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Abstract A molecular linkage consists of a set of rigid bodies pairwise connected by

revolute hinges, so that all hinge lines of each body are concurrent in a single point.

It is an important problem in biochemistry, as well as in robotics, to efficiently an-

alyze the motions and configuration spaces of such linkages. The well-developed

mathematical theory of generic rigidity of body-bar frameworks permits a rigid-

ity and flexibility analysis of molecular linkages via fast combinatorial algorithms.

However, recent work in rigidity theory has shown that symmetry (a common fea-

ture of many molecular and mechanical linkages) can lead to additional motions in

body-bar and molecular frameworks. These motions typically maintain the original

symmetry of the structure throughout the path, and they can often be detected via

simple combinatorial counts. In this paper, we outline how these symmetry-based

mathematical counts and methods can be used to efficiently predict the motions of

symmetric molecular linkages, and we provide numerical companion configuration

spaces supporting the symmetric Molecular Conjectures in rigidity theory.
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1 Introduction

Accurate measurements of flexibility and dynamics of proteins and other molecules

can help us interpret the relationship between structure and function, which has

significant implications in medicine and drug design [12, 7]. This is an important
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area of research in computational biology, material science and bioinformatics, and

has lately attracted a lot of interest in the robotics community [11].

Over the last 15 years, rigidity-based methods like FIRST, ProFlex, FRODA,

Parasol or Kinari [3, 7] have been widely used to give fast computational predictions

of flexibility and motions of molecular structures, such as DNA, RNA and protein

structures. Rigidity methods are inherently based on the rich mathematical theory of

generic rigidity of molecular linkages, which are built of rigid bodies (atoms) linked

in pairs via revolute hinges (rotatable bonds between the atoms) [7, 20]. These meth-

ods detect rigidity or flexibility in generic molecular linkages using combinatorial

(counting) characterizations of rigidity, which can be verified via fast pebble game

algorithms [9, 16] (Section 2).

However, recent work by Schulze et al. [13, 14, 15] shows that added symmetry

can lead to additional flexibility that is not detected by the more general characteri-

zations. The point is crucial because symmetry plays a central role in biomolecular

sciences, and is found in many molecular rings, proteins, or viral capsids. Symmetry

is also important in macromolecular stability, assembly, ligand recognition and drug

docking, and in other important phenomena such as allostery [4, 16].

In this paper, we demonstrate how this increased flexibility can still be detected

through simple symmetry-adapted counts, and then we formulate the symmetric

molecular conjectures of rigidity theory (Section 3). To test the power of the counts,

and to provide evidence supporting the conjectures, we further use the higher-

dimensional continuation tools of the CUIK suite [10, 5] on a sampler of illustrative

examples (Section 4).

2 Detecting flexibility in body-bar and molecular linkages

A 3-dimensional body-bar framework consists of a set of rigid bodies in R
3 which

are connected by rigid bars (see Fig. 1, left). Each of the bodies is free to move

continuously in R
3, subject to the constraints that the distance between any pair of

points which are connected by a bar remains fixed. A body-bar framework is called

rigid if every such motion also preserves the distance between all pairs of points

belonging to different bodies. Otherwise the framework is called flexible [19, 20].

The underlying combinatorial structure for a body-bar framework is a multigraph

G = (B,E), where the vertices in B represent the bodies of the framework and the

edges in E represent the rigid bars of the framework [19, 20]. To determine whether

Fig. 1 A body-bar framework and its corresponding body-hinge framework.
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a given body-bar framework with underlying multigraph G = (B,E) is rigid is in

general a very difficult problem, as it requires solving a system of quadratic equa-

tions. It is therefore common to linearize this problem by differentiating the length

constraints given by the rigid bars. This leads to a homogeneous system of |E| lin-

ear equations in 6|B| unknowns, and the corresponding coefficient matrix of this

linear system is called the rigidity matrix of the framework. The elements in the

kernel of this matrix are called the infinitesimal motions of the framework, and

it is well known that the space of trivial infinitesimal motions of a 3-dimensional

body-bar framework (i.e. the space of infinitesimal motions of the framework which

correspond to congruent motions of Euclidean 3-space) is of dimension 6. Thus, a

body-bar framework possesses a non-trivial infinitesimal motion if and only if the

dimension of the kernel of the rigidity matrix is strictly larger than 6.

