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Abstract. Different branch-and-prune schemes can be found in the lit-
erature for numerically solving the position analysis of spherical mecha-
nisms. For the prune operation, they all rely on the propagation of motion
intervals. They differ in the way the problem is algebraically formulated.
This paper exploits the fact that spherical kinematic loop equations can
be formulated as sets of 3 multi-affine polynomials. Multi-affinity has an
important impact on how the propagation of motion intervals can be
performed because a multi-affine polynomial is uniquely determined by
its values at the vertices of a closed hyperbox defined in its domain.
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1 Introduction

Solving systems of geometric constraints is a fundamental topic in Computa-
tional Kinematics, Computer Graphics, and Computational Chemistry. In Com-
putational Kinematics, it is commonly referenced to as position analysis or dis-
placement analysis which includes the inverse (forward) kinematics of serial (par-
allel) robots.

The solution to position analysis problems is usually preferred to be in closed-
form. That is, the solution is given as the roots of a closure polynomial of the low-
est possible degree in a single variable (sometime called characteristic equation

of the mechanism). The most straightforward approach to obtain these polyno-
mials consists in applying a series of variable eliminations to a set of independent
kinematic loop equations. Nevertheless, to make this process practical, it is usu-
ally needed to simplify the formulation by exploiting the particularities of each
problem instance. As a result, obtaining the 16-degree closure polynomial of a
general 6R robot [1] is quite different from obtaining the 40-degree closure poly-
nomial of a general Gough-Stewart parallel platform [2]. Automating the process
to obtain these polynomials for any case in a reasonable amount of time seems
impossible at the moment. Nevertheless, if instead of a set of kinematic loop
equations, a distance-based formulation is used, a higher lever of generality and
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uniformity has recently been obtained thus opening an avenue for an automatic
analysis without ad hoc considerations (see [3] for a step in this direction).

Alternatively to obtain a closure polynomial, it is possible to directly compute
the solutions of the system of loop equations by using numerical approaches such
as those based on numerical continuation or interval methods (see, for example,
[4] and [5], respectively). These numerical approaches are the only alternative to
large problems like those arising in mechanism synthesis.

The closed-form position analysis of spherical mechanisms (mechanisms con-
structed by connecting links with hinged joints such that the axes of each hinge
passes through the same point) has received the attention of different authors.
For example, the methods presented by Wampler in [6] and by Bai et al. in [7]
can be applied to obtain closure polynomials for spherical mechanisms with up
to three and to two independent kinematic loops, respectively. Numerical ap-
proaches has also been tested. Bomb́ın et al. reformulated the kinematic loop
equations in terms of Bernstein polynomials [8, 9]. This permited to formulate
the problem in terms of control points, which could be recalculated for arbi-
trary ranges using a simple subdivision procedure. Celaya presented an inge-
nious method to exactly propagate intervals of motion in a spherical kinematic
loop [10]. The iterative application of this method to all the kinematic loops
describing the problem at hand permitted to converge to all the solutions.

The work of Bomb́ın introduced an important concept in position analysis:
that of control points. Specifying curves and surfaces in terms of control points is
one of the major techniques used in geometric design [11]. The idea is simple: the
values of a polynomial function in a given domain (usually an othotope) lie inside
the region determined by the convex hull of a set of control points whose number
depend on the degree of the polynomial. Obtaining these control points requires
expressing the polynomials in Bernstein base. Nevertheless, if the polynomials
are multi-linear or even multi-affine, this operation is trivial because the control
points are obtained by simply evaluating the polynomial at the corners of the
orthotope defining the domain.

Although any polynomial can be easily transformed into a system of multi-
affine polynomials by introducing new variables and more equations (as it is
done, for example, in [12]), increasing the number of equations is not, in general,
a good idea. Fortunately, we will show in this paper how the proper formulation
of kinematic loop equations in spherical mechanisms directly leads to a minimal
set of multi-affine polynomials. As a consequence, a simple and yet very effective
branch-and-prune algorithm is derived to obtain the roots of these systems of
equations.

This paper is organized as follow. The next section describes how to obtain
an multi-affine formulation for the kinematic loop equations in spherical mecha-
nisms using quaternions. Section 3 deals with the numerical problem introduced
by the Weierstrass substitution, implicit in the proposed formulation, and how to
avoid it. The branch-and-prune algorithm is described in Section 4. The behavior
of this algorithm is analyzed in Section 5 for three problems of increasing com-
plexity. Finally, Section 6 summarizes the points and gives some prospects for
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feature research such as the generalization of the presented approach to spatial
mechanisms.

