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Abstract This article presents a new approach for guiding a group @pleeusing an adaptive
multi agent system. For the simulations of the group of peept use social forces, with
theses forces human motion is controlled depending on thardic environment. To get the
group of people being guide we use a set of agents that wornecatively and they adapt
their behavior according to the situation where they arekimgrand how people react. For
that reason, we present a model that overcomes the limitatibexisting approaches, which
are either tailored to tightly bounded environments, oeldasn unrealistic human behaviors.
In particular we define a Discrete-Time- Motion model, whiobm one side represents the
environment by means of a potential field, and on the othed ke motion models for
people and robots respond to realistic situations, andnfstance human behaviors such as
leaving the group are considered. Furthermore, we preseanalysis of forces actuating
among agents and humans throughout simulations of diffeirations of robot and human
configurations and behaviors. Finally, a new model of naliet task allocation applied to
people guidance in urban settings is presented. The deetkghitecture overcomes some
of the limitations of existing approaches, such as emerg@nperation or resource sharing.

1 Introduction

The interest on developing social and cooperative agestsigaificantly increased through-
out the recent years. In this work we present a new approadufding people in open areas
of urban settings using multiple agents acting in a cooperatay. One of the agents is the
leader, as a human tour-guide. It is placed at the front of the grawgits role is to estimate
the trajectory of both the people and the rest of agents. Tier agents, calleshepherdsare
responsible for guiding the people, preventing any persamihg the group, and following
the path given by the leader, considering in every instaoplgereactions using social forces
[1].

Furthermore, in this research, we go one step ahead, piggenmethod to optimize
locally the tasks assignment to agents for doing their missiAgents assignation are done

Anais Garrell Oscar Sandoval-TorreAlberto Sanfeliu
e-mail: {agarrell, osandoval, sanfe}i@iri.upc.edu
Institut de Roldtica i Informatica Industrial - Universitat Poétnica de Catalunya



2 Anais Garrell, Oscar Sandoval-Torres and Alberto Sanfeliu

by analyzing the minimum work required to do such task, wileegfunction to minimize is
based on one hand, by agents motion (which will be appliell wibot on the future), and,
on the other hand, by the impact of such motions on peopletadisment.

Moreover, an orientation where the main question is not atfmudivision of tasks be-
tween agents is presented. In the developed approach tt@gzion to solve a task is not
limited to a single agent. Agents will try to participate rettasks that give them more bene-
fits, even when the task is already being done by someondrls@any cases the tasks can be
performed by more than one agent. This feature has not bgdored so far by other existing
architectures.

This paper contents has been distributed as follows. Wegstsenting the representation
model of the environment and people behavior. In sectiaméicost function for the rescuing
people task is presented. In section IV the MRTA model we aesgnting is applied to the
task of people guidance. And last but not least, the resotiscanclusions are presented in
sections V and VI respectively.

2 Modeling The Environment and People motion

For modeling the environment where the agents (future g)hebrk, we have developed a
model called Discrete Time Motion model (DTM) which has tvargonents: The Discrete
Time component and the Discrete Motion component. The fomsémates position, ori-
entation and velocity of the robots and persons, and thdiposf the obstacles at a time
instancek. It will be used to estimate the intersection of the peoplthhe obstacles and
detect if someone is leaving the group. The Discrete Mot@mmonent estimates the change
of position, orientation and velocity of people and robasAeen two time instancdsand
k+ p. It will be used to compute the robots’ trajectory to reach gjoal while preventing
people leaving the group.

2.1 The Discrete Time Motion Model

The first task of the Discrete Time component is to estimasipo, orientation and velocity
of the robots and persons. This is done with a standard [gafilier formulation [2].

Then, the Discrete Time component aims to represent the areare the robots will be
allowed to move, by means of potential fields. To this end, efineé a set of functions that
describe the tension produced by the obstacles, peoplecdadsrover the working area.
These tensions are computed based on the area defined byitysegion surrounding each
one of the persons, robots and obstacles.

In order to decide the trajectories the robots will follow wél define a potential field
over the working area, and perform path planning in it. Irtipatar, the goal the robots try
to reach will generate an attractive force pulling the rghiotvards it. On the other hand, the
obstacles will generate a repulsive potential pushing argiobot away . We parameterized
all these attractive and repulsive forces by Gaussian ifum&t For more detail of this model
see [6]. L
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2.2 Modeling People Motion

In order to model people’s motion we will use the conceptoihiced by the works of Hel-
bing et al. [1], this research studies the dynamics of peidestrowds from the “social” point
of view. More specifically, they describe the motion of padess based on social forces
which are the result of the internal motivations of the indials to perform certain motions.
For more information see [1].

