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Abstract. In this paper, we describe methods to localize a mobile robot
in an indoor environment from visual information. An appearance-based
approach is adopted in which the environment is represented by a large
set of images from which features are extracted. We extended the ap-
pearance based approach with an active vision component, which fits
well in our probabilistic framework. We also describe another extension,
in which depth information is used next to intensity information. The
results of our experiments show that a localization accuracy of less then
50 cm can be achieved even when there are un-modeled changes in the
environment or in the lighting conditions.

1 Introduction

Localization and tracking of moving objects is one of the central issues in re-
search in intelligent environments. In many cases, persons need to be localized for
security or services. Also the localization of movable intelligent embedded sys-
tems is an important issue in wireless local networks or for localizing Personal
Digital Assistants (PDA’s) which can serve, for instance, as museum guides. In
this paper, we focus on the localization of a robot platform (the domestic service
robot ‘Lino’ [1], [4] (see Figure 1), developed within the ‘Ambience’ project), but
the described techniques are applicable in many other domains.

Different solutions have been presented for localizing mobile objects. One
class of solutions is to use sensors placed in the environment. Such sensors may
be cameras, infra-red detectors or ultrasonic sensors. The main problem here is
the identity uncertainty: the cameras (or other systems) have to infer the iden-
tity of the object/person to be localized from the sensor readings and this is, in
general, difficult. For instance, the camera-based localization system described
in [6] fails when tracking more than three persons. A second class of solutions
is to use radio-frequency signals. These signals are naturally present in mobile
computing networks, and their identification is trivial. However, accurate lo-
calization is difficult due to reflections, absorption and scattering of the radio
waves. A localization accuracy of approximately 1.5 meters is reported using this
approach combined with a Hidden Markov Model [7].

Localization without any active beacons or without any environment sen-
sor traditionally takes place in the research area of autonomous robots [2], [5].



Fig. 1. The user-interface robot Lino.

Generally, robot localization needs some sort of internal model of the environ-
ment based on sensor readings from which the pose (position and orientation) of
the robot is estimated. Traditionally range sensors (ultrasonic or laser scanners)
were used, but recently much progress has been achieved in localization from
vision systems. Although the methods show good results, they are not robust to
un-modeled changes in the environment and they are quite sensitive to changes
in illumination. To cope with these problems, in this paper we describe two
modifications to our localization system: an active vision method and the use of
depth information for localization These two improvements are embedded in a
probabilistic framework. In the following section, we will briefly describe our way
of modeling the world and, next, our probabilistic localization framework. Then,
we introduce our active vision method and the use of depth information for lo-
calization. After this, we described the experiments we performed to validate
our contributions and the results we obtained from them.

2 Appearance-Based Environment Representation

In the literature on mobile robots, methods for environment representation come
in two flavors: explicit or implicit. The explicit representations are based on ge-
ometric maps of free space sometimes augmented with texture information, i.e.,
CAD models, or maps with locations of distinct observable objects called land-
marks. This approach relies on the assumption that geometric information such
as the position of obstacles/landmarks can be extracted from the raw sensors
readings. However, the transformation from sensor readings to geometric infor-
mation is, in general, complex and prone to errors, increasing the difficulty of
the localization problem.



As a counterpart, the implicit (or appearance-based) representation of the
environment [8] has attracted lot of attention recently. In this paradigm, the
environment is not modeled geometrically but as an ‘appearance map’ that con-
sists of a collection of sensor readings obtained at known poses. The advantage
of this representation is that the pose of the robot can be determined directly
comparing the sensor readings obtained at a given moment with those in the
appearance-based map.

We use a vision-based appearance representation built with many images
from the environment. A problem with images is their high dimensionality, re-
sulting in large storage requirements and high computational demands. To al-
leviate this problem, Murase and Nayar [8] proposed to compress images, z, to
low-dimensional feature vectors, y, using a linear projection

y =Wz (1)

The projection matrix W is obtained by Principal Component Analysis
(PCA) of a supervised training set (T' = {(z;,2;)| ¢ € [1,N])}) consisting of
images z; obtained at known poses ;. We keep the subset of eigenvectors that
represent most of the variance of the images and we use them as rows of the pro-
jection matrix W. After the dimensionality reduction, the map used by the robot
for localization M = {(x;,y;)| ¢ € [1,N])} consists of a set of low-dimensional
(typically around 20-D) feature vectors y; corresponding to the images taken at
poses x;. The use of features instead of raw images saves a large amounts of
memory space.

For localization, the robot first has to project the image which is observed at
the unknown location to a feature representation. Then, the probabilistic model
described next is used to localize the system.

