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We present a value iteration algorithm for learning to act in Partially Observable
Markov Decision Processes (POMDPs) with continuous state spaces. Mainstream
POMDP research focuses on the discrete case and this complicates its applica-
tion to, e.g., robotic problems that are naturally modeled using continuous state
spaces. The main difficulty in defining a (belief-based) POMDP in a continuous
state space is that expected values over states must be defined using integrals
that, in general, cannot be computed in closed from. In this report, we provide
three main contributions to the literature on continuous-state POMDPs. First, we
show that the optimal finite-horizon value function over the continuous infinite-
dimensional POMDP belief space is piecewise linear and convex, and is defined
by a finite set of supporting a-functions that are analogous to the a-vectors (hy-
perplanes) defining the value function of a discrete-state POMDP. Second, we
show that, for a fairly general class of POMDP models in which all functions of
interest are modeled by Gaussian mixtures, all belief updates and value itera-
tion backups can be carried out analytically and exact. Contrary to the discrete
case, in a continuous-state POMDP the a-functions may grow in size (e.g., in the
number of Gaussian components) in each value iteration. Third, we show how
the recent point-based value iteration algorithms for discrete POMDPs can be
extended to the continuous case, allowing for efficient planning in practical prob-
lems. In particular, we demonstrate Perseus, our previously proposed randomized
point-based value iteration algorithm, in a simple robot planning problem in a
continuous domain, where encouraging results are observed.
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Section 1 Introduction 1

1 Introduction

A popular formalism for decision making under uncertainty is a Markov Decision Process
(MDPs) [20]. In this paradigm, an agent interacts with a given system by executing actions,
and these actions have the effect of changing the state of the system stochastically, as well as
providing rewards/penalties to the agent. The objective of the learning agent is to identify the
action that produces the most reward in the long term for each state. When the selection of
actions has to be made with uncertain information about the state of the system, the task is nat-
urally formalized as a Partially Observable Markov Decision Process (POMDP) [23, 15, 6, 5, 12].
POMDPs have often been used as a framework for planning in robotics [22, 4, 25, 19]. In gen-
eral, computing the exact solution of a POMDP is an intractable problem [17, 14], even for
the discrete case (i.e., discrete sets of states, actions, and observations). Two main factors
cause this high computational cost [18]. The first one is the curse of history: the number of
action-observation sequences to be considered increases exponentially as we extend the planning
horizon. Fortunately the curse of history can be minimized by limiting ourselves to approximate
solutions. Recently-developed point-based algorithms [18, 27] are a promising alternative in this
line. The second factor that makes POMDP algorithms inefficient is the curse of dimensionality:
the computational cost of discrete state POMDP algorithms scales with the number of states.
Therefore, the finer the granularity of the state space discretization, the higher the cost of solving
the POMDP. One insight we can extract from this fact is that it would be desirable to avoid the
discretization of the state space. Moreover, real world problems are naturally formalized using
continuous spaces. For instance, in a robot navigation problem, the state to be estimated is the
pose of the robot that, for a robot moving on a planar surface, is naturally defined in the contin-
uous space of the Cartesian coordinates of the robot and its orientation. Linear POMDPs with
continuous states and quadratic reward functions have a closed solution [3]. Existing algorithms
for continuous-state POMDPs with general reward functions are based on policy search [16, 1] or
approximate (grid-based) value iteration [21, 26]. For discrete-state POMDPs, recent promising
algorithms are based on point-based value iteration [18, 27].

In this report, we present a novel approach to solve POMDPs in continuous state spaces via
value iteration. The main difficulty of working in continuous state spaces is that expected values
over states must be defined using integrals. These integrals cannot be computed in closed form
for general functions and, therefore, only approximation techniques can be used [26]. In our
approach, we restrict all functions defined on the state space to a particular, although highly
expressive, family of functions: linear combinations of Gaussians. This allows us to evaluate all
integrals involved in the value iteration POMDP formulation in closed form. Using this fact, we
can adapt to the continuous case the rich machinery developed for discrete-state POMDP value
iteration, in particular the point-based algorithms.