Let us now explain mathematically. People usually take tiwtest path, which may be
formally represented as the shape of a open polygon withsagge .r ' :=r 0, wherea
refers to a given person amg the destination he/she wants to reach.

rd—ra(t)

The desired motion directioe, (t) of a pedestriaror will then be:ey(t) := Trd—ra]]

wherer 4 (t) is thecurrent positionandr X is the subsequent edge of the polygon that will be
reached. A deviation of the desired spegl, from the current velocityy 0(t) := v ey (t),
may also exist due to deceleration or obstacle avoidanaepses:

Fo(Va,Va€q) == —(Veq —Vq) )
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wherety is a relaxation term. In practice we set the tarto 0.5 for all the pedestrians [1].

3 Adaptation Model for Rescuing People

One of the biggest issues when guiding a group of people usirtj agents, it is the possi-
bility that a person or some people escape from the formaitiathis case the agents have to
adapt to the new situation to solve the new task. To this eredyil speak in term of robot
instead of agent because all this theory will be applied bot®. The cost function, described
below, speaks in Work terms, and it can be divided into twakdo(i) Robot work motion,
and (ii) Human work motion. In order to know what robots’ tasks are,haee considered
the following situations(i) One robot has to look for the person (or people) that can poten
tially escape from the crowd formation and push him (or themmegroup him (or them) into
group,(ii) one robot has to go behind the people in order to push thensmtbat the crowd
formation is broken down while the Leader guides the fororati

Firstly, the leader robot computes a path planning and muvéise next point. We also
assume that there existsleag forcethat will attract people behind the robot. Here, the robot
has only to move from the present position to the next oneefthding path. Th&ushing
taskoccurs when the robot pushes a person that has gone awayeintonckach the crowd
formation. This task can be also applied when a robot pushessan (or people) who is (are)
going behind the crowd formation in order to regroup peophemvthe formation is broken
down. Finally,Crowd traversing taskwhere the robot has to move through the formation
to achieve the estimated position of the person that goey &wen the crowd formation.
In order to compute the dragging, pushing and crowd trangriirces, we use the equa-
tions defined in previous works on human behavior with othdividuals [1]. Working with
autonomous mobile robots, the robetork motion is expressed by:

fimot =ma; \Nlmot _ .':imOtAS (3)

wherem; is the mass of the i-th robaog; its acceleration andx; the space traversed by
the robot to achieve its goal.
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In this problem it is necessary to consider tliagging pushingandcrowd intrusion forces
that robot’s motion produces and that can affect to peogies domponent is calleHuman
Work Motion and it is the expense of people’s movements as a result of'sabotions. As
it has been mentioned several times in this paper, the galigwé the robot guide/leader,
and there is a set of robots that help to achieve their goal.

The dragging force is necessary when the leader robot gthgegroup of people from
one place to another. It acts as an attractive force, heedetbe applied by robot leadeto
each persoij is: © o

drag ey — oon (1) — G ) T X
fl] (t) C'J N (t) CIJ dij (t)

whered;; (t) is the normalizated vector pointing from perspio roboti at instant. C;
reflects the attraction coefficient over the individyghnd it depends on the distance between
the robot leader and persgn Thus, the dragging work that robot leader applied to each
individual is defined by:

;o dij(t) =[x (t) = x; (1)]] 4

Wirag = Z . fi? a9 S (5)
v person j

WhereAs; is the distance traveled by the perspon

ThePushing forcas given by the repulsive effect developed by shepherdibgtron the
group of people, for regrouping a person (or the broken cjamthe main crowd formation.
This repulsive force is due by the intrusion of the robot ia preople’s living space, which is
five feet around humans. The territorial effect may be dbedras a repulsive social force:

fi;j)ush: AieXFfrij *dij>/Bi nij <A| + (1+ Al) 1+ Cc;i¢|l )) (6)
WhereA is the interaction strength;; = r; +r;j the sum of the radiis of robatand
personj, usually people has radii of one meter, and robots 1.Bjrmparameter of repulsive
interaction d;j (t) = ||xi(t) — x;(t)|| is the distance of the mass center of roband persorj.
Finally, with the choicel < 1, the parameter reflects the situation in front of a pedestras
a larger impact on his behavior than things happening befiihd angleg;; (t) denotes the
angle between the directia(t) of motion and the direction-njj(t) of the object exerting
the repulsive force. We can write pushing work by:
Woush= > £P41)as; @)
v person inQ;

WhereQ; is the set of people in which one of the helper robots havehezhthe living
space.