3 A Probabilistic Model for Localization

The camera system is mounted on a pan-tilt device, rigidly attached to the mo-
bile robot. We assume that the orientation of the camera with respect to the
robot is given with sufficient accuracy by the pan-tilt device. The absolute pose
of the camera is considered as a stochastic (hidden) variable z. The localiza-
tion method aims at improving the estimation of the pose x; of the camera at

time ¢ taking into account the movements of the robot/head {ui,...,u;} and
the observations of the environment taken by the robot {y1,...,y:} up to that
time!. Formally, we want to estimate the posterior p(z¢|{u1,y1,. .., us, y¢}). The

Markov assumption states that this probability can be updated from the previous
state probability p(z;—1) taking into account only the last executed action, u;,
and the last observation, y;. Thus we only have to estimate p(z|u, y¢). Applying
Bayes we have that

p(@elug, ye) o< plyeles) paelug), (2)

! In our notation, the Markov process goes through the following sequence: zo —
u U
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where the probability p(z|u;) can be computed propagating from p(z¢—1|us—1,ys—1)

p(z|ug) = /p($t|ut,$t—1)p(33t—1\ut—17yt—1) dxs_q. (3)

We discretize equation 3 using an auziliary particle filter [9]. In this approach,
the continuous posterior p(x;_1|us—1,y:—1) is approximated by a set of I random
samples, called particles, that are positioned at points zi ; and have weights
wi_,. Thus, the posterior is

I
P alu1,y1) =Y my 8(zeala_y), (4)
i=1

where §(x;_1|xi_;) represents the delta function centered at zi_,. Using this,
the integration of equation 3 becomes discrete

I
p(efue) = Zﬂfl p(xelue, zp_y), (5)
=1

and equation 2 reads to

I

p(aelue, ye) o< p(ye|we) Zﬁzq plailus, xj_y). (6)
i=1

The central issue in the particle filter approach is how to obtain a set of par-
ticles (that is, a new set of states ! and weights 7¢) to approximate p(z¢|us, yr)
from the set of particles z¢_;, i € [1, ] approximating p(z;_1|us—1,y¢—1). In [9]
and [12], you can find details on how this is achieved in the approach we use.

The probability p(z:|u, zi—1) for any couple of states and for any action is
called the action model and it is inferred from odometry. On the other hand,
p(y¢|zt) for any observation and state is the sensor model. This probability can
be approximated using a nearest-neighbor model that takes into account the
J points in the appearance-based map that are more similar to the current
observation (see [12]).

4 Active Localization

Traditionally, appearance-based localization has problems in dynamic environ-
ments: modifications in the environment are not included in the model and can
make recognition of the robot’s pose from the obtained images very difficult. To
alleviate this problem, we introduce the use of an active vision strategy. Mod-
ifications in the environment would only be relevant if the camera is pointing
towards them. If this is the case, we can rotate the cameras to get features in
other orientations hopefully not affected by the environment changes. Therefore,
in case of observations that do not match with those in the appearance-based



Fig. 2. Plain image (left) and the corresponding disparity map (right). In the disparity
map, light gray areas are missing values.

map, the location of the robot can be found out efficiently by issuing the ade-
quate sequence of camera rotations. The question here is how to determine this
adequate sequence of camera movements.

In [10], we present a method based on the minimization of the estimated
entropy H(u) of the stochastic variable z if action u was executed. We describe
how to approximate the entropy H (u) by taking advantage of the two main com-
ponents of our localization system: the particle filter (to get a discrete set of the
possible placements of the robot after executing action u) and of the appearance-
based map (to get a discrete set of possible observations after executing action
u). These two approximations allow to discretize the computation of the entropy
H(u), making it feasible.

5 Adding Depth Information

Vision-based appearance localization is sensitive to illumination conditions. An
adequate preprocessing of the images such histogram equalization makes the
system more robust, but does not solve all problems. Therefore, we decided to
complement the visual information with depth information.

For that, we used a commercially available stereo system [3], that provides
information of the distance to the nearest object for each pixel in the form of
a disparity value obtained matching pixels from the two stereo images. The
algorithm we use applies many filters in this matching process both to speed
it up and to ensure the quality of the results. For instance, if the area around
a given pixel is not textured enough it would be very difficult to find a single
corresponding point in the other image: we are likely to end up with many
pixels with almost the same probability of being the corresponding point to
the pixel we are trying to match. For this reason, pixels on low textured areas
are not even considered in the matching process. The result of this and other
filtering processes is to produce a sparse disparity map: a disparity map where
many pixels don’t have a disparity value (see Figure 2). This makes the use of
standard PCA to determine the projection matrix unfeasible and we have to use
more elaborated techniques such as the EM algorithm we introduced in [11].



