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Abstract This chapter presents some real-life examples using tkeaictive mul-
timodal framework; in this work, the robot is capable of ldag through human
assistance. The basic idea is to use the human feedback tovienthe learning
behavior of the robot when it deals with human beings. We siwawdifferent pro-
totypes that have been developed for the following topittgractive motion learn-
ing for robot companion; and on-line face learning usingotolbision. On the one
hand, the objective of the first prototype is to learn how aotdtas to approach to
a pedestrian who is going to a destination, minimizing tletuwlbances to the ex-
pected person’s path. On the other hand, the objectiveseafdbond prototype are
twofold, first, the robot invites a person to approach thetab initiate a dialogue,
and second, the robot learns the face of the person thatitednfor a dialogue.
The two prototypes have been tested in real-life conditaord the results are very
promising.

1 Introduction

Humans live interacting with other people and perform taskadividual and col-
lective ways everyday. Robotic researchers are interestddsigning robots that
can interact with people in the same way that humans do. lardadreach this
goal, robots must learn from the interaction with humans laadh humans skills
used in everyday life to acquire robot social behaviors taat then be used in a
wide range of real-world scenarios: domestic tasks, simgppissistance, guidance,
entertainment, surveillance, rescue or industrial shopkfl

There are many examples where these interactions occuspng of them are
very basic and people do not realize the extreme difficulit #ntails executing
such tasks for a robot. For example, the navigation in crowet®ironments, such
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Fig. 1 General multimodal interactive framework.

as crossing streets or shopping malls, or the social engagdminitiate a conver-
sation, are simple examples where this interaction octutbe last years important
academic and private research efforts have been carried this field. Examples

can be seen in automatic exploration sites [32], evacuati@eople in emergency
situations [4], crafting robots that operate as team mem[#9], therapists [7],

robotic services [24] or robot guiding [16, 14].

In this chapter, we will present some examples where thetsdbarn from the
interaction with humans using the general multimodal extdon framework. We
will show how the general multimodal system is used in twacHjmetasks namely:
interactive motion learning for robot companion; and arelface learning using
robot vision.

The general idea of the multimodal interactive frameworkdum the present
work is depicted in Fig. 1. As it can be seen, the model can &méal off-line or
on-line, and the human -the oracle- uses the informationirmgrnom inputs and
the outputs to train again the system in order to improve thdeh We will see in
the two examples how this framework is used.

We have developed two prototypes where the interactionreand it is used to
improve the systems. The first prototype is “interactive iototearning for robot
companion”. The objective is to learn how a robot has to apgiido a pedestrian
who is going to a destination, minimizing the disturbancethe expected person’s
path. In this prototype, the robot has to detect the perguatis, forecast where the
person is going to move and approach to the target while gakito account the
person intentionality.

The second prototype, “online face learning using robabwis has two main
objectives. On the one hand, the robot seeks the intergmtaactively, the objective
is to invite a person to approach the robot to initiate a djaé The robot has to take
into account the person behavior (reactions) to convineg#rson to approach the
robot. The robot uses a perception system to know the peissitign and orienta-
tion and uses a dialogue and robot motions to invite the pesapproach. On the
other hand, the robot learns people’s faces. The systemsl#iae face of the person
by means of a sequence of images that the robot vision systptares while the
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person is in front of the robot. The robot only asks the pemsban the captured
face image is very different with respect to the learned facelel. If the person

agrees with the new face image, the robot uses this image asitiv@ image to

improve the face classifier. In case that the person rejeatdace image, the robot
uses the image as a negative image to also improve the fagsfida The on-line

face learning is done in real-time and is robust to varyingrenment conditions

such as lighting changes. Moreover, it is robust to diffepmople independently of
the aspect and gender.

