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Abstract. We present a closed-form solution to the problem of recov-
ering the 3D shape of a non-rigid inelastic surface from 3D-to-2D corre-
spondences. This lets us detect and reconstruct such a surface by match-
ing individual images against a reference configuration, which is in con-
trast to all existing approaches that require initial shape estimates and
track deformations from image to image.
We represent the surface as a mesh, and write the constraints provided
by the correspondences as a linear system whose solution we express as
a weighted sum of eigenvectors. Obtaining the weights then amounts to
solving a set of quadratic equations accounting for inextensibility con-
straints between neighboring mesh vertices. Since available closed-form
solutions to quadratic systems fail when there are too many variables, we
reduce the number of unknowns by expressing the deformations as a lin-
ear combination of modes. The overall closed-form solution then becomes
tractable even for complex deformations that require many modes.

1 Introduction

3D shape recovery of deformable surfaces from individual images is known to be
highly ambiguous. The standard approach to overcoming this is to introduce a
deformation model and to recover the shape by optimizing an objective func-
tion [1–8] that measures the fit of the model to the data. However, in practice,
this objective function is either non-convex or involves temporal consistency.
Thus, to avoid being trapped in local minima, these methods require initial es-
timates that must be relatively close to the true shape. As a result, they have
been shown to be effective for tracking, but not for registration without a priori

shape knowledge.
By contrast, we propose here a solution to detecting and reconstructing in-

elastic 3D surfaces from correspondences between an individual image and a
reference configuration, in closed-form, and without any initial shape estimate.

More specifically, we model flexible inelastic surfaces as triangulated meshes
whose edge lengths cannot change. Given an image of the surface in a known
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Fig. 1. 3D Reconstruction of non-rigid objects from and individual image and a refer-
ence configuration. Results were obtained in closed-form, without any initial estimate.
Top: Recovered mesh overlaid on the original image. Bottom: Re-textured side view of
the retrieved surface.

3D configuration, and correspondences between that model image and an input

image in which the shape is unknown, retrieving the mesh’s vertex coordinates
involves solving a rank-deficient linear system encoding the projection equations.
Taking our inspiration from our recent paper on rigid object pose estimation [9],
we express the solution of this linear system as a weighted sum of the correspond-
ing matrix’s eigenvectors associated with the smallest eigenvalues. We compute
these weights by using Extended Linearization [10] to solve a set of quadratic
constraints that preserve edge lengths. In its simplest form, this method is only
directly applicable to very small meshes because, for larger ones, the number of
unknowns after Extended Linearization grows fast, thus yielding an intractable
problem. We overcome this difficulty by expressing the surface deformations as
a linear combination of deformation modes. This preserves the linear formula-
tion of the correspondence problem, but dramatically reduces the size of the
corresponding linear system, while improving its conditioning. Therefore, the
quadratic constraints required to guarantee inextensibility are also expressed in
terms of a smaller number of variables, making Extended Linearization practical.
As a result, we can solve our problem in closed-form even when using enough
modes to model complex deformations such as those of Fig. 1, which yields a
3D reconstruction that jointly minimizes edge length variations and reprojects
correctly on the input image.

2 Related Work

3D reconstruction of non-rigid surfaces from images has attracted increasing
attention in recent years. It is a severely under-constrained problem and many
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different kinds of prior models have been introduced to restrict the space of
possible shapes to a manageable size.

Most of the models currently in use trace their roots to the early physics-
based models that were introduced to delineate 2D shapes [11] and reconstruct
relatively simple 3D ones [12].

As far as 2D problems are concerned, their more recent incarnations have
proved effective for image registration [13, 14] and non-rigid surface detection [15,
16]. Many variations of these models have also been proposed to address 3D
problems, including superquadrics [1], triangulated surfaces [2], or thin-plate
splines [17]. Additionally, dimensionality reduction was introduced through modal
analysis [3, 18], where shapes are represented as linear combinations of deforma-
tion modes. Finally, a very recent work [19] proposes to set bounds on distances
between feature points, and use them in conjunction with a thin-plate splines
model to reconstruct inextensible surfaces.

One limitation of the physics-based models is that they rarely describe ac-
curately the non-linear physics of large deformations. In theory, this could be
remedied by introducing more sophisticated finite-element modeling. However,
in practice, this often leads to vastly increased complexity without a commensu-
rate gain in performance. As a result, in recent years, there has been increasing
interest in statistical learning techniques that build surface deformation models
from training data. Active Appearance Models [20] pioneered this approach by
learning low-dimensional linear models for 2D face tracking. They were quickly
followed by Active Shape Models [5] and Morphable Models [4] that extended it
to 3D. More recently, linear models have also been learned for structure-from-
motion applications [6, 21] and tracking of smoothly deforming 3D surfaces [7].