Once we have a way to define features from disparity maps, it remains the
question of how to combine the information coming from disparity with that
obtained from intensity to defined a unified sensor model. Two possible solutions
come to mind: to combine them in a conjunctive way or in a disjunctive one.

A conjunctive-like combination can be achieved factorizing the sensor model

p(ya, yilx) = p(yalz) p(yilz), (7)

with y4 the features obtained for disparity and y; those for intensity. In this
way, only those training points consistent with both the current intensity image
and the current disparity map are taken into account to update the robot’s
position. The problem of this formulation is that wrong matches for intensity or
for disparity would result in an almost null sensor model and, thus, the position
of the robot would be updated almost without sensory information.

To avoid this, we propose to use a disjunctive-like model that can be imple-
mented defining the global sensor model as linear combination of the intensity
and disparity sensors models

J

J/
P(ya, yile) = wa Y Ny d(xlrs) +wi Y N; dlala)), (®)
j=1

j=1

where x; and SU; are the training points with features more similar to those of
the current disparity and intensity image respectively. The weights wy and w;
can be used to balance the importance of the information obtained with each
type of sensor. If both information sources are assumed to be equally reliable,
we can set wg = w; = 1/2.

With this expression for the sensor model, all the hypotheses on the robot
position suggested by the current observation are taken into account. The par-
ticle filter [9] [12] we use to update the probability on the robot’s position takes
care of filtering the noise and, thus, of preserving the hypothesis that is more
consistent over time.

6 Experiments and Results

In this section, we describe the experiments we performed to validate the our con-
tributions both on active localization and on localization using disparity maps.

6.1 Experiments on Active Localization

We tested our action evaluation system in an office environment. We mapped
an area of 800 x 250 cm taken images every 75 cm and every 15 degrees. This
makes a total amount of about 400 training images. The short distance between
training points make images taken at close positions/orientations to look very
similar. In the experiments, we compress the images using PCA keeping 5 feature
detectors, we use 10 nearest neighbors to approximate the sensor model p(y|x),
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Fig. 3. Evolution of the average error (and the standard deviation) w.r.t. the correct
position as we get new images.
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Fig. 4. Convergence toward the correct position estimation: particles around different
hypotheses (left) and particles around a single correct hypothesis (right).

and we define the initial distribution p(x¢) uniformly over the configuration space
of the robot. We considered 22 different orientations for the camera and we used
up to 150 particles to approximate p(x¢|us, yz).

We tested the system placing the robot at positions not included in the
training set, rotating the camera as measuring the error and ||c — a|| with ¢ the
correct position and a the position estimated by our system.

Figure 3 shows the decrease on the average positioning error as new actions
are issued. The results shown correspond to the average and the standard de-
viation over ten runs placing the camera in two different testing positions. We
can see that the entropy-based action selection allows a fast reduction of the
localization error as the head is moved and new images are processed. If we con-
sider the estimation a to be correct if the closest training point to a is the same
as the closest training point to the correct position ¢, then the success ratio in
localization after 3 camera movements is over 95%.



Figure 4 shows a typical evolution of particles from a distribution around
different hypothesis (left) to the convergence around the correct position (right)
achieved as new images are processed. In the figure, each >’ symbol represents
a particle (the brighter the larger its weight) and the triangle represents the pose
of the camera. The circle represents the standard deviation of particles in the
XY plane.

6.2 Experiments on Localization using Disparity Maps

To test the invariance of the feature detectors obtained from disparity maps
to changes in illumination we acquired an appearance-based map in a area of
900 x 500 cm. Images where collected every 50 cm (both along X and Y') and
every 10 degrees. This makes a total amount of about 4000 images.

Table 1. Ratio of average feature detector variation due to illumination vs. the changes
due to a small translations.

Image INlumination Setups

Process Bulb Lights Natural Light Average
Plain Images 3.85 4.64 4.24
Hist. Equalization 1.50 1.84 1.67
Gradient Filter 1.11 1.37 1.24
Disparity Map 0.68 0.79 0.73

We analyzed the sensitivity of the feature detectors to two of the different
factors that can modify them: translations and changes in illumination. For this,
we compute the ratio

ye — Yall

r(a,b,c) 1o = vall 9)
with y, the feature detectors of image at pose a with the illumination setup used
to collect the appearance map (tube lights), y, the feature detectors of the image
obtained with the same orientation and the same lighting conditions but 50 cm
away from a, and y. the image obtained at pose a but in different illumination
conditions. The greater this ratio, the larger the effect of illumination w.r.t. the
effect of translations and, thus, the larger the possible error in localization due
to illumination changes.