Throughout the two prototypes, the multimodal interactystem improves the
accuracy and robustness of the prototypes thanks to thef aseumnan in the loop.
The human plays the role of a teacher with the robots, that Byaluates and
corrects the results of the robots’ tasks in changing enuient conditions and
human behaviors. The system has been tested in real-lifatisihs and the tests
show the improvements of using this framework with respecising classical non-
interactive approaches in several robot tasks.

The remainder of the chapter is organized as follows. In@e&, the interac-
tive motion learning for robot companion approach towardsans is explained.
Section 3 describes how the robot performs his active behawvid the online face
learning using robot vision to detect and identify the peopiinally, the last sec-
tion briefly reviews the topics discussed in the differemtisms of this chapter and
establishes the final concluding remarks of this work.

2 Interactive Motion Learning for Robot Companion

Navigation in crowded urban environments, such as crossirggts or shopping
malls, is an easy task for humans. However, it is extreméficdit for a robot due
to the high environment uncertainties and the variabilityhe human behavior.
The uncertainties associated to the problem can be pgroaé#rcome using the
multimodal interaction (MI) framework, shown in Fig. 1, wieghe human can teach
specific issues of the robot companion approach.

The aim of the this prototype is to show how a robot can leamctmmpany a
person and navigate safely and naturally in urban settimggmizing the distur-
bances to the expected person’s paths in two differenttetue when crossing the
path of a person and when approaching a person to guide hito/laedestination.
We are considering for this prototype that we know the urbap the obstacles and
that the robot guides one person. The person can move in gggtidn, but the goal
of the person is to arrive to a given destination, and thetrohest accompany the
person minimizing the disturbances to his(her) trajectbiye that the person can
change anytime his(her) trajectory, the robot must traekpirson and anticipate to
his(her) path using a human motion predictor. In summarystrstem has to take
into account the following requirements:

e The robot has to track the person path, while handling ommssand crossings.
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e The human motion predictor must infer the person motiominvaality (goal),
forecasting the path required to get there.

e The robot has to use its navigation model and a human motiedligior to take
into account the person’s motion intentionality.

People perception and tracking
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Fig. 2 Interactive Motion Learning: Schematic prototype of the interactive motion learning for
robot companion.

The prototype scheme is depicted in Fig. 2. We can realizeittishares some
issues of the general multimodal interaction frameworkshim Fig. 1. The input to
the system is the robot motion and the person path, whicht#egned through the
robot odometry and the robot laser/vision person trackes.dutput of the system is
the robot motion approaching or guiding the person. The mimthe loop provides
the multimodal interaction and he(she) can modify the rahotion behavior in
different ways. We have used in this prototype the on-lireglBack of the person
by using a subjective measure of comfortableness of thettagjng approached or
guided. This measure allows to learn some parameters obbiwe motion.

2.1 People Detection and Tracking

People detection is needed to track person motion and taatxtre learning pa-
rameters for comfortable robot navigation in urban sitas. €acker combines the
information of a laser detector, based on [2] and a visioealet based on the His-
togram of Oriented Gradient [6]. The people tracker usesdéas of the work of

[1, 25] with some variations, for example instead of usingadnian filter, we use a
particle filter.
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The information of both detectors, the laser and the can®fased to obtain a
robust detection of the people. The output of this fusiorsisduas the tracker input.

2.2 Human motion prediction and the social-force model applied
to robot companion

As we have commented, we need a human motion predictor to kviosve the
person will be after some period of time and a navigation rhitde allows to navi-
gate safety in the urban area, and that can learn the besh@t@s to accompany a
person.

