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Abstract Many situations in Robotics require an effective analysis of the motions

of a closed-chain mechanism. Despite appearing very often in practice (e.g. in par-

allel manipulators, reconfigurable robots, or molecular compounds), there is a lack

of general tools to effectively analyze the complex configuration spaces of such sys-

tems. This paper describes the CUIK suite, an open-source toolbox for motion anal-

ysis of general closed-chain mechanisms. The package can determine the motion

range of the whole mechanism or of some of its parts, detect singular configurations

leading to control or dexterity issues, or find collision- and singularity-free paths

between given configurations. The toolbox is the result of several years of research

and development within the Kinematics and Robot Design group at IRI, Barcelona,

and is available under GPLv3 license from http://www.iri.upc.edu/cuik.

Key words: Kinematic Constraints, Motion Analysis and Planning, Branch-and-

Prune, Higher-dimensional Continuation.

1 Introduction

The notion of configuration space (C-space) is fundamental in Robotics. It al-

lows designing motion planning algorithms for broadly-defined classes of robots or

mechanisms, without worrying about their particular geometry or multibody struc-

ture. In most Robotics textbooks, this notion is introduced for open-chain mech-

anisms, where the C-space has an explicit global parametrization. In this way,

C-spaces are readily understood and algorithms operating on them can be readily

defined. In many cases, however, the C-space can have a more intricate structure,

and its analysis is by no means trivial. This is the case of parallel manipulators, re-
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configurable mechanisms, or robots working under geometric or contact constraints,

but similar problems arise when exploring the motions of a protein, or when assem-

bling parts using spatial constraints. Common to these problems is the fact that the

feasible configurations are implicitly defined by a nonlinear system of equations

F(xxx) = 0, (1)

and the goal is to understand the motion capabilities of the mechanism by analyzing

the solution set C of this system.

In an extreme case, C is composed of isolated points only. This is what happens

when solving forward or inverse kinematics problems in robot manipulators. Histor-

ically, the preferred approach has been to tackle these problems by reducing Eq. (1)

to a resultant polynomial, and then solving this polynomial using well-established

methods for the univariate case. However, this approach may introduce extraneous

roots, and the degree of the resultant grows rapidly with the size and complexity of

the mechanism. The CUIK suite circumvents these issues by adopting an opposite

approach. Instead of reducing Eq. (1) to a univariate polynomial, we formulate it as

a larger system involving linear and quadratic equations. This allows the application

of an efficient branch-and-prune technique to fully isolate C at the desired accuracy.

In comparison to general toolboxes for polynomial constraint solving [12, 24], the

CUIK suite sacrifices generality to gain simplicity and efficiency in the implemen-

tation. Opposite to [24], moreover, it directly isolates the real roots instead of the

complex ones, even if they form positive-dimensional sets.

Branch-and-prune methods are exhaustive, which broadens their range of ap-

plicability, but in problems such as path planning, it may be sufficient to ex-

plore only those configurations that are path-connected to a given point. To this

end, the CUIK suite implements higher-dimensional continuation tools allowing

to trace arbitrary, implicitly-defined manifolds [6]. Note that while several pack-

ages provide state-of-the-art path planning methods, they are oriented to open-chain

robots [11, 22, 21, 23], or to particular classes of closed-chain devices [10]. The

CUIK suite complements these packages by providing new methods to deal with

the general closed-chain case.

The rest of the paper describes the numerical methods implemented in the tool-

box, and the several higher-level algorithms relying on them.

2 Branch-and-prune methods

Branch-and-prune methods solve Eq. (1) by refining successive box approximations

of C . We outline them for planar mechanisms, but general spatial mechanisms can

also be treated with the proper extensions [16].