This report is organized as follows. First, in Section 2, we review the POMDP framework
and the value iteration process for discrete-state POMDPs. In Section 3, we generalize the
value function representation commonly used in discrete-state POMDPs to continuous-state
ones. This allows us to do value iteration for the continuous case. In Section 4, we derive closed
formulas for the elements involved in the value iteration framework introduced in Section 3,
assuming a Gaussian-based representation for the beliefs and the models defining the POMDP.
In Section 5, we use these closed formulas to define a point-based algorithm for Gaussian-based
POMDPs. In Section 6, we present some results with the proposed algorithm and, in Section 7,
we summarize our work and point to directions for further research.

2 Preliminaries: POMDPs

A POMDP models an agent interacting with a system using the following elements
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A set of system states, S.

A set of agent actions, A.

A set of observations, O.

An action (or transition) model defined by p(s’|a,s), the probability that the system
changes from state s to s’ when the agent executes action a.

e An observation model defined by p(o|s), the probability that the agent observes o when
the system reaches state s.

A reward function defined as r4(s) € R, the reward obtained by the agent if it executes
action a when the the system is in state s.

At a given moment, the system is in a state s and the agent executes an action, a. As a result,
the agent receives a reward r, the system state changes to s’ and, then, the agent observes o.
The knowledge of the agent about the system state is represented as a belief, i.e., a probability
distribution over the state space. The initial belief is assumed to be known and, for a discrete
set of states, if b is the belief of the agent about the state, the belief after executing action a
and observing o is

a,0 _ 0’5
) = Sfant) S5 (1)

A function mapping beliefs to actions is called a policy. An optimal policy is one that, on the
average, generates as much reward as possible. The value function condenses the immediate
and delayed reward that can be obtained from a given belief. This function is expressed in a
recursive way

Vo (b) = max Qn(b,a), (2)

with
a) = ra(s)b(s) +v>_ plolb,a) Vo1(b™), (3)
ses o
where n is the planning horizon, S and O are assumed discrete and « € [0,1) is a discount factor
that trades off the importance of the immediate and the delayed reward. The above recursion

is usually written in functional form
Vo=HV,1 (4)

and it is known as the Bellman recursion [2]. This recursion converges to a fixed point V* that
is the optimal value function. An optimal policy 7* can be defined as

7 (b) = argmax Q* (b, a)

for @Q* the Q-function associated with the optimal value function, V*.

Value iteration for POMDPs [23, 12, 8] generates a sequence of functions V; using the recur-
rence in Eq. 4 that progressively approach V* and computes an approximately optimal policy
from the final V;.

At first sight the value function seems intractable, but it can be expressed in a simple
form [23]

Vo (b) = max Y o’ (s) b(s),
{ad }i
with {afz}i a set of vectors. Using this formulation, value iteration algorithms typically focus
on the computation of the a,,-vectors.
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The initial value function approximation can be the value function with planning horizon
0 [23, 15, 6, 12, 5, 18] or can be defined as a single a-vector that lower bounds the value function
for any possible planning horizon. This second strategy has shown to be more efficient in many
benchmark problems

3 POMDPs in Continuous State Spaces

In the previous section, we assumed discrete sets of states, actions, and observations. In this
section, we generalize POMDPs to continuous state spaces, while still assuming discrete action
and observation spaces. With this formulation, we avoid the necessity of discretizing the state
space and, thus, we reduce the chance of being affected by the curse of dimensionality.

In the discrete case, expectations for a given belief are computed by summing over the state
space (see Eqgs. 1 and 3). The generalization to the continuous case amounts to computing these
expected values by integrating instead of summing. Thus we have

po(s') = % [ 15,0 b5, (5)

and

Qn(b,a) = / ra(s) b(s) + 7 S plolb, @) Va1 (5°), (6)

where r, : S — R is a continuous reward function for action a.

With a continuous state space, the belief space is also continuous, as in the discrete case,
but now with an infinite number of dimensions. However, there are several properties typical of
value functions for discrete state spaces that still hold in the continuous case. Namely, we can
prove that (1) the optimal finite-horizon value function is piecewise linear and convex (PWLC)
in the belief space, (2) the value function recursion is isotonic, and (3) this recursion is also a
contraction (and thus, the iterative computation of the value function for increasing horizons
will converge to the optimal value function V*). Next, we prove these three properties

The PWLC is a basic property since it allows to represent the value function using a small
set of supporting elements. This kind of representation is the key element to define the value
iteration process. To prove this property, we first need to prove the following lemma.