There are several human motion predictors in the literafline work of Ben-
newitz [3] learn the different human motion paths using @®tiag techniques. The
work of Foka [11] uses a geometric model to find the best ttajgdrom the person
position and the destination. The work of Ferrer [10] usesamgtric model but us-
ing the present and the previous person path to infer thénddéisn. We have used
in this prototype a new model, a Bayesian human motion predibat calculates
the person posteriori probabilities to reach all destoretiin the scene. The path to
the destination that obtains the highest probability igieethe trajectory that will
follow the person, that is the human motion prediction model

With respect to the robot navigation model, there existhaliterature a high
number of models, but they are oriented to the navigationrobat in a static en-
vironment or when the moving objects are not humans. Where thexr humans
in the robot trajectory or when the robot must accompanyques;sthen there are
few works that deal with this issue. The best well known maddddased on “so-
cial forces” and it has became important for human robotrawtiton studies. The
social-force model was proposed by Helbing [20] to explaie human to human
“virtual” forces that appear when two or more humans haveionadnteractions,
that means one person guides another one, both persons tbéssame trajectory
to collide, one person wants to transverse a group of peepte,The Helbing’s
approach treats each person as a particle abiding the laMsvatbnian mechanics,
more specifically, there are several forces in the moticraution between humans,
for example the dragging force that appears when a perstmwihnother one, or
the push force that happens when a person is approachinigeanerson without
stopping. An extension of Helbing’s work that takes intoaaa the time of colli-
sion has been proposed by Zanlungo [37]. We have extendesidtial-force model
to the relations between robots and humans [15] and appityfogguiding people
in urban areas with two or more robots.

In this prototype we use the social-force model includinditinal forces for
accompany a person to a destination. The aim is to obtainotice that the robot
must apply at each instant F;. This force F; governs the trajectory to the desti-
nation goalp; and it is computed as the summation of the attractive forgmtto
the goalf2°? and the robot interaction ford@ to the static an dynamic objects or
persons.
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Fi= 9%+ R (1)

Let us go to describe each one of the these forces. Assunahgeldestrian tries
to adapt his or her velocity withinr@laxation time kl, the attractive force to go to

the goal, f;9°, is given by:

£99% =k (W~ W) 2)

The relaxation time is the interval of time needed to reachsardd velocity and
a desired direction. _

The interaction forc&™ is the summation of all the repulsive forcef$f‘l§, that
interact with the robot coming from static (obstacles) apdaic objects (people,
cars, ...). This force prevents humans from crashing witicsbbstacles, humans
(or dynamic objectsp; or the robotr. These person-robot interaction forces are
modeled as:
g
dig

whereq € PUOU({r} is either a person (o0 any moving object), an static object of
the environment or the robodq andB denote respectively the strength and range
of interaction forcedy is the sum of the radii of a pedestrian and an entity and
dig= ri— rq.

The parameters of the previous equation are obtained in atepooptimization:
first we optimize the parameters of the model forces desgitiie expected human
trajectories under no external constrains and conseguertlobtain thek param-
eter and second, we optimize the parameters of the forceaaiten model under
the presence of a moving robot, taken into account that thes¢he only exter-
nal force altering the outcome of the described trajectoloyaining{A,B,d}. All
optimizations are carried out using genetic optimizatilgoathms [17].

The robot forceF; is the result of applying all the forces that are needed for
the robot navigation. By computing this force at each instawe obtain a robot
trajectory that can be seen as a reactive navigation syS¥a@n we incorporate the
human motion prediction to the computation of this forcentthe behavior of the
system is more than reactive, then we can improve the robtbmbecause is an-
ticipating the human motion. This is specially importantdaiding or approaching
people, because the robot anticipates his(her) motioectiajy.

In this prototype, we have gone a step further, we have imcatpd a multimodal
interaction approach to modify the robot forces (and iratlyeits velocity and tra-
jectory) to improve the comfortableness of the person wlkemaving to a desti-
nation and a robot perturbs his(her) trajectory. For oueérpents, the person that
is approached and guided by the robot, has a video-gameotien{ia wii device)
to modify the parameters that control de robot forces (weexjblain these param-
eters in the next section). We will call this person, persontroller. The person-
controller through a video-game controller dynamicallydifies the robot forces
meanwhile tries to perform a determined trajectory aimang given destination. In

3)

f:nct1 - Aqe(dq—di,q)/Bq
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our experiments, first the robot have to approach the persotroller and then the
robot accompanies it to the destination. In the first parheféxperiment, the robot
is far away the personal space of the person-controller aghk) can modify its
trajectory (or the robot velocity or trajectory using tha device) if he(she) feels
that the robot can collide with him(her). In the second p&the experiment, when
the robot is near the personal space of the person-comfiodiéshe) can control the
robot velocity or trajectory if he(she) feels that the rotsimoving too fast or too
slow.