2 Kinematic loop equations in spherical mechanisms

An spherical kinematic loop equation can always be formulated in terms of
products of unit quaternions

q1 · q2 . . . qr = 1, (1)

where each quaternion has the form

qi =
1

√

t2i + 1
[1 + ti(pixi+ piyj + pizk)] , (2)

where pi = (pix piy piz) is a unit vector representing the rotation axis and ti =

tan
(

φi

2

)

, φi being the rotated angle about it. The angle φi can be constant or

variable.
The expansion of equation (1) leads, after clearing denominators, to the fol-

lowing four scalar equations

f0(t1, . . . , tn) =
√

(t21 + 1) · · · (t2n + 1),

fj(t1, . . . , tn) = 0, j = 1, 2, 3,

where in the parentheses only appear the variable ti, i = 1, . . . , n which have been
renumbered, that is, n ≤ r. These four equations are not independent because
they correspond to the components of a unit quaternion. While fj , j = 1, 2, 3,
are affine polynomials in each variable, f0, after clearing the radical, leads to a
quadratic polynomial. For obvious simplicity reasons, in what follows, we will
take fj , j = 1, 2, 3, as the set of three independent equations. Therefore, if our
problem can be described in terms of n independent loop equations, we will have
a set of 3n multi-affine polynomial equations.

A word of caution should be added here. Sometimes, in an abuse of language,
a system of equations like the one given by fj , j = 1, 2, 3, is called multi-linear.
Strictly speaking, it is multi-affine. Indeed, fj can be expressed as a function of
ti as fj = ajti + bj which is not linear in ti, but affine.

Multi-affine polynomials have two interesting properties which are very useful
for our purposes. If we have an affine polynomial function whose domain is an
orthotope, then

– the value of the function in any point inside the domain defined by the
orthotope is inside the convex hull of the points resulting from evaluating
the function at the corners of the orthotope [13].

– the polynomial function is completely determined by the values of the func-
tion at the corners of the orthotope. The value of the function in any other
point can be obtained by a simple interpolation procedure [14].

These two properties are exploited in Section 4.
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3 Numerical issues derived from the Weierstrass

substitution

t = 0

t = 0.5

t = 1

t = 2

t = 3

t = −1

∞

Fig. 1. The Weierstrass substitution
maps the interval [−π, π] onto the in-
terval [−1, 1]. Numerical problems arise
as we approach π because it is mapped
onto ∞.

In above formulation, the variable ti is
related to the angle variable φi thought

the relationship ti = tan
(

φi

2

)

, that is,

the tangent half-angle substitution (also
known as the Weierstrass substitution).
From the geometric point of view, this
substitution can be seen as the stereo-
graphic projection of the unit circle, from
x = −1, to the line y = 0 (see Fig. 1).
Thus, if φi = π, ti is infinity. Then, if a
mechanism has a solution near π, numer-
ical problems occur. Moreover, if we want
to apply a branch-and-prune method to
obtain the solutions of our system of equa-
tions, it is not a good decision to start
with a domain ranging from −∞ to +∞
in all variables. One possible solution to
this situation is to split the problem in
two: one for φi ∈ [−π/2, π/2], and an-
other one for φ′

i ∈ [−π/2, π/2], where
φ′

i = φi + π. The second problem just
consists in shifting the origin of the ro-
tation about pi π radians. This can be
accomplished by including a constant ro-
tation prior to the variable rotation about
the same axis. For example, if in the loop
equation q1 · q2 . . . qr = 1, we want to
shift the origin of the rotation about pi,

1 ≤ i ≤ r, π radians, we just have to substitute qi by (ipx + jpy + kpz)qi.
This operation has to be done for all variables. In other words, if our problem
has r variables, we will decompose it into 2r equivalent problems in the do-
main [−1, 1]1 × [−1, 1]2 × . . . [−1, 1]r. Having this domain for all problems has
an important extra advantage: if the values of the functions are obtained by in-
terpolation from the values of the function at the corners of the initial domain,
this is simplified because all coordinates are −1 or 1.

4 Solving multi-affine polynomial systems

Let us define the equation
F(x) = 0, (3)

where F = (f1(x), . . . , fm(x)), and each function fi is a multi-affine polynomial
in the unknowns x1, . . . , xn.
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Next, we describe an algorithm able to isolate all solutions of (3) that lie
in the orthotope B ∈ R

n defined as the Cartesian product B = [xl
1, x

u
1 ] × · · · ×

[xl
n, x

u
n].

