A Particle Filter to Estimate non-Markovian
States

Bas Terwijn, Josep M. Porta and Ben J.A. Krose
IAS Group, Informatics Institute, University of Amsterdam
Kruislaan 403, 1098SJ, Amsterdam, The Netherlands
{bterwijn,porta,krose } @science.uva.nl

Abstract. Common particle filter algorithms are unable to differentiate between sensor
noise and kidnap situations. These two problems are usual in realistic applications
and, in general, ad-hoc heuristic are developed to deal with them. In this paper, we
present a particle filter algorithm where the state is enriched with information about
the coherence of the sensor readings. This additional information allows us to tackle
non-Markovian environments and, thus to deal in a unified way with sensor noise and
kidnap situations. The experiments we report show the advantages of this new particle
filter approach w.r.t. existing ones.

1 Introduction

Probabilistic formalisms are very useful to represent the interaction between autonomous
systems and complex environments. Recently, particle filters [1] have been widely used to
implement probabilistic frameworks [4, 10, 3, 11]. In all these fields, particle filters are ap-
plied in the context of a Markov chain trying to estimate the state of a given system using the
information provided by observations probabilistically related with that state.

Particle filters have many advantages over other probabilistic state-estimation methods
(such as Kalman Filters): they are easy to implement, they are robust to random noise in
the observations, and they can track many hypothesis simultaneously. However, particle fil-
ters also have some well-know weak points as, for instance, their high computational cost.
Another drawback is that particle filter algorithms rely on the Markov assumption and this
assumption does not hold in many realistic environments. The consequence is that particle
filter algorithms can, in some cases, provide wrong state estimations.

In this paper, we present a particle filter algorithm that is able to deal with non-Markovian
environments. In Section |2, we review the basic particle filter algorithm and, in Section|3} we
describe the problems of this approach to deal simultaneously with kidnap (or tele-portation)
situations and with noisy sensor readings. We show that this is due to the Markov assump-
tion on the environment, that is explicitly used in the particle filter framework. In Section 4,
we present a particle filter algorithm where the state representation is extended to include
information about previous observations. This makes our algorithm able to deal with non-
Markovian environments and, thus, to deal with the kidnap situations and with the noisy
sensors in a unified way. In section 5, we present experiments to compare our proposal with
existing algorithms and we finish the paper, summarizing our work and extraction some con-
clusions out of it. Along the paper, we use the robot localization problem as an example, but
all the reasonings can be easily translated to other fields.

2 Markov State Estimation: Particle Filtering

In many cases, we need to estimate the stochastic (hidden) state of a given system at time ¢, ;
using observations (stochastically) related with that state {y, ..., y;} and the control actions
issued to (stochastically) change the state {u, ..., u;}'. Formally, what we want to estimate
the posterior p(z|{u1,v1,. .., us, y: }). The Markov assumption says that observations only
depend on the current state and that the current state only depend on the previous state and the
last executed action, Thus, the current state can be updated from the previous state estimation
taking into account only the last executed action u; and the current observation y;. Applying
Bayes

p(ilue, yi) o< p(yelze) plae|u), (1)

where the probability p(z;|u;) can be computed propagating from p(x;_1|us_1, Y1)

p(alue) = / p(altte, 7 1) p(es|te 1, yer) dss.)

Equations 1 and 2 define a recursive system to estimate the state from a uniform initial distri-
bution p(zy).

The probability p(x;|u;, x;_1) is called the action model and p(y;|x;) is the sensor model.
In our robot localization system [5, 11], the state is the pose (position and orientation) of the
robot, the actions are the movements of the robot, and the observations are images taken by
the robot’s camera. The action model is inferred from odometry and we compute the sensor
model using an appearance map of the environment.

The shape of the prior p(z;|us, y;) can vary along time and, consequently, we have use
a method able to approximate arbitrary probability distributions. One of these methods is
the particle filtering. In this approach, the continuous posterior p(x;_1|u;—1, y¢—1) iS approx-
imated by a set of I random samples, called particles, that are positioned at points xi_; and
have weights 7_,. Thus, the posterior is

J
p(@ea|w-1,y1-1) = Zﬂiq O(@e1lry_y),
j=1

where 0(z;_1|2]_,) represents the delta function centered at z7_,.

