need to undo later on. To avoid
this problem, we use a conservative strategy in the map
update: when Xut

is not a single hypothesis (i.e., a single
Gaussian) no map update is done. If Xut

is a set of
Gaussian functions (or a uniform distribution) and, due
to the state update, it becomes a single Gaussian, we use
the path followed by the robot and the backward action
model to add new points to the map corresponding to the
time slices where the robot was unsure about its location
(and that now we now can unambiguously determine).
Additionally, if Xt is a single Gaussian and the state
update results in a reduction of its covariance, we also
backpropagate this error reduction to previous map points.
The result of these two backpropagation process is to add
new points to the map (i.e., to extend the map) and to
improve the estimation of previously stored map points
(i.e., to improve the quality of the map).

The mapping strategy just outlined allow us to build an
appearance-based map of a given environment along the
paths followed by the robot. When the map M is empty,
we need to now the initial position of the robot (the map
is build with respect to this position), but when M has
some elements, global localization is possible. To perform
global localization we have to initialize the system with
X0 containing a uniform distribution. As soon as the robot
observes features already stored in the map (i.e., it visits
an already explored area) new hypotheses are added to Xt

using the data stored in the corresponding map points. If
one of these new hypotheses becomes relevant enough, we
consider it as the correct position of the robot, the rest of

Multi Hypotheses CML(M):
Input: M, the map.

If M is empty X ← {(x = 0, Σ = 0, w = 1)}.
else X ← Uniform distribution.

Do forever:
Update X according to the action model (equations 4).
Get an image z.
Compute the features y of z using the DCT (equation 9).
(y, Y )← arg min∀(y′,Y ′)∈M ‖y − y′‖
if ‖y − y′‖ > δ then

M ←M ∪ {X, y}
else

Associate elements in X and Y (equation 5).
Update X:

For the associated elements use equations 6, 7.
For the non-associated decrease weight (eq. 8).
Remove elements in X with too low weight.

if X is a single Gaussian (x)
if x associated with y ∈ Y

Update y using equations 6, 7.
else

Add x to Y .
Decrease weight for y′ ∈ Y, y′ 6= y (eq. 8).
Remove elements in Y with too low weight.

Fig. 1. The multi hypothesis tracking, appearance-based CML algorithm.

tentative hypothesis are removed, and the new information
on the robot position is backpropagated adding points to
the map.

Figure 1 summarizes the CML algorithm we introduce
in this paper.

VI. EXPERIMENTS AND RESULTS

We tested the proposed CML system mapping a corridor
25 meters long. We drive the robot using a joystick all
along the corridor and back to the origin. Figure 2-A shows
the path followed by the robot according to odometric
information. As we can see there is a large error in the
final position of the robot (about 40 cm in the X axis, 300
cm in the Y, and 20 degrees in orientation). In the figure,
each one of the arrows correspond to a robot’s pose where
a map point is stored.

Our CML system detects that the final point in the
trajectory is close to the initial one comparing the features
of the images obtained at those points. This coincidence
allows a drastic reduction on the uncertainty on the robot’s
location and this reduction can be back-propagated improv-
ing the quality of the map. Figure 2-B show the corrected
map points after the loop is closed. We can see that the
correction affects mainly to the points close to the end
of the trajectory, where the back-propagated information
is more certainty that the previously stored one: close to
the beginning of the trajectory the initial information is
more reliable than the back-propagated one and the map
points are not modified. In figure 2-B, the bright red arrows
correspond to poses where there is perceptual aliasing: the
same set of features are observed from all the positions
plotted in red. Perceptual aliasing is one of the reasons why
we need to keep track of many hypotheses simultaneously.
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Fig. 2. Path of the robot used for the tests. A- Using only odometry, B-
The map is corrected when the loop is closed C- Adding new portions
the map (to do that the robot performs global localization).

Another situation where multiple hypothesis should be
considered is when performing global localization: when
the robot is started at a unknown position (but in a previ-
ously mapped area) or after a kidnap. In the experiment
reported in figure 2-C, we started the robot in a non-
mapped area and we drive it to the beginning of the corridor
previously mapped. In this case, the robot operates with
a uniform distribution about its position. When consistent
matches with already existing map points occur, the robot
determines its position, the uniform distribution is replaced
by a Gaussian defined from the map and new map points
along the robot path are added.