2.3 Interactive Robot Maotion Learning

We will explain in this section how the human can modify thbabforces using
the subjective measure of comfortableness, and how we tkase parameters. As
we have commented previously the person-controller usesd@ewice to send the
on-line feedback to the robot.

The robot motion is based on the social forces commenteceiptévious sec-
tions, and the robot autonomously moves to the destinatiaih §jrst looks for the
person and then accompanies him/her to the destination \gt4ale the robot ac-
companies a person, interaction takes place continuahstygh the social forces
and also using the human feedback of comfortableness, rto défferent robot ap-
proaching behaviors. There are few articles regardingttiie. The work of Fox
[12] or more recently the work of Fraichard [13] analyzesalyical obstacle avoid-
ance strategies for robot navigation; the work of Kanda [&3]s prediction strate-
gies in social robots in a train station; and the works of Gh[§] or Henry [21]
deal robot robot control design.

In our system, the on-line feedback is a subjective measthieh varies some
parameters of the system by weighting the contribution ldhal active forces. The
forces that we have considered are:

e Force to the target destination: we infer the target detstindy using the inten-
tionality prediction described at section 2.2 and thus ti®t aims to the most
expectable target destination.

e Force aiming to the person: either the current person posits well the expected
motion prediction are known.

e Force of interaction: that is a repulsive force due to thatiet position and
velocity between the robot and the target.

The combination of these three forces determines the behafitihe robot while
the robot is approaching the person. In contrast to the Istarize model, two dif-
ferent goals are taken into account. First, a force makesotha to approach to the
predicted destinatiorir‘%"e""s'r Furthermore, the robot must approach the person who
must accompany, hence, a second goal pushes the robot tactosgeto the person

pi, frgoa', which are analogous to eq. 2.
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F'—aqf goal +B frgoal+ y Fr?irlt (4)

r,dest i

The most interesting part of the system so far, resides ifatti¢hat the approach
proposed does not require static targets, the robot is alblavigate near to moving
persons.

Although we want to obtain a general approaching rule, ihlyigaries from per-
son to person in addition to the highly noisy environment iricli we are working.
Accordingly, we propose the use of arc f(x) function to measure the contribution
of the human feedback providddr, 3, y}. By using this function we guarantee a
slow change in the contribution of these parameters neaoitstraints. While it-
eratively repeating the robot physical approach, the pexifeedback refines the
weights of the force parameters and we can infer a basicictiee behavior where
the person feels comfortable under the presence of the.robot

Fig. 3 lllustration of the experiment. On the left is depicted the robot interface, in which the
social forces can be appreciated, centered on the robotforpla On the right hand side of the
picture appears the real scene.

As can be seen in Fig. 3, we have reproduced the experimeset wodtrolled
conditions. The left figure shows the robot motion and aftemaapproaches to the
target, the robot captures the behavior of the person, bgihgéowards the most
expectable destination of the target. The attractive ftwdbe target destination is
plotted as the #1 arrow, and the force approaching the pésgiotted as the #2 ar-
row. The interaction force represents the repulsion géeeiay the target towards
the robot. This force is important to reach the state wheeerdbot does not ap-
proach too close to the target, as this behavior will mogtlyiproduce repulsion.
The result of all the weighted forces is represented as thar8v.