There has also been a number of attempts at performing 3D surface recon-
struction without resorting to a deformation model. One approach has been
to use lighting information in addition to texture clues to constrain the recon-
struction process [8], which has only been demonstrated under very restrictive
assumptions on lighting conditions and is therefore not generally applicable.
Other approaches have proposed to use motion models over video sequences.
The reconstruction problem was then formulated either as solving a large lin-
ear system [22] or as a Second Order Cone Programming problem [23]. These
formulations, however, rely on tightly bounding the vertex displacements from
one frame to the next, which makes them applicable only in a tracking context
where the shape in the first frame of the sequence is known.

In all the above methods, shape recovery entails minimizing an objective
function. In most cases, the function is non convex, and therefore, one can never
be sure to find its global minimum, especially if the initial estimate is far from
the correct answer. In the rare examples formulated as convex problems [23], the
solution involves temporal consistency, which again requires a good initialization.

By contrast, many closed-form solutions have been proposed for pose estima-
tion of rigid objects [24–26]. In fact, the inspiration for our method came from
our earlier work [9] in that field. However, reconstructing a deformable surface
involves many more variables than the 6 rigid motion degrees of freedom. In
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the remainder of this paper, we show that this therefore requires a substantially
different approach.

3 Closed-Form 3D Reconstruction

In this section, we show that recovering the 3D shape of a flexible surface from
3D-to-2D correspondences can be achieved by solving a set of quadratic equations
accounting for inextensibility, which can be done in closed-form.

3.1 Notations and Assumptions

We represent our surface as a triangulated mesh made of nv vertices vi =
[xi, yi, zi]

T , 1 ≤ i ≤ nv connected by ne edges. Let X = [vT
1 , · · · ,vT

nv
]T be

the vector of coordinates obtained by concatenating the vi.
We assume that we are given a set of nc 3D-to-2D correspondences between

the surface and an image. Each correspondence relates a 3D point on the mesh,
expressed in terms of its barycentric coordinates in the facet to which it belongs,
and a 2D feature in the image.

Additionally, we assume the camera to be calibrated and, therefore, that its
matrix of intrinsic parameters A is known. To simplify our notations without
loss of generality, we express the vertex coordinates in the camera referential.

3.2 Linear Formulation of the Correspondence Problem

We first show that, given a set of 3D-to-2D correspondences, the vector of vertex
coordinates X can be found as the solution of a linear system.

Let x be a 3D point belonging to facet f with barycentric coordinates
[a1, a2, a3]. Hence, we can write it as x =

∑3

i=1
aivf,i , where {vf,i}i=1,2,3 are

the three vertices of facet f . The fact that x projects to the 2D image location
(u, v) can now be expressed by the relation

A (a1vf,1 + a2vf,2 + a3vf,3) = k





u
v
1



 , (1)

where k is a scalar accounting for depth. Since, from the last row of Eq. 1, k can
be expressed in terms of the vertex coordinates, we have

[

a1B a2B a3B
]





vf,1

vf,2

vf,3



 = 0 , with B = A2×3 −

[

u
v

]

A3 , (2)

where A2×3 are the first two rows of A, and A3 is the third one. nc such corre-
spondences between 3D surface points and 2D image locations therefore provide
2nc linear constraints such as those of Eq. 2. They can be jointly expressed by
the linear system

MX = 0 , (3)
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where M is a 2nc ×3nv matrix obtained by concatenating the
[

a1B a2B a3B
]

matrices of Eq. 2.
Although solving this system yields a surface that reprojects correctly on

the image, there is no guarantee that its 3D shape corresponds to reality. This
stems from the fact that, for all practical purposes, M is rank deficient. More
specifically, even where there are many correspondences, one third, i.e. nv, of the
eigenvalues of MTM are very close to zero [22], as illustrated by Fig. 2(c). As
a result, even small amounts of noise produce large instability in the recovered
shape.

This suggests that additional constraints have to be added to guarantee a
unique and stable solution. In most state-of-the-art approaches, these constraints
are provided by deformation models and are enforced via an iterative method.
By contrast, we will argue that imposing inextensibility of the surface yields a
closed-form solution to the problem.

