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Abstract

In this paper, we introduce the use of dispar-
ity maps to alleviate the problem of appearance-
based robot localization due to changes in illumi-
nation. We describe how to use disparity maps
for appearance-based localization and we compare
the results obtained using disparity maps with
those obtained with other techniques commonly
used to reduce the effect of illumination on im-
ages: histogram equalization and gradient-based
filters. The results we present show that disparity
maps are sensitive enough to rotations and trans-
lations of the robot and that they are less sensitive
to changes in illumination than previously used
techniques. Consequently, we show that disparity
maps are a valid alternative to achieve a robust
appearance-based robot localization.

1 Introduction

In the last years, much effort has been put on
appearance-based robot localization [5]. In this
paradigm, images obtained by the robot are com-
pressed to get a reduced set of feature detectors.
The position of the robot is determined compar-
ing the feature detectors corresponding to the im-
age observed by the robot with feature detectors
stored in a training set collected at known posi-
tions.

However, images largely change due to varia-
tions on illumination and so they do the corre-
sponding feature detectors. Consequently, illu-
mination changes can largely degrade the perfor-
mance of the appearance-based localization tech-
niques.

One possible solution to this problem is to in-
clude in the training set images obtained in dif-
ferent illumination conditions. However, this is a
limited solution since not all possible illumination
setups can be devised when defining the training
set.

A more general solution is to pre-process the
images to compensate for the effect of illumina-

tion. In this line, techniques such as histogram
equalization of gradient filters have been used
[3, 7] to obtain images (and, thus, feature detec-
tors) that are, up to a given point, illumination-
independent.

In this paper, we introduce the use of dispar-
ity maps as a source to obtain features detectors
for appearance-based localization. Disparity maps
are computed by matching points on two images
taken by a pair of calibrated cameras. The hy-
pothesis is that, since the two images used to
define the disparity map are obtained simulta-
neously and, thus, with the same illumination,
the resulting disparity map would be less sensi-
tive to changes in illumination than plain images.
We show that this hypothesis is valid and that a
robust appearance-based localization can be per-
formed based on disparity maps since they provide
feature detectors sensitive to changes in the robot
position (translations/rotations) but less sensitive
to changes in illumination than the features ob-
tained using histogram equalization and gradient
filter techniques.

This paper is organized as follows. First,
we formalize the appearance-based localization
framework. Next, we briefly describe the three
techniques to alleviate the problem of illumina-
tion we compare in this paper: histogram equal-
ization, gradient-based filters, and disparity maps.
Then, we present the results obtained with these
three techniques in a real environment and, finally,
we conclude summarizing our work and extracting
some conclusions out of it.

2 Appearance-based Localization

Appearance-based localization departs from a
set of training images Y = (y1, . . . , ym) taken at
known positions P = (p1, . . . , pm). Images are lin-
early compressed to get a set of feature detectors
for each image F = (f1, . . . , fm), where

fi = Wyi.



The projection matrix W is determined off-line
applying Principal Component Analysis (PCA) to
find out the eigenvalues and eigenvectors1 of the
training set in the space of images. The rows of
the projection matrix W are the eigenvectors cor-
responding to the n largest eigenvalues.

In the on-line execution, we aim at estimating
the probability on the robot’s position at time t
p(xt). This is usually done assuming that the en-
vironment is Markovian and updating p(xt) from
p(xt−1). In this update, we use the training set
as well as the feature detectors of the image taken
by the robot at time t, ft, to define the probabil-
ity p(ft|xt) that is called the sensor model. For
instance, Vlassis et al. [11] introduce a nearest
neighbor approach to represent the sensor model.

Problems arise when illumination conditions
in the on-line execution are different from those
when obtaining the training set. This produces
wrong matches (i.e., wrong nearest neighbors) of
the feature detectors of the current observation
with those in the training set. Obviously, this
leads to a wrong sensor model and, thus, to a
wrong update of p(xt).

The solutions for this problem we explore next
are based on processing images trying to reduce
the effect of different illumination conditions in
the resulting feature detectors.