2.4 Experimental results

In order to validate the usefulness of our contribution$yerobot companion sub-
ject, that is, making use of human motion prediction and adwifieedback as a
measure of comfortableness, we have made a set of expesimamibining these
characteristics and evaluating the overall performan@aoh combination:
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Robot's Intelligence
Level of Confidence

Feedback Without Feedback Without Feedback Without
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Fig. 4 People’s perception of the use of the interaction (rente control). Left: Robot’s Intelli-
genceCenter: Level of interactionRight: Level of confidence.

o With feedback
e Without feedback

The measurement of the performance of the overall systersiigge rating on
a Likert scale between 1 to 7. For the evaluation score, AN@\¢asurements are
conducted. It is necessary to study if the use of the rematér@oenhances the
interaction between the robot and a person.

In order to analyze if the use of the remote control enharteednteraction be-
tween the robot and a person, three different scores areieadnfRobot’s Intel-
ligence”, “Level of interaction” and “Level of confidenceplotted in Fig. 4. To
summarize, the multimodal feedback under the shape of aemiote controller
improves the subjective performance, according to the peWertheless, the im-
provement is marginal.

3 Autonomous Mobile Robot Seeking Interaction for
Human-Assisted Learning

In the last years, great efforts have been carried out byarelsers around the world
with the aim of creating robots capable of initiate and kegpasnic and coherent
conversations with humans [27]. If robots are able to stadraversation, they cre-
ate an active engagement with people which can be used toassedtance from
them. This engagement is particular convenient to impraveesrobot skills. For
example, a human can act as a teacher to guide and correctibigsbehavior or
its response. This active interaction leads to improvedbetrcapabilities using the
human knowledge.

In this section, we present a multi-modal framework whetgotcand human
interact actively to compute an on-line and discriminafaee detector. To achieve
this objective, the proposed framework consists of two necaimponents or steps.
The first one corresponds to create the engagement betweerbibt and a human,
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whereas the second step refers to the computation of thimeffiake detector once
the engagement and the dialogue are established.

More specifically, during the first step, the robot seeks ami@aches to a human
in order to initiate the conversation or interaction. Tlsislone using its sensors and
approaching algorithms. Once the conversation is indigalj a coherent dialogue is
conducted during the second step to compute and refine teel&iector using the
human assistance. This results in a robust and discrim@néice detector that is
computed on the fly and is assisted in difficult circumstances

The proposed framework is described in the following. SetsBows the proac-
tively seeking interaction between the robot and humanst @tep), and Sec. 3.2
describes the on-line face detector and the procedure osasstst the classifier
using human-robot interactions (second step).

3.1 Robot’s Proactively Seeking I nteraction

Recently, social robots have begun to move from laboraddeeal environments
to perform dalily life activities [30, 31, 35]. To this endgtihobots must be able to
interact with people in a natural way. Recent studies hawa/strobots which are
able to encourage people to begin interaction [8, 19], bimgus strategy based on
people approaching to the robot in order to establish theraction and dialogue.
Contrary, we present, in this section, a method where thetrisbproactive and
approaches to people to initiate the interaction and dstatile engagement. This
is exemplified in Fig. 5.

This proactive way of creating engagements between peopleabots enables
numerous applications such as guiding robots, tourismtsoloo robots focused in
approaching people for providing information about a sfiecirban area. On the
other hand, this engagement can be also useful to assistlibeand improve its
skills. For example, using the human help, the robot canawgits vision skills.
Therefore, it can detect objects and faces in a more robudstliaoriminative man-
ner. The human can assist the robot to validate or correcbtit responses when
it has uncertainty about its predictions. In this way, thikatocapabilities are im-
proved along with the number of human interventions. Thiaidicular application
is addressed in Sec. 3.2.