(a) (b)
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Fig. 2. (a,b) Original and side views of a surface used to generate a synthetic sequence.
The 3D shape was reconstructed by an optical motion capture system. (c,d) Eigenval-
ues of the linear system written from correspondences randomly established for the
synthetic shape of (a). (c) The system was written in terms of 243 vertex coordinates.
One third of the eigenvalues are close to zero. (d) The system was written in terms of
50 PCA modes. There are still a number of near zero eigenvalues. (e) First derivative
of the curve (d) (in reversed x-direction). We take the maximum value of nl to be the
one with maximum derivative, which corresponds to the jump in (d).

3.3 Inextensible Meshes

Following the idea introduced in [9], we write the solution of the linear system of
Eq. 3 as a weighted sum of the eigenvectors li , 1 ≤ i ≤ nv of MTM, which are
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those associated with the eigenvalues that are almost zero. Therefore we write

X =

nv
∑

i=1

βili , (4)

since any such linear combination of li is in the kernel of MTM and produces
a mesh that projects correctly on the image. Our problem now becomes finding
appropriate values for the βi, which are the new unknowns.

We are now in a position to exploit the inextensibility of the surface by
choosing the βi so that edge lengths are preserved. Such βi can be expressed as
the solution of a set of quadratic equations of the form

‖

nv
∑

i=1

βil
j
i −

nv
∑

i=1

βil
k
i ‖

2 = ‖vref
j − v

ref
k ‖2 , (5)

where l
j
i is the 3×1 sub-vector of li corresponding to the coordinates of vertex

vj , and v
ref
j and v

ref
k are two neighboring vertices in the reference configuration.

3.4 Extended Linearization

Typical closed-form approaches to solving systems of quadratic equations involve
linearizing the system and introducing new unknowns for the quadratic terms.
This results in a system of the form

Db = d , (6)

where b = [β1β1, · · · , β1βnv
, β2β2, · · · , β2βnv

, · · · , βnv
βnv

]T is the vector of quad-
ratic terms, of size nv(nv + 1)/2. D is a ne ×nv(nv + 1)/2 matrix built from the
known li, and d is the ne×1 vector of edge lengths in the reference configuration.
Unfortunately, since, in hexagonal meshes, the number of edges grows as 3nv, the
number of quadratic unknown terms in the linearized system quickly becomes
larger than the number of equations.

In this paper, we solve this problem by using Extended Linearization [10], a
simple and powerful approach to creating new equations in a linearized system,
which performs better than Groebner bases and relinearization. The idea is to
multiply the original set of equations by the monomials, and linearize the re-
sulting system. In our particular case, we can, for example, multiply the existing
quadratic equations by each of the linear terms, thus creating new equations of
the form

β1

(

‖

nv
∑

i=1

βil
j
i −

nv
∑

i=1

βil
k
i ‖

2

)

= β1

(

‖vref
j − v

ref
k ‖2

)

,

...

βnv

(

‖

nv
∑

i=1

βil
j
i −

nv
∑

i=1

βil
k
i ‖

2

)

= βnv

(

‖vref
j − v

ref
k ‖2

)

.
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Let bc = [β1β1β1, · · · , β1β1βnv
, β1β2β2, · · · , β1β2βnv

, β2β2β2, · · · , βnv
βnv

βnv
]T ,

and bl = [β1, · · · , βnv
]T . The resulting system can be written as





0 · · · 0 D
1,1

1
· · · D

1,nv
1

D
2,2

1
· · · D

nv,nv
1

0 · · · · · · · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

−d1 0 · · · 0 · · · · · · · · · · · · 0 D
1,1

1
· · · D

nv,nv
1

0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·





[

b
l

b

b
c

]

=









d1

.

.

.

0

.

.

.









, (7)

where we only show the first line of the original system of Eq. 6 and its prod-
uct with β1, and where D

i,j
1 stands for the coefficient on the first line of D

corresponding to the product βiβj .
It can be shown that multiplying the inextensibility equations by all the

βi only yields a sufficient number of equations for very small meshes, i.e. less
than 12 vertices for a hexagonal mesh. In theory, one could solve this problem by
applying Extended Linearization iteratively by re-multiplying the new equations
by the linear terms. However, in practice, the resulting system quickly becomes
so large that it is intractable, i.e. for a 10 × 10 mesh, the number of equations
only becomes larger than the number of unknowns when the size of the system
is of the order 1010. In other words, Extended Linearization cannot deal with a
problem as large as ours and we are not aware of any other closed-form approach
to solving systems of quadratic equations that could. We address this issue in
the next section.