Lemma 1 The value function in a continuous-state POMDP can be expressed as
Valb) = max [ ai,(5)b(s), (7)
{ad}i Js
for appropriate a-functions o, : S — R.

Proof: The proof, as in the discrete case, is done via induction. For planning horizon 0, we
only have to take into account the immediate reward and, thus, we have that

Vo(b) = méxx/ra(s) b(s),

S

and, therefore, if we define ‘
{ag(s)}i = {ra(s)taea

we have that, as desired

Vo(b) = ?Ctéai/sag(s) b(s).
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For the general case, we have that, using Eqgs. 2 and 6,

Va(b) = max { / ra() b(s) + 3 plola. ) Var (0°9) .

a

and, by the induction hypothesis,

Voo1(b%°) = max / o (s') b™0(s").
{0‘%71}1' s

From Eq. 5,

Vo—1(b°) = max // ai_l(s’)p]zg’)(‘jz) /p(s'\s,a) b(s)

{ai—1}j
1

= max O‘ZH s') p(o|s’ /ps’s,a b(s),
S 2 pel) [ o150 00

and, therefore,

Vi(t) = maxc{ [ (o) +w§oj max [l () p(ols) [ pl'15.0) b(s) )

l}J

= mac{ [ru() b +9 2 max [ [ [l 1) plols) pls1s.0)]b(s) .

o {an 133

At this point, we define

o) = [ @l () plols) (s 5.0). 0

and we assume that there is a closed form to compute a{'w from !, for a given action a and
observation o. If M = ]{afl_l}] then, for a given action a and observation o, we can generate
at most M ai}o-functions. Observe that the o, , functions are independent of the belief point b
for which we are computing V,,. With this, we have that

Vi(t) = max{ [ 7u(o) (5473 mas [ o))

{aa o}j

and we define

Qg b = arg max/aé’o(s) b(s). 9)
{odo}; 78

Observe that, for a given a and o, o is just one of the M elements in the set {azb,o}j. Using
a reasoning parallel to that of the enumeration phase of the Monahan’s algorithm [15], we can
have, at most, |A|M 01 different Qg p-functions. The finite cardinality of this set is a crucial
point since it proves that we can represent V,,(b) with a finite set of supporting a-functions,
despite the infinite dimensionality of the belief space.

Using the above, we can write

Vo(b) = max { / ra(s)b(s) +7Y / aop(3) b(s)
— max { / ra(s) b(s) +7 / > on(s) bls) }
— ma | / () + 73 aaon()]b(s) }.
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If we define .
{0d ()} = {ra(s) + 7D @a0b(5) aca, (10)

we have V,, in the desired form
Vi(t) = mae [ 0l ) 000) 1)
and, thus, the lemma holds. O

Lemma 2 The value function is PWLC in the belief space.

Proof: It holds that

Va(b) = max Vi (b),

with

For a particular V! clearly holds
Vi(k b1 + Abg) = K Vii(br) + A Vii(b2),

for arbitrary x and . Therefore, each V! is a linear function in b.

The piecewise linearity part of the property is given by the fact that the {a?}; set is of finite
cardinality and, as shown above, V}, is linear, for each individual o/,. Finally, the convexity is
given by the fact that we take the maximum of convex (linear) functions when computing the
value function and, thus, we obtain a convex function as a result. [

Eqgs. 8 to 10 constitute the value iteration process for continuous state POMDP since they
provide a constructive way to determine the elements (i.e., the a-functions) defining V;, from
those defining V,,_1.

Lemma 3 The mapping H in the value function iteration for continuous state spaces is isotonic.
Proof: H is said to be isotonic if
VU= HV <HU.

The H mapping can be seen as
HV (b) = max H*V (b),
with
V) = [ ra(s)b(s) +7' Y plola,b) V)
Let’s denote as a; the action that maximizes HV at point b and ao the action that does so for
HU

HV(b) = H"V(b),
HU(b) = H2U(b).

