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Abstract— In this paper, we extend our appearance-based
localization system [8] moving from a passive approach to
an active one where the robot can execute actions with
the only purpose of gaining information about its location
in the environment. We present a general framework for
entropy-based action selection and we describe how this
framework can be implemented in our localization system.
The result is an action evaluation process more efficient in
memory and in execution time than previously existing ones.
The experiments we present show that the action selection
mechanism effectively decreases the error on localization in
environments with a high degree of aliasing. This can be of
great help to improve the performance of our localization
system in dynamic environments.

I. I NTRODUCTION

An autonomous mobile robot must be able to find out
by itself its position in the environment. This information
is very useful for navigation that is one of the most basic
abilities for a mobile robot.

Robot localization from odometry is affected by large
error in the long term. Consequently, other sensors have
to be used to deduce the robot position. In some cases
[2], range sensors (sonar/laser) has been used for this
purpose. However, it is widely recognized [3] that the
proper solution to the robot localization problem requires
the use richer sources of information such as cameras
(alone or, most probably, in combination with simpler
sensors).

In previous work at our group, an omnidirectional cam-
era has been used to determine the location of the robot
[13]. However, omnidirectional vision has some disadvan-
tages: any change in the environment affects the images
taken by the camera making matching against images in a
training set difficult (or even impossible). So, the system
exhibits some problems in highly dynamic environments.
To solve this problem, we decided to use a normal camera
mounted on a pan-and-tilt device. Normal cameras have a
more restricted field of view than omnidirectional cameras
and, so, a small change in the environment can affect some
of the images the robot can get form a certain position,
but not all of them. In the case the robot gets lost, the
camera can be readily rotated using the pan-and-tilt device
to get a new image. With an adequate sequence of camera

movements, the localization in dynamic environments can
be significantly improved.

In this paper, we present an entropy-based criterion to
evaluate all the possible camera movements. The theory of
entropy-based action selection is not new. The key issue
here is how to efficiently approximate all the probability
distributions involved in the formulation.

The paper is organized as follows. First, we review
some work related with our approach. Then, we present
our probabilistic framework for robot localization. Next,
we extend this framework with the entropy-based criterion
for camera movement selection and we describe the ex-
periments that validates its utility. Finally, we summarize
our work and we outline lines for further research.

II. RELATED WORK

In the last years, there has been a large effort on the
development of robust robot localization systems and,
therefore, there are many works that have points of contact
with that of ours.

Works on Markov localization had established a formal
probabilistic framework for robot localization [12]. How-
ever, in most of these works, the robot is modeled as a
passive agent that gets observations from the environment
while performing other tasks. In our work, we address the
active localizationproblem where the robot can execute
actions with the only purpose of gaining information about
its location.

The active localization problem has been addressed by
some authors before [4], [5], [6], [7], [9]. Despite the
general approach of these works is the same as that of
ours (action selection based on entropy), they left large
room from improvement. For instance, a problem that
remains open is how to efficiently obtain a sensor model
of the environment. In some of the existing works, this
is done by exhaustive sensor simulation. However, this is
only possible if a geometric model of the environment
is available (which is not always the case) and if simple
range-based sensors have to be simulated. In our frame-
work, the sensor model can be directly extracted from
the supervised training set used for the appearance-based
localization.



Another open problem is how to represent the probabil-
ity on the robot’s position. In our work, a particle filter is
used for this purpose and this makes the resulting system
more efficient in the use of memory and in execution time
than previous works mainly based on dense probabilistic
grids discretizing the whole configuration space of the
robot.

Despite the popularity of particle filters they have
not been used for active localization and few times for
localization using vision. In the cases in which vision is
used [3], it is done in a very simple way (for instance,
just checking for the brighter point in a small area of the
image). Our appearance-based framework extracts more
information from each image and, as already suggested in
[3], the resulting localization system would converge in
less iterations.

Finally, another field closely related with that of ours
is that of object recognition from images where active
appearance-based systems have been developed [1].

III. G ENERAL FRAMEWORK

In the following subsections we introduce the three
basic elements of our localization system: the Markov
localization model, the auxiliary particle filter, and the
appearance-based paradigm for localization.