The central issue in the particle filter approach is how to obtain a set of particles to approx-
imate p(z|u, y;) from the set of particles x{_l, J € [1, J] approximating p(z;—1|ui—1, Yi—1)-
In the auxiliary particle filter [8, 11] the probability of a particle to survive is proportional to

7)1 p(y¢|x¢). In this way, we favor the selection of particles with high prior and also with
high likelihood.

3 The Kidnap-Noise Dilemma

A (real) kidnap (or teleportation) situation occurs when the state of the system is suddenly
changed by an action not considered in the action model.

A virtual kidnap situations can occur even with perfect action and sensor models. Suppose
we use n particles to track two hypotheses, x1 and x5, that are equally valid according to the

'In our notation, the system goes through the following sequence zo —= (z1,41) —2 ... — (24, Y;).

sensor model and that at time ¢ we have 2/ particles at around hypotheses x; and z2 = n — z}

particles at x,. After sampling new particles, the probability of getting a specific value for
zi, given z} and n = z} + 27 follows a binomial distribution

1 Zt1+1 1 ”*Zt1+1 |
L 2 n— z n!
P(zalz,m) = (—) () T TR 3)
n n Zpq! (n— zp4)!

According to this distribution, p(z{,,|z;,n) with z; = 0 is not zero, but p(z},,|z;,n) for
z1 > 0and z; = 0 is zero. In other words, the sampling can produce states with z; ; = 0
(or 2} "1 = 0) but it is unable to escape from these states. Therefore, if we repeat the sampling
long enough, 2/} (or z7) would become 0. For instance, with n = 200 and zj = 100, after
52 sampling steps, the more likely particle distributions are those with 2} = 0 and 2} =
200. Thus the system would eventually converge to a single hypothesis and there is 50% of
changes to converge to the wrong one. This situation can be regarded as a virtual kidnap.
Virtual kidnap can be minimized by enlarging the number of particles but this results in high
computational costs.

A complete particle filter algorithm must be able to deal with real/virtual kidnap situa-
tions. In those situations, there is a mismatch between the state estimation and the areas with
high probability according to the sensor model. As the number of particles goes to infinite,
there would be always one particle close enough to the areas with high probability according
to the sensor model, and the particle filter would be able to recover from the kidnap. However,
for efficiency reasons, we are not likely to use so many particles and, thus special heuristic
strategies have to be developed to deal with the kidnapping problem. A couple of such heuris-
tics can be found in the literature: the re-sample strategy and the sample-from-likelihood one.

The re-sampling strategy [9] consists in re-sampling all particles from scratch after a
given period without overlap between the prior and the likelihood. This strategy has the in-
convenient that a series of completely noisy sensor reading triggers the re-sampling without
any need. Additionally, when re-sampling particles, there is no guarantee that we use a valid
sensor reading and not a noisy one. In this second case, a new re-sample needs to be executed
few time steps later slowing down the convergence of the particle filter.

Another simple solution to the kidnap problem is the sample-from-likelihood (or sensor
resetting localization) strategy that consists on sampling part of the new particles directly
from the likelihood [7, 6]. This strategy is able to solve the kidnap problem, but it causes
other problems when there is noise in the sensor readings.

Noise in the sensor readings can produce wrong values for the sensor model (i.e., p(x|y)
distributions with high values on points where the robot is not). In [2], outliers in the sensors
readings are filtered out but this clearly limits capacity of reaction in kidnap situations.

If the sample-from-likelihood strategy is used, then two coherent (i.e., giving high proba-
bly to the same area of the state space) consecutive noisy readings would translate all particles
to a wrong state. This can be regarded as an efficient response to a kidnap situation, but in
general this produces false kidnaps: moving all particles where the robot is not. The system
would recover from that false kidnap when new observations are obtained, but the result is an
undesired oscillation in the estimation of the state.

None of the heuristics used to enhance particle filters offers a proper way to differentiate
between a kidnap situation and a sequence of coherent noisy sensor readings.