By definition, the value for action aj for HU at b is lower (or equal) than that for as, that is

HYU(b) < H2U (b).
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From a given b we can compute b%°, for an arbitrary o and, then, the following holds
V<U =
Vb, o, V(bm,o) S U(bal,O) =
’YZP(OMLb) V(ba1,0) < ’YZP(O‘al,b) U(bal’o) -

o

HV(b) < HYU(b) =
H‘“V( ) < H2U(b) =
HV(b) < HU(b) =
HV < HU.

Since b and, from it b%:°, can be chosen arbitrarily, the value function is isotonic. [J

Lemma 4 The mapping H in the value function iteration for continuous state spaces is a
contraction.

Proof: The mapping H on the value function is said to be a contraction if
[HV — HU|| < B ||V =U],

with 0 < 8 < 1 and || - || the supreme norm. Assume that ||[HV — HU|| is maximum at point b.
a1 is the optimal action for HV at b and so is as for HU

HV(b) = H*V (b),

HU(b) = H**U (D).

Then it holds
|HV (b) — HU(b)|| = H*V (b) — H*U(b).

assuming, without loss of generality that HV (b) < HU(b). Since a; is the action that maximizes
HYV at b we have that
H*V(b) < H"'V(b).

Therefore, we have that

I — v =
IV (E) — HUG) -
HOV (b) — H2U(b) <

H*®V(b) — H“QU( )=
7220 P(0]az, b) [V(6%%) = U(b*)] <

v >, p(olaz,b) |V = Ul =
vV =U].

Since v is in [0, 1), the lemma holds. [

Since the value iteration mapping for the continuous state space is a contraction it can be
proved that exact value iteration converges in norm to the unique fixed point of V = HV that
is the optimal value function V* and that, from the approximations to V*, we can derive (near)
optimal policies (see [20] Theorems 6.3.1 and 6.2.3).
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4 Gaussian-based POMDPs

In previous section, we left as an open point how to actually compute the belief update (Eq. 5),
the steps in the value iteration process (Egs. 8 to 10), and the value for a given belief point
(Eq. 11). In this section, we show how these computations are possible assuming that the beliefs
as well as the observation, action, and reward models are represented as linear combinations of
Gaussians. We first formally introduce our assumptions on the models (Section 4.1) and then
we define the belief update (Section 4.2) and the basic value iteration steps (Section 4.3) for
Gaussian-based POMDPs.

Note that other families of integrable functions could be used to determine the a-functions in
closed form, but Gaussian-based models provide a high degree of flexibility and are of common
use in many applications, including robotics [13, 10].

4.1 Models for Gaussian-based POMDPs

We will assume that belief points are represented as Gaussian mixtures
Zw] 0(sls;, 25), (12)

with ¢ a Gaussian with mean s; and covariance matrix ¥; and where the mixing weights
satisfy w; > 0, > jw; = 1. In the extreme case, Gaussian mixtures with an infinite number of
components would be necessary to represent a given point in the continuous, infinite-dimensional
belief space. However, only Gaussian mixtures with few components are needed in practical
situations.
We assume that our observation model is defined non-parametrically from a set of samples
= {(si,04) | i € [1, N]} with o; an observation obtained at state s;. Using these samples, the
observatlon model can be defined as

ols) = P(s10) po)
p(ols) o)

)

and, assuming a uniform p(s) in the space covered by T, and approximating p(o) from the
samples in the training set we have

1 N, &
plols) ~ [ DN olsls? B0] 52 =D wf olslst, 27)
o =1 i=1

with s¢ one of the N, points in 7" with o as an associated observation and where w{ = A?/N and
Y¢ are, respectively, a weighting factor and a covariance matrix associated with that training
point. The sets {\?}; and {¥¢}; should be defined so that

No
=D plslo)plo) =D wf é(s|sf, £7),
o o =1
s (approximately) uniform in the area covered by T or, in other words, so that
Zp(o]s) ~ 1.
o

As far as the action model is concerned, we assume it is linear-Gaussian

p(s'|s,a) = ¢(s'|s + Aa), £%). (13)
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with ¢ a Gaussian centered at s + A(a) with covariance % Non-linear action models can be
approximated as it is done, for instance, in the extended Kalman filter or in the unscented
Kalman filter [11]. The function A : A — S implements the transition model of the system.