A. A Probabilistic Model for Robot Localization

The Markov localization method aims at improving the
estimation of the position and orientation of the camera
(from which the position and orientation of the robot can
be readily determined) at timet (denoted asxt ) taking
into account the movements of the robot (and the pan-and-
tilt) {u1, . . . ,ut} and the observations of the environment
taken by the robot{y1, . . . ,yt} up to that time1. Formally,
we want to estimate the posteriorp(xt |{u1,y1, . . . ,ut ,yt}).
The Markov assumption states that this probability can
be updated from the previous state probabilityp(xt−1)
taking into account only the last executed action (ut ) and
the last observation (yt ). Thus we only have to estimate
p(xt |ut ,yt). Applying Bayes we have that

p(xt |ut ,yt) ∝ p(yt |xt) p(xt |ut), (1)

where the probabilityp(xt |ut) can be computed propagat-
ing from p(xt−1|ut−1,yt−1)

p(xt |ut) =
∫

p(xt |ut ,xt−1) p(xt−1|ut−1,yt−1)dxt−1. (2)

Note that what we are actually computing in equation 2
is p(xt |ut ,ut−1,yt−1) but, due to the Markov assumption,
termsut−1 and yt−1 have no influence on the probability
on xt .

1In our notation, the Markov process goes through the following

sequence:x0

u1−→ (x1,y1)
u2−→ . . .

ut−→ (xt ,yt).

The probability p(xt |ut ,xt−1) for any couple of states
and for any action is called theaction modeland it is
assumed as known (i.e., inferred from odometry). On the
other hand,p(yt |xt) for any observation and state is the
sensor modelthat has to be defined for each particular
problem.

Equations 1 and 2 define a recursive system to estimate
the position of the robot.

B. The Auxiliary Particle Filter

The previous is just theoretical framework and, for each
particular case, we have to devise how to approximate all
the probability distributions involved in this framework
and how to update them. In our case, we use a particle
filter [11].

In this approach, the continuous posterior
p(xt−1|ut−1,yt−1) is approximated by a set ofI random
samples, called particles, that are positioned at points
xi

t−1 and have weightsπ i
t−1. Thus, the posterior is given

by:

p(xt−1|ut−1,yt−1) =
I

∑
i=1

π
i
t−1 δ (xt−1|x

i
t−1),

whereδ (xt−1|xi
t−1) represents the delta function centered

at xi
t−1. Using the above, the integration of equation 2

becomes discrete

p(xt |ut) =
I

∑
i=1

π
i
t−1 p(xt |ut ,x

i
t−1). (3)

The central issue in the particle filter approach is how to
obtain a set of particles (that is, a new set of statesxi

t
and weightsπ i

t ) to approximatep(xt |ut ,yt) from the set
of particles approximatingp(xt−1|ut−1,yt−1). In [11] you
can find details of how to perform this step in the auxiliary
particle filter.

C. Appearance-based Localization

The open problem in the just described framework is
how to compute the sensor modelp(y|x).

In general [14], non-parametric models are used to de-
rive the distribution from the supervised training set. In our
case, however, the observationsy are images and their high
dimensionality makes direct use of non-parametric models
unfeasible. To alleviate this problem, the appearance-based
paradigm [10] propose to compress images to few feature
detectors using a lineal projection. The projection matrix
is obtained by principal component analysis (PCA) on a
supervised training set (T = {(xi ,yi)| i ∈ [1,N])}) including
observationsyi obtained at known statesxi . After the
PCA computation, we only have to keep the subset of
eigenvectors that represent most of the variance of the
images.

Vlassis et al. in [13] compute p(y|u) using the J
points in the training set that are closer toy (after the



corresponding PCA dimensionality reduction). Thus, we
have that

p(y|x) =
J

∑
j=1

λ j(y j)φ(x|x j(y)),

with x j(y) the nearest neighbors (i.e., the subset of training
pointsxi with an observationyi more similar toy), λ j(y j)
a set of weights that favor closer nearest neighbors, and
φ a Gaussian.

IV. A CTIVE LOCALIZATION

The previous model offers good results forpassivelo-
calization using an omnidirectional camera [8]. However,
when using a camera mounted on a pan-and-tilt, as it is
our case, the robot can decide by itself where to look to
increase the certainty on its position estimation. Next, we
describe a general criterion for action selection and how
to implement it in our localization framework.

A. Entropy-based Action Selection

At a given moment, the robot can execute a set of
actions{u1, . . . ,un}. The usefulness of one of these actions
u, as far as localization is concerned, can be determined
examining the probabilityp(xt+1|u,yt+1). An ideal action
would allow the robot to find out its position without any
doubt, that is, would produce a probabilityp(xt+1|u,yt+1)
with a single peak, hopefully centered at the correct
position of the camera. Such a probability distribution
would have a very low entropyH(u,yt+1) defined as:

H(u,yt+1) =−
∫

p(xt+1|u,yt+1)

logp(xt+1|u,yt+1)dxt+1

To compute the entropy of a given actionu, we integrate
over all possible observations

H(u) =
∫

H(u,yt+1) p(yt+1|u)dyt+1.

The posterior involved inH(u,yt+1) can be written as

p(xt+1|u,yt+1) =
p(yt+1|xt+1) p(xt+1|u)

p(yt+1|u)
.