4 A Particle Filter with Memory

The kidnap-noise confusion is due to the Markov assumption. That assumption states that
sensor readings are conditionally independent given the state. Therefore we have that

p(yt|$t, Ti—1, ?/t—l) = p(yt|$t)-

Thus, the noise in consecutive sensor readings is uncorrelated. Using this, we can easily
differentiate between a kidnap situation and noise: noise has a random distribution and in a
kidnap situation the sensor model consistently indicates a new state for the system. However,
in many problems, if we obtain a noisy observation y", it is likely to be observed again
next time slices. So, in those cases we have that p(y"|z:, z1-1,9y") > p(y"|x:) and, thus,
the Markov assumption does not hold. For example, in the context of robot localization this
situation happens when the robot is moving in dynamic environments: new objects in the
environment, people moving around, etc are likely to corrupt the robot’s observations for
many time slices with highly correlated noise.

The usual way to deal with non-Markovian environments is to augment the state descrip-
tion with some memory (i.e., information about previous time slices) so that the problem
becomes Markovian. Following this line, what we propose is to enrich the state description
storing for each particle, its position and its weight (as usual), but also its coherence. The
coherence gives us information about whether or not the corresponding particle has been
recently in agreement with the sensor model. Particles with high coherence provide very con-
fident estimations on the state that should not be forgotten just because of few noisy sensor
readings. The coherence of particles created due to noisy sensor readings would never grow
and these particles would soon be deleted. In the case of a kidnap, the coherence of the par-
ticles sampled on the new state would grow until they become the best estimation for the
state.

Our approach has some points in common with the sample-from-likelihood strategy de-
scribed above. This strategy can be regarded as a two time slices memory strategy since two
consecutive coherent observation around a given state produce the displacement of all par-
ticles to that new state. What we propose in this paper can be seen as an extension of this
mechanism where we can adjust the number of coherent observations necessaries to change
the state estimation.

4.1 The Algorithm

As mentioned, the state to be estimated is represented by n particles and each particle j has a
state z;, a weight 7;, and a coherence value ¢; € [min., max_|. Initially, particles are spread
uniformly in the space of states.

When defining a new set of particles we sample n; particles directly from the likelihood,
n; particles from the prior-likelihood intersection, and n. particles using the coherence index
(with n; + n; + n. = n). Sampling from the likelihood introduces n; new particles (with
minimum coherence, min.) into the system. Sampling from the prior-likelihood is the process
described in section|2| The only addition is that the coherence of particles sampled using this
method is increased by A. (up to a maximum max.). Finally, sampling using the coherence is
achieved using the coherence of particles as weighting factor. The weight of particles selected
that way is set in the same way as particles sampled from the prior-likelihood intersection and

Particle Filter with the Coherence mechanism
Input: A set of particles n {(z;,7;,¢;) j € [1,n]} approximating p(z—1|uwi—1, Yr—1)
Last executed action u;.
The current observation y;.
Output: A set n particles approximating p(x|us, y)
Process:
Move the particles according to uy.
Sample new particles:
from likelihood: Create n; new particles from p(y;|z;).
from prior-likelihood intersection: Create n; new particles using (7; p(y¢|x;)) as weight.
from the coherence: Create n. new particles using c; as a weight.
Add noise to particles according to u;.
Update the weights:
m; = 1 for particles sampled from the likelihood.
7j = p(ye|z;)/p(ye| ;) for rest of particles (11 is the state of the particle before adding noise)
Normalize weights.
Update the coherence:
Set ¢; = min, for particles sampled from the likelihood.
Increase the coherence of particles sampled from prior-likelihood:
cj —cj+ A (only if ¢; < max,).

Figure 1: The particle filter algorithm including the coherence sampling mechanism.

its coherence remains the same (so, it decreases w.r.t. particles sampled using the previous
method).

Figure|l summarizes the steps of this algorithm. Observe that if n; and n, are set to 0 we
get the standard auxiliary particle filter algorithm. If only n. is set to O then the algorithm
implements the sample-from-likelihood strategy described in section 3.

The result is a particle filter that attempts to provide the most coherent state estimation
possible taking into account the recent sequence of observations.