We used two illumination setups for the test: bulb lights and natural light
(opening the curtains of the windows placed all along one wall of the lab). These
two tests sets provide changes both in the global intensity of the images and in
the distribution of light sources in the scene, that is the situation encountered
in real applications.

We computed the above ratio for the feature detectors obtained from plain
images, from disparity maps and also for images processes with two usual tech-
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Fig. 5. Error in positioning in three different illumination conditions, using only inten-
sity images (dashed line) and intensity and disparity images (dotted line).

niques for dealing with illumination related problems: histogram equalization
and a gradient-based filter.

Table 1 shows the results we obtained for the experiment just described.
In this table, we can see that, as expected, using processed images the ratio
decreases considerably compared with the ratio using images without any illu-
mination correction. In the case of disparity maps, this ratio is the smallest one
meaning that disparity is the best of the three techniques we tested, as far as
independence of illumination is concerned.

To assess the contribution of using disparity maps in appearance-based lo-
calization, we moved the robot along a pre-defined path in the three different
illumination conditions mentioned above: tube lights, bulb lights and natural
light. At regular distances along the test path, we took an image and we com-
puted the corresponding sensor model using the J training points with features
more similar to those corresponding to the just obtained image. The closer the
training points used to define the sensor model to the actual position of the
robot, the better the sensor model and, thus, better the update of the robot
position estimation.

Figure 5 shows the average and the variance for all the test points all along
the path of the error defined as

e =min ||r —n||, (10)
Vn
with r = (rg,ry,74) the poses of the robot at the test position and n =

(ng,ny,ng) the pose of the points used to define the sensor model, that are
different for each test position. An error in the range [25,50] is quite reasonable
since the distance between training points in X and Y dimensions is 50 cm.
We repeat the test in two cases: (a) using only intensity images (dashed
line on Figure 5) and (b) using, additionally, disparity maps (dotted line on the



figure). In the first case we use J = 10 and in the second case we use J =5 but
for both intensity and disparity so, we also get 10 nearest-neighbors.

We can see that the use of disparity maps results in a reduction of the
error in the sensor model when illumination is different from that in which the
training set was obtained (tube lights). Consequently, the use of feature detectors
computed from disparity maps increase the quality of the sensor model and, thus,
it helps to obtain a more robust localization system.

7 Conclusions

In this paper, we have introduced two extensions to the traditional appearance-
based robot localization framework: active selection of robot actions to improve
the localization and used of disparity maps for localization. These two extensions
are possible thanks to the use of a stereo camera mounted on the mobile head
of the service robot Lino.

The experiments we report with our active vision system show that this mech-
anism effectively helps to find out the location of the robot. This is of great help
in dynamic environments, where existing appearance-based localization system
exhibited some problems.

Our second contribution is the use of sparse disparity maps to increase the
robustness of appearance-based localization to changes in illumination. The re-
sults we have presented show that disparity maps provide feature detectors that
are less sensible to changes in the lighting conditions than feature detectors ob-
tained from images processed with other techniques: histogram equalization and
gradient-based filters. These techniques work well when we have changes in the
global illumination but they do not deal properly with different distributions of
light sources. Disparity maps are more consistent over changes in the number
and in the position of the light sources because only reliable correspondences are
taken into account when defining the disparity map. These reliable matches are
likely to be detected in different lighting conditions.

We have shown that, using features from disparity maps in addition to those
obtained from intensity images, we can improve the quality of the sensor model
when illumination conditions are different from those in which the training set
is obtained. Thus, disparity maps are a good option to increase the robustness
of appearance-based robot localization.

The good results achieved using disparity maps cames at the cost of using
a more complex hardware (we need not only one camera but two calibrated
ones) and software (the disparity computation process is more complex than the
histogram equalization and the gradient filter processes).

The main assumption behind our approach is the existence of a training set
obtained off-line and densely sampled over the space where the robot is expected
to move. To obtain this training set is not a problem, but it would be desirable
the robot to build it on-line. To achieve this improvement, we have to explore
the use of incremental techniques to compress the images obtained as the robot
moves in the environment.



The type of environment representation underlying our localization system is
computationally very cheap: after the dimensionality reduction the appearance-
based map is small and the linear projection of images is an efficient process.
For this reason, the localization system could be easily implemented in fields
other than autonomous robots as, for instance, PDA’s or mobile phones provided
with cameras. Since the localization would be performed by the same device to
be localized, we avoid the identity uncertainty problem, and, additionally, the
accuracy in localization that could be achieved is better than that reported using
radio-frequency techniques.
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