Consequently, the entropy for a given action becomes

H(u) =−
∫ ∫

p(yt+1|xt+1) p(xt+1|u)

log
p(yt+1|xt+1) p(xt+1|u)

p(yt+1|u)
dxt+1 dyt+1.

(4)

At any moment, the actionu to be executed next is the
one with lowerH(u) since, the lower the entropyH(u),
the more informative the actionu is likely to be.

B. Implementation

The entropy-based action selection formalism just de-
scribed is quite general and similar to that described,
for instance, in [4]. However, the localization framework
presented in section III allows an efficient implementation
of this action-selection theory.

The basic idea is to exploit the particle filter and the
appearance-based training set to discretize the double
integral of equation 4.

First, we discretize the probabilityp(xt+1|u). Using
equation 3 we have that

p(xt+1|u) =
I

∑
i=1

π
i
t p(xt+1|u,xi

t).

In the absence of any other information (i.e., new ob-
servations) the probability on the position of the camera
at time t + 1, after executing actionu, (p(xt+1|u)) can
be approximated applying the action modelp(xt |ut ,xt−1)
to each one of the particles approximating the current
position of the camera. In general, this results in a shift
and a blur of the set of particles. In the particular case
in which we only move the pan-and-tilt device, particles
only have to be shifted since pan-and-tilt movements do
not add error on the position of the camera. We denote
the state for particlei at time t after applying actionu as
xi

t(u). So, using the shifted (and possibly blurred) particles
according to actionu, we have that

p(xt+1|u) =
I

∑
i=1

π
i
t δ (xt+1|x

i
t(u)),

and we can re-write equation 4 as

H(u) =−
∫ I

∑
i=1

π
i
t p(yt+1|x

i
t(u))

log
π i

t p(yt+1|xi
t(u))

p(yt+1|u)
dyt+1.

Now, we have to discretize the integration over the
observations.

The set of statesxi
t(u) is a sample on the possible

placements (including position and orientation) of the
camera after executing actionu. The image observed at
each one of these placements can be inferred using the
training set: the observation for each positionxi

t(u) would
be similar to the observationy obtained in the training
point x that is as close as possible toxi

t(u). We take the set
of views (Yu) obtained in this way from all statesxi

t(u) as a
representative sample on the possible views after executing
actionu.

If the training set is sampled on a uniform grid over
the space of configuration of the robot, finding the closest
training point to a given statexi

t(u) is straightforward and
can be done in constant time. If this is not the case, a



h∗← ∞
For each candidate actionu

Yu← /0
For each particle (π i

t ,x
i
t)

(x′,y′) ∈ T with minimum ‖x′−xi
t(u)‖

If y′ ∈Yu then
p(y′|u)← p(y′|u)+π i

t
else

p(y′|u)← π i
t

Endif
Yu←Yu∪{y′}

Endfor
h← 0
For each y∈Yu

For each particle (π i
t ,x

i
t)

g← π i
t ∑J

j=1 λ j(y)φ(xi
t(u)|x j(y))

h← h−g log(g/p(y|u))
Endfor

Endfor
If h < h∗ then

h∗← h
u∗← u

Endif
Endfor
Executeu∗

Fig. 1. Algorithm for entropy-based action selection.

KD-three structure can be used to perform this search in
logarithmic time in the number of training points (N).

With the above, we achieve a discretization on the pos-
sible observations. Now, for each one of the observations
y included inYu we have to definep(y|xi

t(u)). This can
be done, as in section III-B, using a nearest-neighbor
approach. So,

p(y|xi
t(u)) =

J

∑
j=1

λ j(y)φ(xi
t(u)|x j(y)), (5)

for x j(y) the J training points with observations more
similar to y. Observe that, we only compute equation 5
for images stored in the training set. Consequently, the
process of finding the nearest neighborsx j(y) and the
corresponding weightsλ j(y) can be pre-computed saving
a large amount of time in the on-line execution of the
entropy evaluation algorithm.

Finally, we define for anyy∈Yu

p(y|u) =
K

∑
k=1

π
ik
t

with {i1, . . . , ik} the set of particles that advocate for obser-
vation y. In a situation where particles are spread all over

the configuration space of the robot, each particle is likely
to propose a different observationy. However, in case
where particles concentrate in few clusters, particles are
similar each other and, thus, many particles can propose
the same observation to be included intoYu.

With the above approximations, the entropy-based eval-
uation of an actionu becomes

H(u) =− ∑
y∈Yu

I

∑
i=1

[
π

i
t

J

∑
j=1

λ j(y)φ(xi
t(u)|x j(y))

log
π i

t ∑J
j=1 λ j(y)φ(xi

t(u)|x j(y))

∑K
k=1 π

ik
t

]
.

The algorithm to evaluate this equation is shown on
figure 1. The cost of this algorithm isO(U I2J) with U the
number of actions considered,I the number of particles,
and J the number of nearest neighbors used to compute
the sensor model.