S Experiments

In our experiments, we use a unibot: a simulated robot moving along a segment (of size 10000
in our examples). Using a simple simulation has the advantage that we know the ground truth
about the state of the system and we can easily analyze the results of the experiments. In this
system, the state is unidimensional (i.e., the position of the unibot in the segment). In our
experiments the unibot is placed at position xy = 2000, and the sensor model is defined as
a Gaussian with ¢ = 10 that, in the absence of noise, is centered at the unibot position. No
action model is considered because the unibot is static (except when there is a kidnap).
Using this setup, we compare five different algorithms:

e The standard particle filter algorithm described in section 2.

e The particle filter with the sample-from-likelihood heuristic described in section 3| with n;
equal to 0.1 X n.

6000 1 Standard PF

Sample Likelihood
—— Resample
5000 | —— Low Coherence
—— High Coherence
4000 -
& 3000 f
2000 -
1000 -

‘ ot
10 20 30 40 50 60

Figure 2: Evolution of error with a kidnap occurs at time ¢ = 20.

e The particle filter with the re-sample heuristic also described in section (3. In this case the
re-sample threshold is set to 8 time slices.

e Our algorithm with n; = 0.1 x n, n; = 0.6 X n, n, = 0.3 X n, min, = 0, max, = 5, and
A, =1.

e Our algorithm extending max, to 15 and setting n; = 0.3 X n and n, = 0.6 X n,
We compare the performance of these four systems in three different conditions:

e In a kidnap situation. In this experiment the unibot is suddenly displaced to position 7000
(5000 units far away from its original position).

e When there is non-Markovian noise in the observations. This kind of noise causes the
Gaussian representing the sensor model to be displaced at random to a point in the uni-
dimensional environment (far away from the real position of the unibot) and to remain
there for several time slices. In this way, there is a dependency between two consecutive
noisy sensor readings.

e When there is Markovian noise in the observations. In this case, the sensor model is
displaced at random every time slice (in a given interval of time). Thus, the sensor noise
in this interval of time does not depend on previous sensor readings.

, with ¢

the time slice, W{ and x{ the weights and position of particle j at that time slice, and z; the
correct position of the unibot at time ¢. In all the experiments, the results are averaged over
30 runs, we use n = 80 particles and we initialize the system with all particles on the correct
position ().

Figure 2 shows the average error when we kidnap the system at time slice 20. We can
see that the standard particle filter is unable to react to the kidnap. The other four systems
are able to detect and recover from the kidnap, with the sample-from-likelihood strategy be-
ing the most efficient one. The re-sample strategy waits 8 time slices before executing the
recovery strategy and our algorithm performs a smooth transition toward the new state of the
system. The speed of this transition depend on the value for the max,. parameter: the larger
the smoother the transition. During the transition, particles are clustered around z; for ¢t < 20

In the three cases, the error at each time slice is computed as e; = Y37, 7/ |7] — 24

6000 60001 Standard PF
Sample Likelihood
| —— Resample
5000 50007 —=— Low Coherence
—— High Coherence
40001 40001
& 3000¢ & 3000¢
20001 2000+
1000¢ 1000+
0 - sk - - Il 0 - e L L
10 20 30 40 50 © 10 20 30 40 50 t

Figure 3: Experiments with non-Markovian noise (left) and with Markovian noise (right).

Standard | Sample from | Re-sample Low High
PF likelihood strategy | Coherence | Coherence
Kidnap 175096 4717 35210 8889 41571
Non-Markovian Noise 213 20169 216 13880 7693
Markovian Noise 301 84112 77538 42210 18352

Table 1: Summary of the error for the different systems and experiments.

and x; when t > 20. The first cluster of particles becomes less and less coherent over time
and thus, it ends up disappearing.

Figure 3-left shows the average error when there is non-Markovian (i.e., correlated) noise
in the sensor model in between times slices 20 and 24. The standard particle filter and the
re-sample heuristic are completely immune to Markovian noise. If the noise was present for
longer time, the re-sample heuristic would be triggered resulting in large error in the state
estimation. The sample-from-likelihood heuristic (that was the best for the kidnap situation)
performs the worst in this experiment. Our algorithm is also influenced by this kind of noise
but we can reduce this influence by setting a larger maximum confidence (max, parameter).