Finally, the reward can be seen as an observation with an associated scalar value. Therefore,
assuming a finite set of possible rewards R = {r; |i € [1, M]}, the reward model p(r|s,a) for
each particular a can be represented in the same way as the observation model

prls.a) ~ zw (515 ).

With that, we have that

= ro(rs,a) =Y r Zw $(sls}, =),

reER reR i=1

that is an unnormalized Gaussian mixture.

4.2 Belief update for Gaussian-Based POMDPs

The belief update on Eq. 5 can be implemented in our model taking into account that it consists
of two steps. The first one is the application of the action model on the current belief state.
This can be computed as the convolution of the Gaussians representing b(s) (Eq. 12) with the
Gaussian representing the action model (Eq. 13). This convolution results in

/p(s’\s,a Zw] o(slsj + Ala),X; + X9).

In the second step of the belief update, the prediction obtained with the action model is corrected
using the information provided by the observation model

b (s [Zw o(s'|s7, 39)] [ij Olsls; + Ala), 35+ 3|

=D wfw; o(s]s7, £9) $lslsj + Ala), Z; + £

The product of two Gaussian functions is a scaled Gaussian. Therefore, we have that

(lO ao a,o a,o
b® g wy w; 0y \3”,2 Y,

with
070 = ¢(sj + A(a) | s¢,5¢ + 3 + 29,
z” = ((Z) 7 (5 + 59,
s =P((59) 7 89 4 (35 4+ 397 (55 + Ala))).

Finally, we can re-arrange the terms to get

6™ (s Zwa sk, Xk)-

The proportionality in the definition of b*°(s’) implies that the weights (wy, Vk) should be scaled
to sum to one.
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4.3 Backup Operator for Gaussian-Based POMDPs

The computation of the mapping H (Eq. 4) for a given belief point b is called a backup. This
mapping determines the « function (or a-vectors in the discrete case) to be included in V,
for a belief point under consideration (see Egs. 8 to 10). A full backup, i.e., a backup for the
whole belief space, involves the computation of all relevant a-functions for V;,. Full backups are
computationally expensive (in the discrete case they involve the use of linear programming in
order to determine a sufficient set of points on which to backup), but the backup for a single
belief point is relatively cheap. This is exploited by the point-based POMDP algorithms to
efficiently approximate V;, on a fixed set of belief points [18, 27]. Next, we describe the backup
operator on a continuous state space that we will use later in the PERSEUS algorithm.

The backup for a given belief point b is

backup(b) = arg max/af‘l(s) b(s),
{an}i /s

where o (s) is defined in Egs. 9 and 10 from the a, ,-functions (Eq. 8).

Lemma 5 The functions al,(s) can be expressed as linear combinations of Gaussians, assuming
the sensor, action and reward models are also Gaussian-based.

Proof: This lemma can be proved via induction. For n = 0, a}(s) = r4(s) for a fixed a and
thus it is indeed an unnormalized Gaussian mixture. For n > 0, we assume that

Zwk \sk,Z])

Then, with our particular models, aép(s) in Eq. 8 is the integral of three linear combinations of
Gaussians

9= |3 ul ot =] [ ut o0ssh.50)] os1s + 5.2
l

= [ 3wl wto(s sk 5 o157, 5) 9(s's + Ala), =)

'kl

=Sl uf [ oI5k 5 o157, 57) 6(ss + Ala), ).
k1 s

In this case, we have to perform the product of two Gaussians twice, once for qb(s’\si,, ch) and
¢(s'[s7, 7)) to get (677 ¢(s'[s1,%1)) and once more for (677 ¢(s'[s1,%1)) and ¢(s'|s + A(a), £%)
to get (5{; J: Oa( ) ¢(s'|s,2)). The terms 53? and ﬁj O“( ) can be expressed as

Oy = O(stlsps X + 50),
b1 () = olslsy] — Ala), Ty + 2,

with
S =0 e
skr = SR 1D s+ ()7 )
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With this, we have
9= ujuf / 55 51 (5) 955, 9)
k,l s’
= 3wk 7 4 “(s) [ ol 3)
—Zwsz 55 B0 (5)

Once we have the aé‘,o—functions, we can compute the of-functions. To do that, we need to

[ ol vs)

is maximized. Since the integral of the product of two Gaussian mixtures (in particular an
a-function and a belief point) is a rather common operation in the continuous state POMDP
framework we will denote it by

determine the aﬂ;,o for which

(o, b) = / a(s) b(s).