3 Histogram Equalization

Histogram equalization [2] is a gray level trans-
form that aims at producing an image with
equally distributed brightness levels over the
whole brightness scale. The gray value range
equalization is useful for improving the image
quality if the original image covers only a part of
the full gray scale (what is, in most of the cases,
caused by low scene illumination). The drawback
of this technique is that, in case of good gray value
dynamics on the input image, it can lead to qual-
ity looses in form of sharp edges.

Let H(p) be the histogram of the input im-
age with p ∈ [p0, pk] one of the gray level in the
image. The intention of the histogram equaliza-
tion is to find a monotonic brightness transform
q = T (p) such that the histogram of the output
image, G(q), is uniform over the hole brightness
scale [q0, ql] (in many cases, [q0, ql] = [0, 255]).
The histogram of a gray level image can be con-
sidered as a discrete probability density function.
With this formalism, the monotonic property of
the transform T implies

j
∑

i=0

G(qi) =

j
∑

i=0

H(pi).

1Eigenvectors are many times called eigenimages in the

field of appearance-based localization.

Figure 1: Plain image (top) and image after his-
togram equalization (down).

Since, in ideal circumstances, we want G to be
uniform, we have that

j
∑

i=0

G(qi) =
M N (qj − q0)

(ql − q0)

for an image of size M ×N pixels. Consequently,
we have that the desired transformation T (p) can
be defined as

qj = T (pj) = q0 +
(ql − q0)

M N

j
∑

i=0

H(pi).

Since qj should be set to the closest integer value,
we obtain a histogram G that is as close as possible
to the uniform one.

Figure 1 shows an image taken with the robot’s
cameras and the same image after equalization.

4 Gradient-based Filters

To apply a gradient filter we have to considerer
an image as a function I(x, y) where the domain
of I is the set of pixel locations, and the range of
I is the pixel intensity.

The gradient of the intensity image I(x, y) is

∇I(x, y) =

[

∂I(x, y)

∂x
,
∂I(x, y)

∂y

]

.

At each pixel the gradient is a two-dimensional
vector that points in the direction of the maximum
intensity increase (so, it will tend to be perpendic-
ular to strong edges in the image).



Figure 2: Plain image (top) and image after ap-
plying the Sobel filter (down).

We can compute ∂I(x, y)/∂x and ∂I(x, y)/∂y
by convolving I(x, y) with carefully chosen filters
that approximate derivatives. Typically, these fil-
ters blur in one direction and find pixel differences
in the perpendicular direction.

A well known derivative filter is the Sobel one
[10] that uses the convolution

-1 0 1
-2 0 2
-1 0 1

to approximate ∂I(x, y)/∂x and

-1 -2 -1
0 0 0
1 2 1

for ∂I(x, y)/∂y.
After applying these convolutions, we can take

the norm of the gradient vector ∇I(x, y) to define
the filtered image.

Figure 2 shows the result of applying the Sobel
filter to an image. As expected, the result of the
filter is to enhance the edges of the image. Other
gradient-based filters such as the Prewitt filter [8]
or second-order edge detectors [6] yield to similar
results.

5 Disparity Maps

We can determine a disparity map matching
points in images taken by a pair of calibrated cam-
eras. Given a single image, the three-dimensional
location of any visible point Q must lie on the
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Figure 3: Basic elements of epipolar geometry
with two cameras.

straight line that passes through the center of pro-
jection of the camera c and the image of the point
x (see figure 3). The determination of the intersec-
tion of two such lines generated from two indepen-
dent images is called triangulation and provides
the 3-D position of that point w.r.t the cameras.

Clearly, the determination of the scene posi-
tion of an object point through triangulation de-
pends upon matching the image location of the
object point in one image to the location of the
same object point in the other image. At first it
might seem that correspondence requires a search
through the whole image, but the epipolar con-
straint [1] reduces this search to a single line. For
instance, in figure 3, the point on the right im-
age corresponding to the point x on the left im-
age need to be searched only on the epipolar line
e. We can go even further: if we know the range
of possible depths for point Q, we can limit the
search to a segment on the epipolar line.