4.1 A branch-and-prune scheme

Generally speaking, the algorithm isolates the solutions by iterating two oper-
ations, box reduction and box bisection, using the following branch-and-prune
scheme. Using box reduction, portions of B containing no solution are cut off
by narrowing some of its defining intervals. This process is iterated until either
(1) the box is reduced to an empty set, in which case it contains no solution,
or (2) the box is “sufficiently” small, in which case it is considered a solution
box, or (3) the box cannot be “significantly” reduced, in which case it is split
into two sub-boxes via box bisection. If the latter occurs, the whole process is
repeated for the newly created sub-boxes, and for the sub-boxes recursively cre-
ated thereafter, until one ends up with a collection of boxes whose size is under
a specified size threshold, as explained in detail below.

If there is only a finite number of solution points in B, this algorithm returns
a collection of small boxes containing them all. If, contrarily, the solution space is
an algebraic variety of dimension one or higher, the algorithm returns a collection
of small boxes discretizing the portions of this variety contained in B. In all cases,
the algorithm is complete, in the sense that every solution point will be contained
in one of the returned boxes.

Let us now follow the box reduction and bisection operations in detail, to
later see how they fit into the algorithm.

4.2 Box reduction and box bisection

The box reduction operation is based on the following lemma, which is a direct
consequence of Theorem 1.1 in [13]:

The point (x, f(x)) ∈ R
n+1, where f is a scalar multi-affine function

and x = (x1, . . . , xn) is a point lying in B = [xl
1, x

u
1 ] × · · · × [xl

n, x
u
n], is

contained in the convex hull of the 2n points {(x, f(x)) | x ∈ {xl
1, x

u
1} ×

. . .× {xl
n, x

u
n}}.

In other words, the graph of f(x) corresponding to a box B necessarily lies inside
the convex hull of the 2n points of the form (x, f(x)), where x is a corner of B.

This result can be readily used to refine an initial bound of the solution space
of the system (3). For the sake of clarity, we explain how this is done when (3)
consists of just one equation in two variables, and show at the end how the same
process directly applies to the general case.

Assume that we want to find all solutions of a multi-affine equation f(x) = 0,
for x = (x1, x2) in the box B = [xl

1, x
u
1 ]× [xl

2, x
u
2 ] ∈ R

2 (Fig. 2). Since (x, f(x))
must lie within the convex hull H of the 22 points {(x, f(x))| x ∈ {xl

1, x
u
1} ×

{xl
2, x

u
2}} of R3, we can compute H and intersect it with the plane f(x) = 0
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f(x1, x2) f(x1, x2)

f(x1, x2)

x2

x2
x1

x1

xl

2
xu

2xl

1
xu

1

xl

2

xu

2 xu

1

xl

1

Fig. 2. If f(x1, x2) is multi-affine, due to the convex hull property, the image of the
points in the domain [xl

1, x
u

1 ]× [xl

2, x
u

2 ] (shown in red) necessarily lies inside the shown
tetrahedron. The vertices of this tetrahedron (shown in green) are obtained by evalu-
ating f in the corners of the domain. Then, from the projections of this tetrahedron
onto the coordinate planes (shown in blue), the initial ranges for the variables can be
reduced to the regions where these projections intersect the coordinate axes.

to obtain a polygon whose smallest enclosing box gives a better bound for the
solutions. Since the explicit computation of H and its intersection with f(x) = 0
are inefficient operations when f depends on a high number of variables, we will
adopt the following variation of this technique: we simply project the hull H
onto each coordinate plane, as depicted in Fig. 2 (top), and intersect each of
the resulting trapezoids with the f(x) = 0 line, as shown in Fig. 2 (bottom).
Clearly, from the initial range of a variable we can prune those points for which
the trapezoid does not intersect the f(x) = 0 line. Thus, these segment-trapezoid
clippings usually reduce the ranges of some variables giving a smaller box that
still bounds the root locations (see the black rectangle in Fig. 2). The experiments
show that, although this strategy produces less pruning than the convex hull-
plane clipping, it results advantageous due to the lower cost of its operations.
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Fig. 3. The three test cases used to validate the branch-and-prune algorithm presented
in this paper. Left: A spherical wrist. Center: 3-RRR parallel spherical manipulator.
Right: A four loop spherical mechanism.

Note that exactly the same pruning strategy can be applied to a multi-affine
equation in n variables, with n > 2, because the convex hull of the (then) involved
2n points will also yield a trapezoidal polygon when projected to a plane defined
by the xi and f(x) axes, for i = 1, . . . , n. Finally, if we have more than one
equation in the system, the process can be clearly iterated for all equations by
applying the pruning process of each equation onto the box produced by the
pruning process of the preceding one.