It is an important and well known fact that if a body-bar framework is infinitesi-

mally rigid (in the sense that it only has trivial infinitesimal motions), then it is also

rigid. The converse is not true in general. However, if the framework is regular, that

is, if the rigidity matrix of the framework with underlying multigraph G has maxi-

mal rank among all realizations of G as a body-bar framework, then the existence

of a non-trivial infinitesimal motion also guarantees the existence of a non-trivial

continuous motion of the framework. In other words, for regular frameworks, in-

finitesimal rigidity is equivalent to rigidity [1]. Note that it is easy to show that the

set of regular realizations of a multigraph G forms a dense open subset of all pos-

sible realizations of G as a body-bar framework, and hence ‘almost all’ realizations

of G as a body-bar framework are regular.

Tay showed that for a regular body-bar framework, the rank of its rigidity matrix

is captured by the following simple combinatorial counts [17]:

Theorem 1. (Tay, 1984) A regular 3-dimensional body-bar framework with under-

lying multigraph G = (B,E) is rigid if and only if there exists a subset E∗ of E which

satisfies the conditions:

(1)|E∗|= 6|B|−6;

(2)|E ′| ≤ 6|B′|−6 for all subgraphs induced by subsets of E∗.

While algorithmically this condition looks like we need to check all possible

subsets of bars of the framework (an exponential process!), these counts on a multi-

graph define independent sets in a matroid, leading to a fast greedy algorithm called

the pebble game, with running time of O(|B||E|) [9, 16].

A 3-dimensional body-hinge framework consists of a set of rigid bodies which

are connected, in pairs, along revolute hinges (i.e., lines in 3-space), and each of

the bodies is free to move continuously, subject to the constraints that the contacts

along the hinges are preserved (see Fig. 1, right). Since a hinge removes 5 of the 6

relative degrees of freedom between a pair of rigid bodies in 3-space, a body-hinge

framework can be modeled as a special case of a body-bar framework by replacing

each hinge with 5 independent bars, each intersecting the hinge line.

The counts in Theorem 1 (and the corresponding pebble game algorithms) also

characterize regular rigid body-hinge frameworks in 3-space [18, 19], where a body-
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hinge framework with multigraph G is called regular if its rigidity matrix has max-

imal rank among all body-hinge realizations of G. Moreover, the recent Molecular

Theorem [8] confirmed that Tay’s counts also characterize regular rigid molecular

linkages, where a molecular linkage is a body-hinge framework with the special

geometry that all hinges of each body are concurrent in a single point. This result

solved the more than 20 year old Molecular Conjecture [18].

3 Detecting symmetry-preserving motions in symmetric linkages

Many natural structures such us proteins, as well as many human-built structures

such as linkages and other mechanical machines, exhibit non-trivial symmetries [4].

As a consequence, there has been a growing interest in the impact of symmetry on

the rigidity and flexibility of these structures. In particular, a symmetric analog of

the rigidity matrix, called the orbit rigidity matrix, has been constructed in [15] to

detect hidden symmetry-preserving motions in symmetric frameworks.

For a body-bar framework whose symmetry group acts freely on the bodies of

the framework (i.e., no body is centered on a rotational axis, an inversion center or a

reflectional plane), this symmetry-adapted analysis leads to some very simple Tay-

type counts (see Theorem 2). With these counts we can sometimes detect hidden

motions in symmetric frameworks that are undetectable with the non-symmetric

Tay counts.

If we focus only on motions which preserve the full symmetry group S of the

original framework, the motion of a single body b uniquely determines the motions

of all bodies that lie in the same orbit as b under the group action of S (i.e., all

bodies s(b), s∈ S) as well. So we have 6 degrees of freedom for each orbit of bodies.

Similarly, each orbit of bars (i.e., each bar together with all of its symmetric copies)

restricts the motion of the combined structure by one. Therefore, the orbit rigidity

matrix has |Eo| rows and 6|Bo| columns, where |Eo| and |Bo| denote the number of

bar orbits and body orbits of the framework, respectively.