And last but not least, thEraversing forces determined by the forces applied by the robot
when is traversing the crowd. For security reasons, we hamsidered in this research that
the value of this force is infinity, so we will ensure that awblwill not cross the crowd in
order to avoid any damage.

The cost function for agent (robat)given a specific task, is the following one:

W = 5motvv|m0t+ 5dragVVidrag + + 5pusl'VVipUSh+ 5trav\N|trav (8)

1 if this task is assigned
0 if this task is not assigned

whered, = {
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Wherek could bepushing, dragging, traversingr motion For each period of time, the
leader and shepherded agents (robots) will be given a takk iguiding mission, which will
imply one or several robot motion works and human robot works

Finally, the task assignment for the agents (robots) wiltheeone which minimizes the
minimum assigned work cost required to do the global task.domputed by the following
way:

C = argmin{W,a1(C)}, V configuration c 9

where theConfigurationsmean how the tasks are distributed among the agents, for each
configurationc agents computéq:5 which is the addition of alM for all agents that are
working cooperatively.

4 Multi Agent Coordination

In the previous section, we have described a const fundtanit would be used when one
person or more people escape from the formation. In the presetion we will define a new

approach of Multi Robot Task Allocation (MRTA). Our propbsaldresses the challenge
of people guidance in a way no previously explored, using MRT agents and robotics

systems there are many approaches to task allocation,rbasgéll solve tasks that does not
involve human interaction. Other shortcoming in curremhéectures is that most of them
assign one task to one robot, limiting the capacities of rtdams to work cooperatively. A

good review and analysis of current multi-robot task aftmeaarchitectures is [3] of Gerkey

and Matart.

In general, existing proposals attempt to allocate onettaske robot. Only a few consider
the case for cooperating to solve a task, and with the exaepti ASyMTRe [5] in which
cooperation is somehow preset on the system definition,eratipn only occurs when there
are special situations (i.e. errors) during execution.
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Fig. 1 A component includes uncertainiyand required ports (marked with an asterisk).

Our architecture, Selfish Task Allocation (STA), followgt@omponent Based Develop-
ment, meaning that all the software to be used inside STA brisbnstructed as a component
(see figure 1, therefore it must have a name and include imglddeoutput ports. Furthermore
we add uncertainty to each component and the propegyiredto each port.

Each componer@; = (n%,PS,uC), has anamg®, a list of portsPS = {PC PSS . BT,

. : C pCi GBS . . .
and an uncertainty valug“. Each porP” = (t ,V\/DJ ,r'i ) is described by amformation
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Ci Ci
type " that represents the kind of information transported in e, WPJ ‘isa binary value

P
that stores thdirectionof the port (input or output), andi thatindicatesifa port irequired
or not to accomplish that component.

As each piece of software inside a robot should be designaccamponent, a robot can
be conceived as a collection of componeRts {Cy,C5,Cs, ...,Ch}.

Since our approach addresses the problem as a task allosg8tem, we need to for-
malize the list of tasksl = {T1,T>, T3, ..., To} and the description of each of that tasks
Ta = (n'k, gk, s™).

wheren'k represents the name of the tagls the geographic information, if any (for
example in people guidance the position of the group to beéegliand the goal of the group),
ands'« the status of the task (unsolved, attempted or solved).

We decided to tackle the problem of multi-robot task all@ratvith a different point of
view, instead of use a complex group algorithm to distrittateks, our approach uses the
single robot task selection algorithm, allowing each rabatelect the task that better fits its
capabilities. When all the robots selects their best taskslarnanagement algorithm coordi-
nates the actions of the robots on the same task and tasktadlogust emerge. This section
explores the Single Robot Task Selection (SRTS) algoritterdewelop for our architecture.
We understand SRTS as the algorithm used to define which set$teask for each robot.

Our approach for single-robot task selection is inspiredth® proposal of Tang and
Matatic, ASyMTRe [5], which in turn is inspired in information intiants. Like previous
proposals (information invariants and ASyMTRe), our preglacalled Selfish Task Alloca-
tion (STA) "allows robots to reason about how to solve a task based uperfundamental
information needed to accomplish the tagk].