To speed up this procedure, we can replace the point
xi

t(u) by its closest point in the training set (x′). In this
way, equation 5 can be fully pre-computed and the cost
reduces toO(U I2).

The only thing that remains to decide is when to
use the action selection procedure just described. The
particle filter allow us to devise a simple criterion for that
since particles not only estimate the robot’s position but
also provide an estimation on the localization error: the
variance of the particle centers. Thus, when this variance
grows above a threshold, we trigger the action selection
procedure to reduce as fast as possible the localization
error.

V. EXPERIMENTS AND RESULTS

We test our localization system in an office environ-
ment. The training set include images taken rotating the
camera every 15 degrees in 16 positions arranged in
a grid 2× 8 with a resolution of about 75 cm. This
makes a total amount of 352 training images2. The short
distance between training points and the fact we use lenses
with a wide field of view (90 degrees) make images
taken at close positions/orientations to look very similar
increasing the difficulty of the localization task. In the
experiments, we compress the images using PCA keeping
5 feature detectors that preserve up to 70% of the variance
of the original images, we use 10 nearest neighbors to
approximatep(y|x), and the initial distributionp(x0) is
defined uniformly over the configuration space of the
robot. At run-time, we considered 22 different actions
(with the same orientations as those used to get the training
set) and up to 150 particles. Despite these large figures
(that are oversizes not only for our small test environment

2The range of movements of our pan device is[−154,154] degrees
and, so, we get 22 images perX−Y position.



Fig. 2. An image taken in a testing position (top) and the image taken
at the closest training point (down).

but also for localization in relatively large environments),
there was no problem to compute the entropy-based action
evaluation on-line (the entropy evaluation for all actions
takes less than 0.2 seconds in a PentiumIV at 1.8GHz).

The test were performed placing the camera at a po-
sition not included in the training set. The difference
between images at a testing point and images at the
closest training point could be appreciated in figure 2:
although the main elements of the scene are similar (the
wall with the poster, etc), items on the desk changed from
the moment the training set was collected to the moment
the testing was performed. These differences are not so
large for other camera orientations and this is why rotating
the camera helps to improve the localization of the robot.
Figure 3 shows the decrease on the average position error
measured as‖c−a‖ with c the correct position anda the
position estimated by the particle filter3. The results shown
correspond to the average (and the standard deviation)
over ten runs placing the camera in two different testing
positions. All distance and, thus, the error are expressed
in centimeters. We can see that the entropy-based action
selection allows a fast reduction of the localization error
as the head is moved and new images are processed. If
we consider the estimationa to be correct if the closest

3Computed as the average of all particles taking into account the
weight for each particle.
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Fig. 3. Evolution of the average error (and the standard deviation) w.r.t.
the correct position as we get new images.

Fig. 4. Convergence toward the correct position estimation: particles
around different hypotheses (top) and particles around a single correct
hypothesis (down).

training point to a is the same as the closest training
point to to the correct positionc, then the success ratio in
localization after 3 camera movements is over 95%.

Figure 4 shows a typical evolution of particles from
a distribution around different hypothesis (top) to the
convergence around the correct position (down) achieved
as new images are processed. In the figure, each green
symbol represents a particle, the yellow one represents the
state (position/orientation) of the camera, and the red one
represents the state of the robot. The circle represents the
standard deviation of particles in theX−Y dimensions.



VI. CONCLUSIONS

We have presented a general framework for active
localization and we have described how it can be included
in our localization system resulting in an efficient action
selection procedure. The experiments we report show that
this mechanism effectively helps to find out the location
of the robot. This can be of great help in dynamic envi-
ronments, where our previous passive localization system
exhibited some problems.

The main assumption behind our approach is the ex-
istence of a training set obtained off-line and densely
sampled over the space where the robot is expected to
move. Without this dense training set, the approximations
made on section IV-B would be no longer valid. In general,
obtaining this training set is not a problem, but it would
be desirable the robot to build it on-line. With this exten-
sion, our system would become a SLAM (Simultaneous
Localization and Mapping) system. To achieve this im-
provement, we have to explore the use of incremental PCA
techniques for compressing the images that are obtained
on-line.

Since our robot is equipped with a stereo vision system,
another research line we want to explore is the use of depth
maps for localization. This would make the localization
more robust since depth maps are less sensitive to changes
of illumination than plain intensity images. The use of
other sensors such as sonars or laser scanners could also
help to increase the robustness of the system although, as
already mentioned, they provide less information than that
provided by the images.
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[7] B. J. A. Kröse and R.Bunschoten. Probabilistic local-
ization by appearance models and active vision. In
Proceedings of the IEEE International Conference on
Robotics and Automation, pages 2255–2260, 1999.
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