The key property of the orbit rigidity matrix is that its kernel is the space of

S-symmetric infinitesimal motions of the framework (see [15] for details). In the

following, we denote the dimension of the space of trivial S-symmetric infinitesimal

motions of the framework by trivS. Note that for any symmetry group S in dimension

3, trivS can be read off from the character tables in [2], for example.

Analogously to the non-symmetric situation, a body-bar framework (or molecu-

lar framework) with symmetry group S and underlying multigraph G is said to be

S-regular, if its orbit rigidity matrix has maximal rank among all S-symmetric re-

alizations of G as a body-bar (or molecular) framework. From the results in [13] it

follows that if an S-regular body-bar framework has an S-symmetric non-trivial in-

finitesimal motion, then it also has a non-trivial continuous motion which preserves

the symmetry group S throughout the path. This fundamental result leads to the fol-

lowing necessary conditions for an S-regular body-bar (or molecular) framework to

be rigid:
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Theorem 2. (Schulze, Whiteley, 2010 [15, 13]) If an S-regular body-bar (or molec-

ular) framework in R
3 (with S acting freely on the bodies) has only trivial symmetry-

preserving continuous motions, then there exists a subset of representatives for the

bar orbits, E∗
0 , such that:

(1)|E∗
0 |= 6|B0|− trivS;

(2)|E ′
0| ≤ 6|B′

0|− trivS for all subgraphs induced by subsets E ′
0 of E∗

0 .

Very recently, some initial symmetry-extended versions of the pebble game algo-

rithm - based on Tay’s original counts and on the orbit counts in Theorem 2 - have

been developed in [14]. While these algorithms provide sufficient conditions for the

flexibility of a symmetric structure, an area of ongoing research is to whether they

also provide necessary conditions for flexibility.

Note that Theorem 2 applies to both body-bar and molecular frameworks, be-

cause (1) and (2) are necessary, but not sufficient conditions for an S-regular body-

bar framework to be rigid, and the rank of the orbit rigidity matrix of an S-regular

realization of a multigraph G as a body-bar framework is at least as big as the rank of

the orbit rigidity matrix of an S-regular realization of G as a molecular framework.

We offer the following two conjectures

Conjecture 1. (Symmetric Molecular Conjecture I) The orbit rigidity matrix of

an S-regular body-bar realization of a multigraph G has the same rank as the orbit

rigidity matrix of an S-regular molecular realization of G.

In other words, we conjecture that under S-regular conditions, body-bar realiza-

tions of G and molecular realizations of G have the same number of S-preserving

degrees of freedom.

Conjecture 2. (Symmetric Molecular Conjecture II). The rank of the entire rigid-

ity matrix - and not just the orbit matrix - of an S-generic body-bar realization of a

multigraph G is the same as the rank of the rigidity matrix of an S-generic molecular

realization of G, where a structure is called S-generic if the rank of the entire rigidity

matrix is maximal, among all S-symmetric realizations.

It would follow from this conjecture that under S-generic conditions, body-bar

realizations and molecular realizations of G have exactly the same (not necessarily

S-preserving) infinitesimal motions.

4 Evidence for the symmetric Molecular Conjectures

To collect evidence supporting the previous conjectures, we have applied the higher-

dimensional continuation methods implemented in the CUIK suite [10, 5] to a va-

riety of symmetric molecular linkages. These methods allow an exhaustive tracing

of the C-space component of the linkage that is path-connected to a given config-

uration. The exploration marches from such configuration in all directions system-

atically by constructing local charts on the tangent bundle. Neighbouring charts are
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Table 1 Tay and orbit counts for selected molecules, and the results of the numerical analysis.

Molecular

structure

Symmetry

group

Tay’s

counts

Orbit

counts

C-space

analysis

1

C2

(trivC2
= 2)

|B|= 16

|E|= 90

|E|= 6|B|−6

Predicts

rigid molecule

|B0|= 8

|E0|= 45

|E0|< 6|B0|−2

Predicts 1-dim.

C2 symmetric motion

C2

(axis 1)

1

2

D2

(trivD2
= 0)

|B|= 16

|E|= 90

|E|= 6|B|−6

Predicts

rigid molecule

D2 |B0|= 4

|E0|= 23

|E0|< 6|B0|−0

Predicts 1-dim.