To seek the interaction with humans, the robot has a peopéetde that allows
to localize and identify humans in its neighbourhood. Omeegerson is localized,
the robot approaches and invites the human to initiate arittipate in the interac-
tion. The robot is also able to respond according to humacticees. For instance,
if the robot invites a person to approach, and he ignoreketyabot will return to
insist. However, if human does not approach, the robot wdrsh for another volun-
teer. Furthermore, if a person shows interest in the robwfllistart the interaction
process with this person.

The active robot’s behavior is performed developing a fisitde machine. This
state machine allows robot to react depending on peopléiavier. The robot is
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Fig. 5 Robot approaching The TIBI robot approaches to a human to start the interaction.

able to decide if humans are interested in starting thedot&n by tracking people
positions only.

The robot’s behavior is based on the conceptual framewodwknas “prox-
emics” presented by Hall [18], which studied human perogpéind the use of the
space. This work proposed a basic classification of distabetveen individuals:

e Intimate distance: the presence of other person is unnaistakclose friends or
lovers (0-45cm).
Personal distance: comfortable spacing, friends (45@8#r).

e Social distance: limited involvement, non-friends intgian (1.22m-3m).
Public distance: outside circle of involvement, publicagag (-3m).

Based on these proxemics, Michalowski et al. [26] classifiexdspace around
a robot to distinguish human'’s levels of engagement whiteracting or moving
around a robot. In the present work, our robot tries to mairgasocial distance
through voice messages and movements.

In Table 1 some sample phrases uttered by the robot are pedsédiowing the
robot to acquire the proactive behavior, the number of attgons between the robot
and people increases, so, as it will be explained in sectidnhBimans are able to
assist the robot in the the computation of an on-line metbodbice recognition.

3.2 On-line Face Learning Approach

In order to detect and identify faces in images, we use arnnenand discrimina-
tive classifier. Particularly, this classifier is based orlina random ferns [22, 33],
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Hey, how are you? I'm Tibi. I'm trying to learn to detect facesll you
Invitation to create  |help me?

an engagement Hi, I am Tibi, I'd like to learn how to recognize different agjts, can you
be my teacher?

| only want to talk to you, can you stay in front of me?
Invitation to continue |Please, don't go. It will take just two

the interaction Let me explain you the purpose of the experiment, and then, you ca
decide if you want to stay.

Invitation to start Thanks for your patience. Let's start the demonstration.

the engagement Now we are ready to start. I'm so happy you'll help me.

Table 1 Robot’s utterances Some utterances used during the human-robot interactiorefode
active and coherent conversation.

Face Recognition

Face - Face
detector “"lidentification

Camera >

Human's Feedback

....... Human

<O Robot <
Dialogue
Human-Robot Interaction

Fig. 6 On-line face learning The proposed approach consists, mainly, of a face recognition mod
ule and a human-robot interaction module. The first module is@ngehof detecting and identify-
ing faces, whereas the second one establishes a dialog with a hlingssynergically combination

of both modules allows to compute a robust and efficient classdiereitognizing faces using a
mobile robot.

which can be progressively learned using its own hypothase®ww training sam-
ples. To avoid feeding the classifier with false positive gl®, the robot will ask
for the human assistance when dealing with uncertain hygseth This particular
combination of human and robot skills allows to compute ardisinative and ro-
bust face classifier that outperforms a completely off-limedom ferns [28], both
in terms of recognition rate and number of false positives.

Following, the main components of the proposed approackeseribed in de-
tail. Fig. 6 sketches these constituents and the overviéerse. The synergically
combination of a face recognition system with a human-ratetraction module
gives the proposed approadn-line face learning

Human-Robot Interaction. The on-line classifier is learned and assisted using the
mobile robot and its interaction with a human. To this ene, thbot is equipped
with devices such as a keyboard and a screen that enable midyaad efficient
interaction with the human. The interaction is carried opfdrmulating a set of
concise questions (Fig. 7(Left)), that expect for a ‘yesnmt’ answer. In addition,
the robot has been programmed with behaviors that avoithderige latency times,



Robot Interactive Learning through Human Assistance 13

specially when the human does not know exactly how to prac8g&dtegies for
approaching the person in a safe and social manner, ortatggeople’s attention
have been designed for this purpose [9, 36].