This operator can be computed as

(a,b) /[Zwmb |Sk,EkHZwl¢ |5l>zl}
—Zwsz/éb s|sk, X)) o (s]s1, Xi)

= wi wy $(silsk, Sk + 1) /¢ 8|8k, L)

kil

= > wiwy $sils, S + ).
ol

Using this operator and Eqgs. 9 and 10, we define

{an(s)}i = {ra(s) + 7 ) _ argmax(a} 5,b) Jaea.

o {ai,o}j

Since all elements involved in the definition are linear combination of Gaussians so is the final
result. 0 Using the above lemma, the backup function is

backup(b) = arg max(a’,, b),
{ad, }i

and the value of V,, at b (Eq. 11) is simply

V. (b) = (backup(b), b).

5 Cs-Perseus: A Point-Based Continuous-State POMDP Solver

In this section, we use the backup operator to define a point-based approximate continuous-state
POMDP solver. In particular, we show how to extend to the continuous case the point-based
value iteration algorithm PERSEUS [27, 24|, which has been shown to be very efficient for discrete
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Perseus
Input: A continuous state POMDP.
Output: V,, an approximation to the optimal
value function, V*.
1: Initialize
2 B «— A set of randomly sampled belief points.
3 a — R (510, o)
4: n«—0
5: V,, — {a}
6: do
7 Vb € B,
8: Function, (b) « argmax,cy. (,b)
9: Value,(b) < (Function,(b), b)
10: Vn+1 — @
11: B—B
12: do
13: b — Point sampled randomly from B.
14: « «— backup(b)
15: if (a, b) < Valuey(b)
16: « «— Function,(b)
17: B — B\ {V/ € B|Function, (V') = a}
18: else
19: B — B\ {V € B| (o, ') > Value,(V)}
20: endif
21: Vig1 — Voyr U{a}
22: until B = ()
23: n—n-+1
24: until convergence

Table 1: The PERSEUS algorithm. The backup function is described in Section 4.3.

state POMDPs. The continuous-state PERSEUS algorithm is shown in Table 1. Point-based
POMDP algorithms focus on identifying the a-functions (a-vectors in the discrete case) for the
belief points where the agent is more likely to be. The a-functions for this restricted set of belief
points generalize over the whole belief space and, thus, they can be used to approximate the
value function for any belief point. The result is an approximation of the value function with
less error in regions of the belief space where decisions are more likely to be taken.

The value update scheme of PERSEUS implements a randomized approximate value function
recursion V;,, = HV,,_; for a set of randomly sampled belief points B. First (Table 1, line 2), we
let the agent randomly explore the environment and collect a set B of reachable belief points.
Next (Table 1, lines 3-5), we initialize the value function Vj as a single weighted Gaussian with
large covariance and with weight min{R}/(1 — v), with R the set of possible rewards.

Starting with V, PERSEUS performs a number of approximate value function update stages.
The definition of the value update process can be seen on lines 10-22 in Table 1, where B is a set
of non-improved points: points for which V,,41(b) is still lower than V,,(b). At the start of each
update stage, Vi, 11 is set to 0 and B is initialized to B. As long as B is not empty, we sample
a point b from B and compute the new a-function associated with this point using the backup
operator (see Section 4.3). If this a-function improves the value of b (i.e., if (a,b) > V, (b)), we
add a to V,,41. The hope is that a improves the value of many other points, and all these points
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Gaussian Mixture Condensation(f, m)
Input: A Gaussian mixture f = Zle w; fi(x|pwi, 3s).
The maximum number of components
in the output mixture, m, m < k.
Output: A Gaussian mixture g = > ., w} g;(x|u}, X}) that
locally minimizes ), w; min e m) K L(fillg;)