For each pixel x in one of the images we have
to search for a correspondent point in the other
image. Usually, the correspondence is done by
comparing areas around pixel x with areas around
each candidate pixel x′ laying on the epipolar line.
The most similar pixels x and x′ are assumed to
correspond to different projections of the same
point Q in the scene. If the images planes for the
two cameras are co-planar, the distance r from the
scene point Q to the cameras can be computed as

r =
b f

dl − dr

,

where b is the baseline (distance between the two
viewpoints), f is the focal length of the cameras,
dl is the horizontal distance from the projected
point x to the center of the left image, and dr is
the same for the right image (see figure 4). The
difference dl−dr is called disparity. Since, in many
cases, the baseline b and the focal length f are con-
stant, the disparity directly relates with the dis-
tance r. For this reason, instead of working with
depth maps it is enough to use disparity maps.

The stereo algorithm we use [4] applies many
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Figure 4: Elements in the disparity
computation.

filters in the process to determine the disparity
map both to speed up the process and to ensure
the quality of the results. For instance, if the area
around pixel x is not textured enough it would be
very difficult to find a single corresponding point
x′: we are more likely to end up with many points
x′ with almost the same probability of being the
corresponding point of x. For this reason, pixels
on low textured areas are not even considered in
the matching process.

The result of this and other filtering processes
is to produce a disparity map where many pixels
do not have a disparity value. To be able to apply
usual PCA to disparity images we have to replace
missing values with some value in the range of pos-
sible disparities. For the results presented in this
paper, we just use the average value for each pixel
for all the training images. We proceed in this sim-
ple way since our main objective here is to show
the feasibility (and the utility) of using disparity
maps for appearance-based localization. To deal
with missing values in a more principled way we
can, for instance, use a expectation-maximization
algorithm to determine the most likely value for
the missing pixels. The advantage of doing this
is that it can be integrated with the eigenvector
computation [9]. In any case, improving the treat-
ment of missing values would only result in better
performance that the one we report on this paper.

Image 5 shows a plain image and the corre-
sponding disparity map. We can observe that
many pixels on the image (up to 40% in many
cases) have missing values (the light gray areas in
the figure).

6 Experiments and Results

To test the invariance of the different meth-
ods to changes in illumination we performed the
following experiment. We acquired three sets of
images in the same 4×5 meters environment, but
in three different lighting conditions: using tube
lights, using bulb lights and using natural light
(opening the curtains of the windows placed all
along one wall of the lab). For each illumination

Figure 5: Plain image (top) and the correspond-
ing disparity map (bottom). In the disparity map,
dark pixels correspond to points that are far away
from the robot and light gray areas are missing
values.

Figure 6: Our robot with the stereo head used to
take images and disparity maps.



Image Illumination Setups

Process Tube Ligths Bulb Lights Natural Light Average

Plain Images

Translations 0.52 (0.23) 0.40 (0.28) 0.34 (0.24) 0.42 (0.26)
Rotations 1.47 (0.45) 0.69 (0.36) 0.70 (0.38) 0.95 (0.54)
Light change - 1.55 (0.52) 1.58 (0.52) 1.57 (0.52)

Hist. Equalization

Translations 0.55 (0.23) 0.70 (0.28) 0.63 (0.26) 0.63 (0.27)
Rotations 1.48 (0.44) 1.33 (0.36) 1.39 (0.46) 1.40 (0.43)
Light change - 1.05 (0.32) 1.16 (0.28) 1.10 (0.31)

Gradient Filter

Translations 0.77 (0.32) 0.78 (0.28) 0.69 (0.22) 0.75 (0.28)
Rotations 1.40 (0.52) 1.21 (0.35) 1.17 (0.30) 1.26 (0.42)
Light change - 0.87 (0.18) 0.95 (0.23) 0.91 (0.21)

Disparity Map

Translations 0.76 (0.40) 0.90 (0.44) 0.88 (0.49) 0.85 (0.45)
Rotations 1.31 (0.72) 1.42 (0.93) 1.38 (0.81) 1.37 (0.82)
Light change - 0.55 (0.21) 0.58 (0.22) 0.56 (0.21)