Nice to meet you
Can you teach me to detect faces/obje¢ts?
Is your face inside the rectangle?
I’'m not sure if | see you, am 1?

| can’t see you, move a little bit.
Can you stand in front of me?
Thank you for your help, nice to meet you
| hope | see you soon.

Greeting

Assistance

No detection

Farewell

Fig. 7 Human-Robot Interaction. Left: Sample phrases uttered by the robot to allow the hu-
man assistancdRight: The interaction is carried out using diverse devices such asokegl or
touchscreen.

On-line Face Classifier The on-line classifier consists of a random ferns classi-
fier [28] that, in contrast to its original formulation, iskaed, updated and improved
on the fly [33]. This yields a robust and discriminative ciisswhich is continu-
ously adapted to changing scene conditions and copes \fihatit face gestures
and appearance.

Random Ferns (RFs) are random and simple binary featureputech from
pixel intensities [28]. More formally, each Feyn; is a set ofm binary features
{fl, f5,..., fL}, whose outputs are Boolean values comparing two pixel gities
over an imageé. Each feature can be expressed as:

1 1(Xa) > 1(Xp)
f(x)‘{ ) <10w) ©

wherex, andxp are the pixel coordinates. These coordinates are definath@bm
during the learning stage. The Fern output is representéabgombination of their
Boolean feature outputs. For instance, the oupuif a Fernf; made ofm= 3
features, with output$§0, 1,0}, is (010), = 2.

On-line Random Ferns (ORFs) are Random Ferns which arencantsly up-
dated and refined using their own detection hypotheses digbiens. Initially, the
parameters of this classifier are set using the first framehiBoend, the opencv
face detector is used to find a face candidate with which to tta on-line learn-
ing procedure. Subsequently, several random affine def@nssare applied to this
training face sample in order to enlarge the initial tragnset, and initialize the
RFs. In addition, the classifier is computed sharing a sretlbERFs with the aim
of increasing its efficiency, both for the training and détetstages [34].

As shown in Fig. 8(Left), during the on-line training, thember of positivep;,
and negativen, samples falling within each output of each Fern is accuredlat
Then, given a sample bounding box centerexlatd a Ferrr ¢, the probability that
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F1 i Fo 12
f fa 13 13

Zo 21 22 23 Zo k1 <22 23
P(Flz) P(F2|z)

[ Positive Class (C1)
[lNegative Class (C2)

Fig. 8 On-line Random Ferns Left: Ferns probabilitiesRight: Human-assistance criterion.

x belongs to the positive class is approximatedPf = z|x) = p,/(p;+nz), where
zis the Fern output [22, 33]. The average of all Fern probiadsligives the response

of the on-line classifier: ;
1
=1 P(FI|X)7 (6)
&

where% is a normalization factor. If the classifier confidentéx) is above 5, the
samplex will be assigned to the positive (face) class. Otherwiswijlitoe assigned
to the negative (background) class.

The classifier is updated every frame using its own hypotheseredictions.
In particular, the classifier selects the hypothesis (bmgnhtdox) with the highest
confidence as the new face location. Using this hypothegisfasence, nearby hy-
potheses are considered as new positive samples, whiléhgages which are far
away are considered as new false positive samples. Thesegand false positive
samples are then evaluated for all the Ferns to update thenaémtionedp, andn,
parameters, see Fig. 8(Left).