3.5 Linear Deformation Model

As discussed above, to solve the set of quadratic equations that express edge
length preservation, we need to reduce its size to the point where Extended
Linearization becomes a viable option. Furthermore, we need to do this in such
a way that the solution of the correspondence problem can still be expressed as
the solution of a system of linear equations, as discussed in Section 3.2. To this
end, we model the plausible deformations of the mesh as a linear combination
of nm deformation modes [6, 7], much in the same spirit as those the morphable
models used to represent face deformations [4]. We write

X = X0 +

nm
∑

i=1

αipi = X0 + Pα , (8)

where the pi are the deformation modes and the αi their associated weights.
In our implementation, modes were obtained by applying Principal Component
Analysis to a matrix of registered training meshes in deformed configurations,
from which the mean shape X0 was subtracted [7]. The pi therefore are the
eigenvectors of the data covariance matrix. Nonetheless, they could also have
been derived by modal analysis, which amounts to computing the eigenvectors
of a stiffness matrix, and is a standard approach in physics-based modeling [3].

In this formulation, recovering the shape amounts to computing the weights
α. Since the shape must satisfy Eq. 3, α must then satisfy

M(X0 + Pα) = 0 . (9)
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When solving this system, to ensure that the recovered weights do not generate
shapes exceedingly far from our training data, we introduce a regularization term
by penalizing αi with the inverse of the corresponding eigenvalue σi of the data
covariance matrix. We therefore solve

[

MP MX0

wrS 0

] [

α
1

]

= 0 , (10)

where S is an nm ×nm diagonal matrix whose elements are the σ−1

i and wr is a
regularization weight that only depends on the maximum σi, and whose precise
value has only little influence on the results.

As shown in Fig. 2(d), we have considerably reduced the number of near-zero
eigenvalues. The system of Eq. 10 is therefore better conditioned than the one
of Eq. 3, but still does not yield a well-posed problem that would have a unique
solution. This is attributable to the fact that, because the solution is expressed
as a sum of deformation modes, inextensibility constraints, which are non linear,
are not enforced.

Nonetheless, we can follow the same procedure as in Sections 3.3 and 3.4.
We write the solution of the linear system of Eq. 10 as a weighted sum of the
eigenvectors l̃i , 1 ≤ i ≤ nl ≪ nm associated with the smallest eigenvalues of
its matrix, and find the weights β̃i as the solution of the linearized system of
quadratic equations

D̃b̃ = d̃ , (11)

where b̃ = [β̃1, · · · , β̃nl
, β̃1β̃1, · · · , β̃1β̃nl

, β̃2β̃2, · · · , β̃2β̃nl
, · · · , β̃nl

β̃nl
]T now also

contains the linear terms arising in the quadratic equations from the mean shape
X0. Furthermore, the system also encodes the additionnal linear equation that
constrains the β̃i l̃i,nm+1 to sum up to 1, where l̃i,nm+1 is the last element of l̃i.

Since in practice nl ≪ nm ≪ nv, the system is now much smaller. Therefore
a single iteration of Extended Linearization is sufficient to constrain its solution
while keeping it tractable, even for relatively large numbers of modes—in practice
up to 60—thus allowing complex deformations.

In this formulation, the number nl of eigenvectors strongly depends on the
number nm of modes used for the recovery. However, as shown in Fig. 2(e),
we can easily set the maximum number n̂l of eigenvectors to use by picking the
number corresponding to the maximum first derivative of the ordered eigenvalues
curve. We then simply test for all nl ≤ n̂l and pick the optimal value as the one
that, for a small enough reprojection error, gives the smallest mean edge length
variation. In practice, n̂l was typically about 25 when using 60 deformation
modes.

4 Experimental Results

In this section we show that our method can be successfully applied to recon-
structing non-rigid shapes from individual images and a reference configuration.
We present results on both synthetic data and real images.