D2 symm. motion

C2: |B0′ |= 8

|E0′ |= 45

|E0′ |< 6|B0′ |−2

Predicts 1-dim.

C2 symmetric motion

C2

(axis 1)

C2

(axis 2)

D2

D2

(trivD2
= 0)

|B|= 24

|E|= 140

|E|> 6|B|−6

Predicts

rigid molecule

|B0|= 6

|E0|= 35

|E0|< 6|B0|−0

Predicts 1-dim.

D2 symmetric motion

D2

C2

(trivC2
= 2)

|B|= 16

|E|= 90

|E|= 6|B|−6

Predicts

rigid molecule

|B0|= 8

|E0|= 45

|E0|< 6|B0|−2

Predicts 1-dim.

C2 symmetric motion

2-dimensional

C-space with C2 sub loop.

Only the 6-revolute

rings always maintain

C2 symmetry.

mutually coordinated to keep track of the C-space region explored up to a given

point, and branch-switching methods are applied at bifurcation points in order not

to leave areas unexplored [6]. In the end, the component topology can be inferred

from the neighbourhood relationships between charts.

Table 1 provides a selection of the molecular linkages analyzed so far. For each

linkage, we show the initial configuration used for continuation, its symmetry group,

the number of predicted motions according to the Tay and orbit counts, and the

C-space topology inferred from the numerical analysis. We focus on linkages ex-

hibiting the half-turn symmetry group C2 and the dihedral group D2 of order 4
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(which is generated by two perpendicular half-turn axes), as these are the most com-

mon groups for molecular structures such as proteins [4, 14].

Note that each of the linkages in Table 1 is predicted to be rigid with Tay’s non-

symmetric counts. (In fact, the third linkage even counts to be over-constrained by

two.) However, in each case we have 6|B0|− trivS −|E0| = 1, so that we may con-

clude from Theorem 2 that for S-regular realizations, each of these molecular link-

ages has a symmetry-preserving non-trivial motion (Note that trivC2
= 2 in Table 1

since the space of C2-symmetric trivial motions is generated by a translation along

the C2 axis and a rotation about the C2 axis.)

From the topology of the configuration space of the first and the third linkage it

follows that there are no additional (symmetry-preserving or symmetry-breaking)

non-trivial motions for these linkages, which provides evidence for both symmetric

Molecular Conjectures.

Similarly, the configuration space of the second linkage also supports the first

symmetric Molecular Conjecture, since it shows that the linkage has only one D2-

preserving degree of freedom at every D2-regular point, and only one C2-preserving

degree of freedom at every C2-regular point. (At the bifurcation points, the linkage

is still D2-regular, and the additional motion only preserves one of the half-turn axes

of D2 so it is not C2-regular at those points.) This example is also consistent with

the Symmetric Molecular Conjecture II, since the bifurcation points are neither C2-

nor D2-generic, as the rank of the entire rigidity matrix at the bifurcation points is

clearly not maximal among the C2- or D2-symmetric realizations of the structure.

Finally, while the orbit counts predict the fourth linkage in Table 1 to have

one non-trivial C2-preserving motion, a more detailed symmetry-based analysis of

the subgraphs of the two 6-revolute rings shows that there is in fact an additional

symmetry-breaking motion as well. Our computations of the configuration space

again confirm that there is indeed a two-dimensional C-space for this molecular

linkage. In addition, our computations show that each of the two 6-revolute rings of

the structure maintains its half-turn symmetry at all times, which supports our ex-

pectation that stressed (over-constrained under symmetry) components of a structure

(such as the symmetric 6-rings in the linkage) are more likely to maintain their sym-

metry than unstressed ones (such as the connecting links between the 6-rings) [14].

5 Conclusions

This paper has described the symmetric molecular conjectures of rigidity theory,

providing their context, formulation, and a number of examples providing sup-

porting evidence for them. The associated combinatorial methods allow to pre-

dict hidden motions in symmetric molecules that otherwise seem apparently over-

constrained and rigid. The ultimate aim of this work is to move from the theoretical

analysis and to apply the symmetry-based methods and pebble game algorithms to

actual proteins, to better understand their functions and possible drug targets.
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