Figure [3-right shows the average error with Markovian noise in the sensor readings from
time slice 20 to time slice 35. Standard particle filter is, again, insensitive to noise. Both the
re-sample strategy (that performed well in the previous experiment) and the sample-from-
likelihood heuristic perform poorly with this kind of noise. The sensitivity of our algorithm
to this kind of noise can be adjusted: by increasing max, we decrease the sensitivity.

Table 1/ summarizes the results, with e; integrated over time. A robust particle filter must
be able to deal both with the sensor noise and with the kidnap problem. The table shows
that none of the existing techniques solves the two problems. However, when the confidence
mechanism is used, the two problems can be addressed properly. The max, parameter is
proportional to the length of a sequence of non-Markovian noise to be considered a kidnap.
So, it determines the trade of between the amount of non-Markovian noise we can deal with
and the efficiency in reacting to kidnap situations.

6 Conclusions

The Markov assumption, explicitly used in the particle filtering approach, implies that the en-
vironment is static and that sensors readings are conditionally independent between them. In

many applications, these assumptions are unrealistic and, as a consequence, the performance
of the particle filter degrades.

We have introduced a new particle filter algorithm that, as shown in the experiments,
can deal in a unified way with the kidnap problem and with sensor noise (even if this noise
is, to certain degree, non-Markovian). We have applied this particle filter approach to robot
localization in robot soccer getting a more robust estimation of the position of the robot, but
we don’t have yet quantitative results on these experiments.

The relation of the state estimation produced by our algorithm with that that would be
obtained using an Expectation-Maximization algorithm on the whole sequence of observa-
tions and actions should be analyzed. Additionally, we have to study more thoughtfully the
sensitivity of the algorithm to the different parameters and to determine principled ways to
set them.

Acknowledgments

Nikos Vlassis largely contributed to the development of the work reported in this paper.
This work has been partially supported by the European (ITEA) project “Ambience: Con-
text Aware Environments for Ambient Services”.

References

[1] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo in Practice. Springer-Verlag, New
York, 2001.

[2] D. Fox, W. Burgard, and S. Thrun. Markov Localization for Mobile Robots in Dynamic Environments.
Journal of Artificial Intelligence Research, 11:391-427, 1999.

[3] D. Fox, S. Thrun, W. Burgard, and F. Dellaert. Sequential Monte Carlo Methods in Practice, chapter
Particle Filters for Mobile Robot Localization. Springer-Verlag, New York, 2000.

[4] M.Isard and A. Blake. Condensation - Conditional Density Propagation for Visual Tracking. International
Journal of Computer Vision, 29(1):5-28, 1998.

[5] B.J.A. Krose, N. Vlassis, R. Bunschoten, and Y. Motomura. A Probabilistic Model for Appearance-based
Robot Localization. Image and Vision Computing, 19(6):381-391, April 2001.

[6] S.Lenser and M. Veloso. Sensor Resetting Localization for Poorly Modelled Mobile Robots. In Proceed-
ings of the International Conference on Robotics and Automation (ICRA), 2000.

[7]1 E. Menegatti, M. Zoccarato, E. Pagello, and H. Ishiguro. Image-Based Monte-Carlo Localisation without
a Map. In Proceedings Conference of the Italian Association of Artificial Intelligence, 2003.

[8] M.K. Pitt and N. Shephard. Filtering Via Simulation: Auxiliary Particle Filters. J. Amer. Statist. Assoc.,
94(446):590-599, June 1999.

[9] J.M. Porta, J.J. Verbeek, and B.J.A. Krose. Active Appearance-Based Robot Localization Using Stereo
Vision. Submitted to Autonomous Robots, 2003.

[10] J. Vermaark, C. Andrieu, A.Doucet, and S.J. Godsil. Particle Methods for Bayesian Modeling and En-
hancement of Speech Signals. IEEE Transactions on Speech and Audio Processing, 10(3):173-185, 2002.

[11] N. Vlassis, B. Terwijn, and B.J.A. Krose. Auxiliary Particle Filter Robot Localization from High-
Dimensional Sensor Observations. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Washington D.C., USA, pages 7-12, May 2002.

	Introduction
	Markov State Estimation: Particle Filtering
	The Kidnap-Noise Dilemma
	A Particle Filter with Memory
	The Algorithm

	Experiments
	Conclusions