Table 1: Mean (and standard deviation in parenthesis) of the relative change of the feature detectors
using different image processing techniques and in different illumination conditions.

setup, we collected images every 50 cm. (both
along X and Y ) and every 10 degrees. This makes
a total amount of about 1300 images per illumi-
nation setup. We used the set of images obtained
with tube ligths to determine a projection matrix
W with 20 projections vectors. The two other sets
of images (the one obtained with bulb lights and
the one with natural light) were used as test sets.
These two tests sets provide changes in the global
intensity of the images and also changes in the
sources of light present in the scene (that is the
situation encountered in real applications).

We analyzed the sensitivity of the feature de-
tectors to the different factors that can modify
them: translations, rotations and changes in illu-
mination. We compute the relative difference in
the feature detectors as

da,b =
‖fa − fb‖

‖fa‖
,

with fa and fb the set of feature detectors corre-
sponding to images a and b respectively.

To assess the effect of translations on the fea-
ture detectors, we evaluated the average of da,b for
each couple of images (a, b) taken with the same
orientation and the same lighting conditions but
at adjacent positions. Considering only difference
in feature detectors for positions that are close
each other gives us an estimation of the minimum
change in feature detectors due to translations.
For rotations, we computed the average of da,b for
each couple of images (a, b) taken at the same
point and with the same illumination but with
adjacent orientations. Finally, to measure differ-

Illumination

Image Process vs

Translations

Plain Images 3.73
Hist. Equalization 1.75
Gradient Filter 1.21
Disparity Map 0.65

Table 2: Ratio of average feature detector vari-
ation due to illumination vs. the changes due to
translations.

ences due to illumination conditions, we computed
the average of da,b with a an image take with the
training illumination (i.e., using tube lights) and
b the image taken at the same position and orien-
tation but with a different lighting setup. Table
1 shows the results we obtained for the experi-
ment just described. In this table, we can see
that the change in feature detectors due to rota-
tion is larger in all cases than the variations due
to translations. This is normal since a rotation of
the cameras (even if it is of few degrees) produce
more important changes in the images than those
produced by a small translation.

In table 2, we show the ratio of the variation of
the feature detectors due to illumination changes
w.r.t. the variation due to translations. This ratio
gives us and idea about the importance of the fea-
ture detector change caused by illumination: the
greater the ratio, the larger the effect of illumina-
tion w.r.t. the effect of translations and, thus, the



larger the possible error in localization due to illu-
mination changes. We can see that, as expected,
using processed images the ratio decreases consid-
erably compared with the ratio using plain images
(images without any illumination correction). In
the case of disparity maps, this ratio is the small-
est one meaning that disparity is the best of the
three image processing techniques we tested, as
far as independence of illumination is concerned.
However, we observe that the standard deviation
of change of the the feature detector obtained from
disparity maps is larger than than that using other
techniques. This means that the feature detectors
obtained disparity maps are usually, but not al-
ways, the best ones.

7 Conclusions

In this paper, we have surveyed three tech-
niques that aim at reducing the effect of illumina-
tion in appearance-based robot localization. Two
of them (histogram equalization and gradient fil-
ters) has been previously used for appearance-
based localization and we introduce the novelty
of using disparity maps.

The results we have presented show that dis-
parity maps are a good option to achieve ro-
bust robot localization using the appearance-
based framework since they provide feature detec-
tors that are less sensible to changes in the lighting
conditions than feature detectors obtained with
other techniques.

Histogram equalization and gradient filters
work well when we have changes in the global il-
lumination but do not deal properly different dis-
tributions of light sources. On the other hand,
disparity maps are more consistent over changes
in the number and in the position of the light
sources. This is because only reliable correspon-
dences are taken into account when defining the
disparity map and those reliable matches are likely
to be detected in almost all lighting conditions.

The good results achieved using disparity maps
cames at the cost of using a more complex hard-
ware (we need not only one camera but two cali-
brated ones) and software (the disparity computa-
tion process is more complex than the histogram
equalization and the gradient filter processes).
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