1. Initialize

2: for j=1tom

3: W e w;

4: Wy fj

5: DY

6:  de S0y w; mingen g KL(filgj)

7: do

8: Compute the mapping from f to g

9: fori=1to k

10: (i) — argmingeq ) w50 KL(fillg;)
11: Define a new g

12: for j=1tom

13: I —{i|n(@) =4, i€ [LKk]}

14: ’UJ; — Ziefj W;

152 M; — wilg ZiEIj w; ‘LLZ

16: Bj oy 2ier, wi (B (ui = pj) (i — 1))
17: d —d

18 d— 2w KL(fillgn)
19: until @ <e

Table 2: Gaussian mixture condensation algorithm. € is a sufficiently small threshold.

are removed from B. Often, a small number of vectors will be sufficient to improve V,,(b) Vb € B,
especially in the first steps of value iteration. As long as B is not empty we continue sampling
belief points from it and trying to add their a-functions to V,,11.

If the a computed by the backup operator does not improve at least the value of b (i.e.,
(a,b) < V,(b), see lines 15-17 in Table 1), we ignore « and insert a copy of the maximizing
function of b from V,, in V,, 1. Point b is now considered improved and is removed from B,
together with any other belief points that had the same function as maximizing one in V,,. This
procedure ensures that B shrinks at each iteration and that the value update stage terminates.

PERSEUS stops when a given convergence criterion holds. This criterion can be based on the
stability of the value function, on the stability of the associated policy, or simply on a maximum
number of iterations.

One point that deserves special consideration when implementing the PERSEUS algorithm
is the possible explosion of the number of components in the Gaussian mixtures defining the
a-functions for increasing n’s and on the number of components in the belief representation
when the belief update (see Section 4.2) is repeated for many time steps. If C, is the average
number of components in the observation model and C} is the average number of components in
the belief, the number of components in the a-functions or in the belief after n iterations scales
with O(C'C}'). Since the larger the number of components the slower the basic operations
of the algorithm and efficient implementation of the algorithm requires to keep the number of
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components reasonably bounded. To achieve this objective, we use the procedure described in [7]
that transforms a given Gaussian mixture with k& components to another Gaussian mixture with
at most m components, m < k, while retaining the initial component structure. The algorithm
is detailed in Table 2.

The algorithm uses the Kullback-Leibler, K L, distance between to Gaussian distributions

fi= N(N7 E)? 9j = N(:u/v EI) that is
/
KE(Gillr) = 5 (108 5 + T4 0 ) ) M) = )
with ¢ the dimensionality of the space where the Gaussians are defined.

Observe that the above procedure is defined for normalized Gaussian mixtures and our «
functions are unnormalized Gaussian mixtures. Therefore, for the a-function compression, we
use a modified version of the procedure just described where the weights are normalized after
taking its absolute value (so that relevant reward peaks either negative or positive are preserved).
After the compression, the reverse procedure is used to recover weights in the original scale.

In our implementation, we limit the number of components in the « functions to those in
the o functions in Vj.

A similar number of components explosion occurs when computing the belief update detailed
in Section 4.2. In this case, we use the Gaussian mixtures clustering algorithm so that number
of components never exceeds that of the initial belief.

6 Experiments and Results

To demonstrate the viability of our method we carried out an experiment in a robotic domain.
In this problem (see Fig. 1-a), a robot is moving in a corridor with four doors. The robot can
detect when it is in front of a door and when it is at the left or right end of the corridor. In
any other situation, the robot just detects that it is in a corridor (see Fig. 1-b). The robot can
move 2 units to the left or to the right (with 3¢ = 0.05) and can try to enter a door at any
point (even when not in front of a door). The target for the robot is to locate the second door
from the right and to enter it. The robot only gets positive reward when it enters the target
door (see Fig. 1-c). When the robot tries to mover further than the end of the corridor (either
at the right or at the left) or when it tries to enter the door at a wrong position it gets negative
reward.