Initially, the kinematic equations must be formulated in a form allowing simple

pruning operations. In our case we depart from the formulation in Fig. 1, which leads

to polynomial equations of a simple form with little manipulation. If Ji is a revolute
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joint connecting links L j and Lk, the assembly constraint is equivalent to imposing

the coincidence of two points on the axis of the joint, Pi and Qi, respectively fixed to

L j and Lk. If Ji is prismatic, we further define a unit vector aligned with the joint, dddi,

and force Pi to lie on the line of Lk defined by Qi and dddi, fixing the orientation of L j

relative to Lk. By assigning a reference frame F j to every link L j, and taking F1 to

be the absolute frame, these conditions can then be written as shown in the bottom

of the figure.

The resulting equations can be algebraized by performing the term substitutions

s j = sinθ j and c j = cosθ j, and introducing the equations s2
j + c2

j = 1, which leads

to a formulation of Eq. (1) in which the scalar equations are either linear in xxx, or

take one of the forms xk = xix j or xk = x2
i . It is easy to see that the variables in xxx can

only take values within prescribed intervals, so that one can define an initial box B

bounding the location of all solutions of Eq. (1) from the Cartesian product of such

intervals.

The algorithm for solving Eq. (1) iteratively removes portions of B that contain

no solution. To this end, we use the linear equations in Eq. (1), and linearly-relaxed

versions of the equations xk = xix j and xk = x2
i [Fig. 2 (a)], in order to define a poly-

tope P bounding the solution set within B. This box is then reduced by computing

the smallest axis-aligned orthotope circumscribing P , using the Simplex method.

The process is repeated until (1) the box is either reduced to an empty set, in which

case it contains no solution, or (2) it is sufficiently small, in which case it is returned

as a solution box, or (3) it cannot be further reduced, in which case it is bisected into

two sub-boxes. The whole process is recursively applied to the new sub-boxes, until

a fine-enough box approximation of the solution set is finally obtained [Fig. 2 (b)].

The tools of the CUIK suite automate the previous process. They obtain the

equations from a high-level file describing the mechanism, compute the solutions
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Fig. 1 Assembly constraints for planar pairs. In the equations, rrr j is the position of F j relative to

F1, RRR j is the rotation matrix of angle θ j ,
j pppi is the position of Pi in F j , and kdddi provides dddi in the

basis of Fk. RRR j = RRR ·RRRk in the prismatic joint, where RRR is a constant rotation matrix.
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Fig. 2 (a) A linear relaxation is a collection of half-spaces bounding the graph of a given equation

within the box B of interest. The figure shows a relaxation of xk = x2
i involving three half-spaces.

(b) Progression of the branch-and-prune method on a one-dimensional C-space.

Fig. 3 Top: The rigid wheel linkage on the left involves 10 loops. For the shown bar lengths, the

tools of the CUIK suite determine that it can be assembled into 19 different configurations, includ-

ing the four ones shown herein. Bottom: The C-space of the wheel linkage with one bar removed,

as computed by the mentioned tools. The C-space involves one isolated point and fifteen one-

dimensional components, which are here projected onto the sines of two link angles. A resultant

polynomial describing such curve is expected to be of a very high degree.
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in single- or multiple-CPU machines, and allow the visualization of the results by

producing 2- or 3-dimensional plots. The operations involving ranges are imple-

mented using interval arithmetic, and the Simplex program outputs are adjusted

in order not to lose solutions. The example in Fig. 3 is simple, but the tools have

proved successful in analysing the C-spaces of general 6R robots and Stewart plat-

forms [16], multiloop molecules [17], robot hands with contact constraints [20], or

complex multi-loop linkages like the one in Fig. 3. To compare, resultant methods

in the plane are finding their limit in mechanisms of much smaller size [18].

C-spaces of robotic systems typically exhibit singularity subsets. These are loci

of critical configurations where control or dexterity losses arise, leading to malfunc-

tion or a breakage of the structure [25]. These loci provide the boundaries of the

task and joint workspaces too, and all possible motion barriers within them [3]. By

adequately defining the equations passed to the solver, the CUIK suite can isolate

any of such loci [3, 5, 2], becoming the first general tool able to do so, up to the

authors’ knowledge.