The Single-Robot Task Selection (SRTS) algorithm, partT™,3egins when it receives
the list of tasksT, thenVTy € T, the SRTS algorithm searchesi; s.t.n% = n'k, onceG; is
found the algorithm tries tactivatethat component satisfying the following rules:

c
1. G can be activated iffPS < PS whererFi' = true can be connected tocmmpatible port
(see rule 2). At the same time components providing thosts paust be activated.

2. Two portsP;;:i andPt?i are compatibles iff they have the same information tl;f’ge: tpt?i
= Ci
and opposite direction #wh' .

As result of the search some solutions could be obtainedepresent each solution as the
list of the components involved in the solution of the t&sk {C,,Cy,...} C R. And as can be
inferred, if there exists more that one algorithm to soheegame problem (particle filter- and
odometry-based localization) or if two or more componemts/jdle the same information
type, could exist many ways to satisfy the required port adrmgonent, and therefore many
alternative solutions for each taSk= {S1, S, ..., S } between all these alternatives, to select
the task to be performed we use the solution with less uringrtan connectionauy, and
displacementip (pos g, ).

Ts =Ty, S.t.ur, = min u 10
S X Tx VTeT Tk ( )
with,uy, = up(pos g'™) +us,, S.t.ug, = minyg esUs, where,us,, represents the solution

S with less uncertaintyp (pos g'«) the displacement uncertainty, uncertainty of reach the
position of the taskyy, from the robot positiorpos (only for mobile robots)ur, the uncer-
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tainty of Ty when the solution with less uncertainty is selected, @nthe finally selected
task.

Once the robot selects the task that it can perform with lesentainty (), it tries to
tackle that task, and probably other robot is already waykin it. We propose an algorithm
to face up the possible issues generated for the multi-itals&ttackling.

We distinguish two main challenges when more than one rotistaver one single task,
the first related to task-specific behavior (i.e. the positid each robot in cooperative box
pushing) and the second related to detect when robots beiohering each other.

Our approximation to the task-specific coordination chmgjielies on the assignment of an
id to each robot that joints to solve the same task, the id ass&ghand the number of robots
participating in the task is managed in a distributed maaneris only valid inside that task.

The id and the number of robots into each task must be usedebgotmponent designer
to define the robot specific behavior for each task.

To face up the challenge of detect when there are too manytsdhokling the same
task, we propose the use of performance functions. Whil@gcéach robot continuously
calculates the performance of the team in the specific task

pré =P (V1 Vi) (11)

Where,\/tTk represents the value of environment variables involvey at moment. P'x()
The specific performance function foy. And ptTk the performance ofy at timet.

As mentioned before, in our proposal of task selection eabbtrchooses the task that
better fits their capabilities. But this selection mechamiseans that many times the robots
select the same task. Here it is when performance metrice sekse. When a robot tries to
participate in a task where other robots are already workirig accepted in test mode, all
the robots adapt their behavior to the new number of robadstlaey continue tackling the
task and getting performance information, but after a (diedd time, the performance of the
team is compared with the performance stored before the nembar inclusion, if it was
increased then the robot is considered now as part of the waethe robot is asked to leave
the task.

5 Implementation and Results

The results we will present correspond to different symthexperiments, some of them
within the previous map. In these experiments, the dyndmicalels of the persons —we
considered a group of 5 persons— will follow the models dbedrin the Section described
before. In figure 3 some instants of time of a group of agenkingrcooperatively solving
the task of guiding a group of people is shown.

We perform some experiments where one group was guided,akelmin the simulated
persons the ability to randomly leave the formation, to test cost function and to study
which is the recovery component and prove the behavior ofptioposed architecture in
group splitting. In fig. 2 it can be seen that when people lgéheegroup a recover task is
added to the list and some robot reacts to solve this task.

6 Conclusions

We have presented a new model to guide people in urban ardas et of multi agents
that work cooperatively and are able to adapt their behalépending on people motion.
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o ) £l

@ (b)
Fig. 2 (a) Two different group of people are being guided by grodooperative agents. Several instants of
time and the entire trajectory are shown. (b)Entire trajgaddépeople and robots in a guiding people mission.
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(@ (b)
Fig. 3 (a) A group of people is being guided by two agents (red ciclie this occasion no human escapes
from the formation, the task is being done correctly. (b) Twerdg are guiding the group while a third agent
is rescuing somebody who tries to escape.

In contrast to existing approaches, our method can tackle mealistic situations, such as
dealing with large environments with obstacles, or regiogipeople who left the group. For
that reason, this work can be applied in some real robotscapioins, for instance, guiding
people in emergency areas, or acting as a robot companion.
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