Closed-Form Solution to Non-Rigid 3D Surface Registration 9

2 4 6 8 10 12

x 10
−4

0

10

20

30

40

σ
g
 = 0, r

o
 = 0%

Mean curvature

M
ea

n 
3D

 d
is

ta
nc

e 
[m

m
]

 

 

n
cf

 = 5

n
cf

 = 1

n
cf

 = 0.5

2 4 6 8 10 12

x 10
−4

0

10

20

30

40

σ
g
 = 5, r

o
 = 0%

Mean curvature

M
ea

n 
3D

 d
is

ta
nc

e 
[m

m
]

 

 

n
cf

 = 5

n
cf

 = 1

n
cf

 = 0.5

2 4 6 8 10 12

x 10
−4

0

10

20

30

40

σ
g
 = 10, r

o
 = 0%

Mean curvature

M
ea

n 
3D

 d
is

ta
nc

e 
[m

m
]

 

 

n
cf

 = 5

n
cf

 = 1

n
cf

 = 0.5

2 4 6 8 10 12

x 10
−4

0

10

20

30

40

σ
g
 = 0, r

o
 = 5%

Mean curvature

M
ea

n 
3D

 d
is

ta
nc

e 
[m

m
]

 

 

n
cf

 = 5

n
cf

 = 1

n
cf

 = 0.5

2 4 6 8 10 12

x 10
−4

0

10

20

30

40

σ
g
 = 5, r

o
 = 5%

Mean curvature

M
ea

n 
3D

 d
is

ta
nc

e 
[m

m
]

 

 

n
cf

 = 5

n
cf

 = 1

n
cf

 = 0.5

2 4 6 8 10 12

x 10
−4

0

10

20

30

40

σ
g
 = 10, r

o
 = 5%

Mean curvature

M
ea

n 
3D

 d
is

ta
nc

e 
[m

m
]

 

 

n
cf

 = 5

n
cf

 = 1

n
cf

 = 0.5

2 4 6 8 10 12

x 10
−4

0

10

20

30

40

σ
g
 = 0, r

o
 = 10%

Mean curvature

M
ea

n 
3D

 d
is

ta
nc

e 
[m

m
]

 

 

n
cf

 = 5

n
cf

 = 1

n
cf

 = 0.5

2 4 6 8 10 12

x 10
−4

0

10

20

30

40

σ
g
 = 5, r

o
 = 10%

Mean curvature

M
ea

n 
3D

 d
is

ta
nc

e 
[m

m
]

 

 

n
cf

 = 5

n
cf

 = 1

n
cf

 = 0.5

2 4 6 8 10 12

x 10
−4

0

10

20

30

40

σ
g
 = 10, r

o
 = 10%

Mean curvature

M
ea

n 
3D

 d
is

ta
nc

e 
[m

m
]

 

 

n
cf

 = 5

n
cf

 = 1

n
cf

 = 0.5

Fig. 3. Shape recovery of a 200×200mm synthetic mesh imaged by a virtual camera
placed 20cm away from it. Each plot shows the mean vertex-to-vertex 3D distance be-
tween the recovered surface and the ground-truth as a function of its mean curvature.
The three different curves in each graph correspond to a varying number of corre-
spondences per facet. Left to right, the gaussian noise added to the correspondences
increases. Top to bottom, the number of outliers grows. For each experiments, we plot
the average over 40 trials. The rightmost column shows in blue recovered shapes for
the ground-truth surface of Fig. 2(a,b), shown in red. The corresponding mean vertex-
to-vertex distances are 9mm, 19mm and 38mm. This highlights the fact that even for
distances around 40mm, the recovered shape remains meaningful.

4.1 Synthetic Data

We first applied our method to images, such as those of Fig. 2(a), synthesized
by projecting known deformed shapes using a virtual camera. The deformed
shapes were obtained by recovering the 3D locations of reflective markers stuck
on a 200×200mm piece of cardboard with an optical motion capture system.
This allowed us to randomly create ncf perfect correspondences per facet to
which we added zero mean gaussian noise of variance σg. Finally, we simulated
outliers by setting the image coordinates of ro percents of the correspondences
to uniformly and randomly distributed values.
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(a) (b)

Fig. 4. Comparison of our closed-form results against the results of constrained op-
timization. Optimization was performed on the vertex coordinates using Matlab’s
fmincon function, and starting from the flat position. (a) Mean vertex-to-vertex dis-
tance. (b) Reprojection error. Constrained optimization is both much slower and far
less accurate than our approach.