3 Continuation methods

Continuation methods generate atlases of the C-space region that is path connected

to a given point. To see how such atlases are constructed, let xxxi be an initial point

in C . The tangent space of C at xi, Ti, can be parametrized by

xxxi
j = xxxi +Φiuuu , (2)

where Φi is a matrix providing an orthonormal basis of Ti, and uuu is a parameter

vector with the same dimension as C . By choosing a value for uuu in Eq. (2) we obtain

a point xxxi
j ∈ Ti, which can be projected down to C by solving the system formed

by F(xxx j) = 0 and Φ
⊤
i (xxx j − xxxi

j) = 0, which provides the point xxx j ∈ C lying in the

normal line through xxxi
j [Fig. 4 (a)]. The point xxx j is then used to define a new chart

that is coordinated with the previous chart, and the process is iterated until the whole

component of C reachable from xxxi gets fully covered [Fig. 4 (b)]. The construction

xxxi
xxxi

j

uuu

xxx j

(a) (b)
Ti

C

Fig. 4 (a) A chart is used to obtain new C-space points by projecting points from the tangent space.

(b) Progress of the atlas construction method on a manifold. Red polygons represent the charts to

be extended in subsequent iterations.



6 L. Ros, J. M. Porta, O. Bohigas, M. Manibens, C. Rosales, L. Jaillet

0 50 100 150

500

550

600

Steps

k
c
a
l/
m

o
l

Fig. 5 A low-cost path (in blue) computed in the conformational space of a loop of the FTSJ

protein of Escherichia Coli (in ribbon diagram on the right). The cost is the potential energy of each

conformation. The insets show the initial conformation, the transition state (i.e., the conformation

with the highest potential energy along the path), and the final conformation. Only the atoms in the

loop are shown in such conformations. The plot shows the energy profile along the transition path.

of a whole atlas is typically fast in 1- or 2-dimensional C-spaces, which allows

tackling difficult optimization problems involving large multibody systems [19].

To solve path planning problems, the CUIK suite exploits the fact that an at-

las defines a roadmap in configuration space, whose nodes are located at the chart

centers, and whose edges are given by the collision-free transitions between neigh-

boring charts. The roadmap can be used to resolve multiple planning queries be-

tween different configurations. However, for cases where only one query needs

to be resolved, the suite provides a method to construct only the charts required

to define a short path between the given configurations [15]. Based on this tool,

singularity-free, resolution-complete path planners for general closed-chain [1] and

cable-driven manipulators [4] have been developed, solving problems with no prior

satisfactory solution.

Resolution-complete strategies can be inefficient in cluttered environments, and

they do not scale gracefully to higher dimensions. To avoid these weaknesses, the

CUIK suite implements a sampling method where a partial atlas is used to extend a

rapidly-exploring random tree (RRT), which in turn is exploited to decide extension

directions for the atlas [9]. Using this technique it is possible to solve problems in

pretty high dimensions in a few seconds. Although the paths generated with RRT-

like algorithms are typically jerky, the CUIK suite provides procedures to smooth

them, and to generate near-optimal paths when there is a cost function defined over

the C-space. If the cost is defined for each configuration, the suite implements an

extended version of the T-RRT algorithm in [7]. For instance, Fig. 5 shows a low cost

path computed by this method in the case of a short loop of a protein [14]. If the cost

is associated with the length of the path, the suite adapts the RRT* asymptotically-

optimal path planner to the case of implicitly-defined C-spaces [8].
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4 Conclusions

This paper has described the CUIK suite, a comprehensive set of tools to analyze

configuration spaces implicitly defined by systems of kinematic equations. We pro-

vided a brief account of the implemented techniques and their possible applications.

Since problems involving kinematic constraints are ubiquitous in Robotics, the suite

may potentially be used to address many other problems beyond those described in

the paper, in contexts like robot positioning and mapping [13], motion analysis and

synthesis of robot formations, tensegrity or deployable structures, or programmable

surfaces, to name a few. The suite is an open source package under continuous de-

velopment, and we invite the community to use it, and to help us improve it by

sending feedback and suggestions.
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