The set of beliefs B used in the Cs-PERSEUS algorithm contains 1000 unique belief points.
Those belief points are collected using random walks departing from a belief including 4 com-
ponents that approximate a uniform distribution on the whole corridor. The walks of the robot
along the corridor are organized in episodes where the robot executes actions until it tries to
enter a door or until it executes 25 (movement) actions.

The experimental setup is completed by setting v to 0.95, compressing beliefs so that they
never contain more than 4 components (i.e., the number of components of the initial belief) and
compressing a-functions so that they never have more components than those used to represent
the reward function (11 components).

Fig. 2 shows the average results obtained after 10 runs of the Cs-PERSEUS algorithm on
this problem. The first plot (top-left) shows that the value computed as ), V(b) converges.
The second plot (top-right) shows the expected discounted reward averaged for 100 episodes
with the policy available at the corresponding time slice. The plot indicates that the robot
successfully learns to find out its position and to distinguish between the four doors. Next plot
(bottom-left) show the number of a-functions used to represent the value function. We can see
that the number of a-functions used increases, but is far below 1000, the maximum possible
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Figure 1: A pictorial representation of the test problem (a), the corresponding observation model
(b) and the reward model (c).

number of a-functions (in the extreme case we would use a different a-function for each point in
B). Finally (plot at Fig. 2, bottom-right) we show the number of changes in the policy from one
time step to the next one. The changes in the policy are computed as the number of elements
in B with a different action from one time slice to the next. The number of policy changes drop
to close to zero, indicating convergence with respect to the particular B.

Following the learned policy the robot moves to one of the ends of the corridor to determine
its position and then towards the correct door to enter it. Fig. 3 shows the evolution of the
belief of the robot and the executed action in each case from the initial stage of the episode to
the point at which the target door is reached.

Finally, Fig. 4 plots the value for beliefs with only one component parametrized by the
average and the covariance of this component. We can see that, as the uncertainty about the
position of the robot grows (i.e., as the covariance is larger) the value of the corresponding belief
decreases. The colors in the figure correspond the the different actions: light-gray for moving
to the right, white for entering the door, and dark-gray for moving to the left.

Observe that the advantage of using a continuous state space is that we obtain a scale-
invariant solution. If we have to solve the same problem in a longer corridor, we can just scale
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Figure 2: Top: Evolution of the value for all the beliefs in B and the average accumulated
discounted reward for 100 episodes. Bottom: Number of vectors in V,, and the number of policy
changes. Results are averaged for 10 repetitions and the bars represent the standard deviation.

the Gaussians used in the problem definition and we will obtain the solution with the same
cost as we have now. The only difference is that more actions would be needed in each episode
to reach the correct door. When discretizing the environment, the granularity has to be in
accordance with the size of the actions taken by the robot (42 left/right) and, thus, the number
of states and, consequently, the cost of the planning grow as the environment grows.

7 Conclusions and Future Work

In this paper we have shown how to generalize value iteration to continuous-state POMDPs,
and in particular for the case of Gaussian-based beliefs and models. This allowed us to define
an efficient point-based value iteration algorithm that seems to be appropriate for planning
problems that are often encountered in robotics.

An approach to continuous-state POMDPs that is closely related to ours is presented in [26].
In that work, a belief is represented by a set of weighted samples, which can be regarded as a
degenerate version of our Gaussian mixture representation. Additionally, the value function is
approximated by nearest-neighbor interpolation, whereas in our case the value function achieves
generalization through a set of a-functions. Also, in the above work a real-time dynamic pro-
gramming approach is used for updating the value function, with the Bellman backup operator
being approximated by sampling from the belief transition model. In our case, value itera-
tion applies on a pre-collected set of beliefs, while the Bellman backup operator is analytically
computed given the particular value function representation. Although we have not directly
compared our method to the method presented in [26], we expect our method to be faster (since
it plans on a fixed set of belief points) and the value function to generalize better over the belief
space (through the use of a-functions).

Ongoing work involves extending our framework to continuous action [24] and observa-
tion spaces [9], as well as defining approximate belief representations using Monte Carlo tech-
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Figure 3: Evolution of the belief when following the discovered policy. The arrows under the
snapshots represent the actions: — for moving right, < for moving left and T for entering the
door. On the z-axis the four door locations are indicated.
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