In Fig. 3, we show results as a function of the surface’s mean curvature,
the maximum one being that of Fig. 2(a). Each plot includes three curves cor-
responding to ncf = {5, 1, 1/2}, which depict the mean vertex-to-vertex 3D
distance between the recovered mesh and ground-truth. The plots are ordered
on a grid whose x-direction corresponds to σg = {0, 5, 10} and y-direction to
ro = {0%, 5%, 10%}. Each experiment was repeated 40 times, and we show the
average results. Note that the error grows with the mean curvature of the shape,
which is natural since the shape becomes more ambiguous when seen from the
viewpoint shown in Fig. 2(a). In the rightmost column, we display three shapes
reconstructed from the image of Fig. 2(a) with their corresponding ground-truth.
Note that even for average distances of 40mm between the true and recovered
shape, the latter remains meaningful and could be used to initialize an iterative
algorithm.

In Fig. 4, we compare our results against results obtained with Matlab’s
constrained optimization fmincon function. We use it to minimize the residual
of the linear system of Eq. 3 with respect to the vertex coordinates, under the
constraints that edge lengths must remain constant. We first tried to use the
similar representation in terms of modes. However, since the constraints could
never be truly satisfied, the algorithm would never converge towards an accept-
able solution. This forced us to directly use the vertex coordinates. To improve
convergence and prevent the surface from crumpling, we added a smoothness
term [11]. For all the frames, the initialization was set to the flat position. In
Fig. 4(a), we show the mean 3D vertex-to-vertex distance for the case where
σg = 5, ro = 0, and ncf = 5. The red curve corresponds to our closed-form solu-
tion and the blue one to constrained optimization. Note that our approach gives
much better results. Furthermore, it is also much faster, requiring only 1.5 min-
utes per frame as opposed to 1.5 hours for constrained optimization. Fig. 4(b)
shows the reprojection errors for the same cases.
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Fig. 5. 3D registration of a folded bed-sheet to an individual image given a reference
configuration. Top Row: Recovered mesh overlaid on the original image. Middle Row:
Synthesized textured view using the recovered shape. Bottom Row: Real side view
of the sheet from similar viewpoints. Despite lighting changes, the synthetic images
closely match the real ones.

4.2 Real Images

We tested our method on a folded bed-sheet, a piece of cloth and a t-shirt de-
forming in front of a 3-CCD DV-camera. In all these cases, we first established
SIFT [27] correspondences between the reference image and the input one. We
then detected the surface in 2D, which can be done in closed-form by sim-
ply solving the linear system built from SIFT matches, augmented with linear
smoothing equations [11]. For each facet, we then warped the reference image to
best match the input one based on the retrieved 2D shape, and finally established
dense correspondences by sampling the barycentric coordinates of the facet, and
matching small regions between the input image and the warped reference one
using normalized cross-correlation. Note that, even when we show results on
video sequences, nothing links one frame to the next, and no initialization is
required. Corresponding videos are given as supplementary material.

In the case of the sheet, we deformed it into several unrelated shapes, took
pictures from 2 different views for each deformation, and reconstructed the sur-
face from a single image and a reference configuration. In Fig. 5, we show the
results on four different cases. From our recovered shape, we generated synthetic
textured images roughly corresponding to the viewpoint of the second image.
As can be seen in the two bottom rows of Fig. 5, our synthetic images closely
match the real side views. Additionally, we also reconstructed the same sheet
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Fig. 6. Shape recovery of a bed-sheet. Top Row: Recovered mesh overlaid on the orig-
inal image. Bottom Row: Mesh seen from a different viewpoint.

from the images of a video sequence, and show the results in Fig. 6. Note that
no initialization was required, and that nothing links one frame to the next.

In Figs. 7 and 8, we show results for images of a piece of cloth and of a
t-shirt waved in front of the camera. Note that in both cases, the closed-form
solution closely follows what we observe in the videos. To further refine it, we
implemented a simple Gauss-Newton optimization technique, and minimize the
residual ‖D̃b̃ − d̃‖ corresponding to Eq. 11 with respect to the β̃i. In the third
row of the figures, we show the refined mesh after 5 iterations this scheme.
This proved sufficient to recover finer details at a negligible increase in overall
computation time.

5 Conclusion

In this paper, we presented a closed-form solution to the problem of recover-
ing the shape of a non-rigid inelastic surface from an individual image and a
reference configuration. We showed that the reconstruction could be obtained
by solving a system of quadratic equations representing distance constraints be-
tween neighboring mesh vertices.

In future work, we intend to investigate what additional quadratic constraints
could be introduced to the current system of distance constraints. They could
come from additional sources of image information, such as lighting. Having
a larger number of quadratic equations would hopefully relieve the need for
Extended Linearization, and result in smaller, and therefore faster to solve, linear
systems.
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