The previous box reduction procedure is repeatedly applied on a same box
until one of the following conditions is met:

– The box gets empty. This happens when we are treating an equation f(x) = 0
and a trapezoid does not intersect the corresponding coordinate axis. In any
case, we can stop the exploration in the current box.

– The reduction of the box volume between two consecutive iterations is below
a given threshold ρ. At this point, as the box cannot be significantly reduced,
it is split into two sub-boxes via box bisection. This operation simply divides
the longest variable range of the box into two halves. Box reduction and
bisection are then recursively applied to the newly created sub-boxes.

– The longest side of the box is under a specified threshold σ. Here, the box
is considered a “solution box” since, if σ is sufficiently small, either this box
contains a solution or is very close to one. Hence, it is added to the final list
of boxes to be returned by the algorithm.

5 Examples

The described branch-and-prune algorithm has been implemented in C and eval-
uated on three mechanisms of increasing complexity (see Fig. 3). The first one
is a simple spherical wrist whose inverse kinematics consists in solving a single
kinematic loop. The second is a 3-RRR [15] orienting robot whose forward kine-
matics consists in solving two independent kinematic loops. The third one is a
spherical mechanism with four independent kinematic loops [16].
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Table 1. Summary of the results in the tree test cases. See the text for details.

l r p b be bs s t[ms]

1 3 8 1 0 1 1 3
2 6 64 241 107 14 2 5
4 12 2048 563 276 6 2 9

The inverse kinematics of the spherical wrist in Fig. 3(left) consists in obtain-

ing the values of ti = tan
(

φi

2

)

, i = 1, 2, 3, which satisfy the following equation:

1
√

(t21 + 1)(t22 + 1)(t23 + 1)
(1 + t1k)(1 + t2i)(1 + t3k)q

−1
o = 1, (4)

where q0 is the desired orientation for the end-effector. If we set q−1
0 = e0+e1i+

e2j+ e3k, we derive a set of three multi-affine equations which can be expressed
in matrix form as:





e1 −e2 e0 −e2 e3 −e1 −e3 e0
e2 e1 −e3 e1 e0 −e2 −e0 −e3
e3 e0 e2 e0 −e1 −e3 e1 e2





























1
t1
t2
t3
t1t2
t1t3
t2t3
t1t2t3

























= 0 (5)

The problem of solving the forward kinematics of the 3-RRR spherical par-
allel manipulator shown in Fig. 3(center) consist in locating the triangle P7P8P9

with respect to the base P1P2P3 as a function of the motor angles θ1, θ2, and θ3.
This mechanism has two independent kinematic loops, which, when formulated
in terms of quaternions as described in Section 2, give six multi-affine equations
in six unknowns.

Finally, the four-loop mechanism in Fig. 3(rigth) can be formulated, once
represented using quaternions, in terms of 12 multi-affine equations in 12 un-
knowns.

Table 1 summarizes the performance of the algorithm described in Section 3
with ρ = 0.99 and σ = 10−4. For each case, the table gives the number of loops
(l), the number of variables (r), the number of initial boxes with all the variables
in the range [−1, 1] that can be defined (p = 2r), the number of processed boxes
for one of those initial search boxes (b), the number of empty boxes (be), the
number of solution boxes (bs), the number of roots of the system (s), and the
execution time in milliseconds (t). The program is executed on a PC with an
Intel Core 7 processor running at 4.2 GHz.
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6 Conclusion

We have presented an easy-to-implement branch-and-prune algorithm for solv-
ing position analysis problems of spherical mechanisms. The simplicity of the
proposed algorithm comes with two main disadvantages; namely:

– The use of one equation at a time leads to the so-called cluster problem,
that is, each solution is obtained as a cluster of boxes instead of a single
box containing it [17]. This is clear in Table 1 where, for the two-loop and
four-loop problems, the algorithm returns more solution boxes (bs) than the
actual number of roots (s). All the solution boxes, though, are close to the
actual solutions and the error (i.e., the norm of the residue of the equations)
evaluated at the center of the solution boxes is below 10−3 in all cases. Thus,
the clusters for each solution can be readily identified.

– The use of a single variable at a time makes the convergence to the roots be
linear while other standard interval-based algorithms exhibit quadratic con-
vergence [18]. Although our algorithm compares unfavorably in this respect,
it should be beared in mind that we are actually facing a trade-off between
cost of each iteration and convergence rate.

Despite these drawbacks, the presented algorithm is remarkable for its sim-
plicity, efficiency, and easy parallelization.

Finally, it is worth to mention that its extension to spatial mechanisms is
perfectly feasible by approximating, for example, dual quaternions by double
quaternions [19]. This point is currently concentrating our efforts.
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