In a third experiment we tested the ability of our system
to deal with the kidnap problem, even while the map is
in early phases of its construction. We move the robot in
a close circuit of 3.5 × 3 meters (figure 3-top) departing
from position O. At the first loop, at position A the robot
is kidnapped: lifted and displaced to position B and rotated
180◦. Thus, according to odometry the robot moves from
A to C while it is actually is moving from B to O. The
kidnap introduces a large error while the map is in its
initial construction phase (observations initially assigned
to points in the path from A to C are actually occurring in
the path from B to O). When the robot gets to O a new
hypothesis (the correct one) is introduced into the state.
This new hypothesis is reinforced by the observations and,
after few time slices, it becomes the most relevant one,
the wrong hypothesis is removed and, in the following
iterations over the circuit, the map is corrected. We can
use an example to show how the map correction works.
Initially, the incorrect association ([(x1,Σ1, w1 = 1)], y)
is stored in the map. In the second loop, this map point
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Fig. 3. Top: The circuit used for the kidnap experiment. Bottom: the
error in localization for different time slices.

is updated to ([(x1,Σ1, w1 = 1), (x2,Σ2, w2 = 1)], y).
In the following iterations, the weight of the association
(x1, y) decreases sine it is not observed again while the
correct association (x2, y) is reinforced. After few loops,
the association (x1, y) becomes weak and it is eventually
removed from the map.

Figure 3-Bottom shows the error in localization as the
robot moves around the circuit. The large errors at time
slices 40 − 90 are caused by the initial kidnap but, as the
robot gets to O again, the error is canceled and keep low.
Every loop around the circuit takes 100 time slices.

VII. DISCUSSION AND FUTURE WORK

We have introduced a system that is able to simulta-
neously build an appearance-map of the environment and
to use this map, still under construction, to improve the
localization of the robot. The on-line construction and
update of the map allow us to overcome the major hurdles
of traditional appearance-based localization. First, the robot
can operate in previously unknown areas. Second, we can
deal with changes in the environment: new observations
obtained at already explored positions are added to the
map, the old observations at those position are not used
any more and they are slowly forgotten. Finally, the way
in which the map is built guarantees a uniform sampling
of the feature space and not of the geometric space, as
it happens in normal appearance-based localization. Sam-
pling uniformly the feature space is essential for achieving
a good localization since the sensor model is based on the
similarities (i.e., the distances) in that space.

An implicit assumption in our mapping strategy is that
the robot moves repetitively through the same areas/paths.
However, this is a quite reasonable assumption for service
robots moving in relatively small offices or houses, that
are the kind of environments in which we plan to use our
system.



The proposed CML approach does not provides an
exact position for the robot, but an approximation to it.
However, this kind of rough information on the robot
position is enough for most tasks, assuming that the low
level behaviors of the robot controller are able to deal with
local aspects of the environment (obstacles, doors, etc).

Due to the way in which we define the map, the map
error will be small close to the areas where the map is
started and growing for points far away from the origin.
Actually, the error for a given map point p is is lower
bounded by the error in odometry for a direct displacement
from the origin of the map O to p. As a reference, our
Nomad Scout robot can map an area of 20×20 meters with
an accuracy below 1 meter. Since the error in odometry
limits the area that we can map with a given accuracy,
we would like to complement our localization system
with additional odometric sensors (accelerometers, vision-
based motion detection, etc) to determine more accurately
the relative displacements of the robot. Another solution
to enlarge the mapped area is to perform the CML in
contiguous areas an then integrate the resulting sub-maps.

The results presented in this paper qualify the proposed
approach as a very promising one, but much work has to be
done to complete the system. A point that deserve further
attention in our approach is the map management: how
map points are efficiently stored and linked between them.
A proper map structure would easy the task of keeping the
map consistency, allowing an efficient back-propagation of
the information obtained as the robot moves (introduction
of new hypotheses, etc). More elaborated ways to perform
the data association and the hypotheses pruning are also
needed. Finally, another point we want to address in the
near future is the integration of our CML system with a
navigation module. For this purpose, we have to devise
criterion to select the robot’s movements so that accuracy in
localization, accuracy in mapping, and efficiency in reach-
ing the desired positions are simultaneously optimized.
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