Human Assistance ORFs are continuously updated using their own detectien pr
dictions. However, in difficult situations in which the cfger is not confident about
its response, the human assistance will be required. Threelef confidence is de-
termined by the respons#&(x). Ideally, if H(x) > 0.5 the sample should be classi-
fied as a positive. Yet, as shown in Fig. 8(Right), a range bfesf (centered on
H(x) = 0.5) is defined for which the system is not truly confident abbetdlassi-
fier response. Note that the width &frepresents a trade off between the frequency
of required human interventions, and the recognition rateoncise evaluation of
this parameter is performed in the experimental section.
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Fig. 9 Face Recognition Rated eft: Precision-Recall curves for different detection approache
Right: Recognition rates in terms of human assistance.

3.3 Experiments

The on-line face learning method is evaluated on a face elagagjuired using a
mobile robot. This face dataset has 12 sequences of 6 diffpeesons (2 sequences
per person). Each face classifier is learned using an imagesee and tested in the
second one. The dataset is quite challenging as faces apparpartial occlusions,
3D rotations and at different scales. Also, fast motionsfand gestures disturb the
learning method [33].

More precisely, the learning/recognition method is eviddaising three differ-
ent strategies for building the classifier. First, an offRendom Ferns approach
(RFs) is considered. This classifier is learned using jesfitst frame of the train-
ing sequence and is not updated anymore. The second appaasibders an ORFs
methodology without human intervention. Finally, the pyeed human-assisted ap-
proach which is denoted by A-ORFs. Remind that the humarstassie is only
required during the learning stage. During the test, alisifeers remain constant,
with no further updating or assistance.

Fig. 9(Left) shows the Precision-Recall curves of the thmethodologies, and
Fig. 3.3(Left) depicts the Equal Error Rates (EER). Bothpgsashow that the A-
ORFs consistently outperform the other two approaches Whs in fact expected,
as the A-ORFs significantly reduce the risk of drifting, fdnieh both the RFs and
ORFs are very sensitive, especially when dealing with laeg&tions of the learn-
ing sequence.

What is remarkable about the proposed approach is that itehjgerformance
can be achieved with very little human effort. This is showthkin the last 4 rows
of the table in Fig. 3.3(Left) and in Fig. 9(Right), wheresitseen how the amount of
human assistance influences the detection rates. Obsatweith just assisting in
a 4% of the training frames, the detection rate with respe@RFs increases a 2%.
This improvement grows to an 8% when the human assists on a028% frames.
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Method| 6 |PR-EER Human
Assistance
RFs — | 5581 —
ORFs — 74.79 —
A-ORFS0.05| 76.31 | 4.66%0.46
A-ORFg 0.1| 76,51 |9.54%40.87
A-ORFg 0.2 | 7944 |16.25%+1.09
A-ORFg 0.3| 8206 |25.72%1.65

Fig. 10 Recognition ResultsLeft: Face recognition rates for different learning approachis: o
line Random Ferns (RFs), On-line Random Ferns (ORFs) andr@rHuman-Assisted Random
Ferns (A-ORFs)Right: Face detection examples given by the proposed human-assistedimetho

Finally, Fig. 3.3(Right) shows a few sample frames of theedi&ébn results, once
the classifier learning is saturated (i.e., when no furthendmn intervention is re-
quired). The on-line face classifier is able to handle larggusions, scalings and
rotations, at about 5 fps.

4 Conclusions

In this chapter we have presented two different ways of rédatning using the
interaction with humans. Furthermore, we have describeddifferent prototypes:
interactive motion learning for robot companion; and mebdbot proactively seek-
ing interaction plus human-assisted learning.

We have presented a complete interactive motion learningpfmt companion,
the “interactive motion learning for robot companion” mtype, in three stages.
The first initial design, the perception module, has beeriémpnted and tested ex-
tensively in indoor environments. The implementation & $econd design, where
an external agent moves the robot, was a key step in ordert&nod human in-
tentionality predictor and a motion predictor. A databaas been collected of the
robot approach to a walking human and the data was used tolat@dche model
parameters of the intrinsic forces and the interactionderéor the final stage, we
have implemented a multimodal feedback system, where avimhaference of
the weighting parameters of the contributing forces is anpnted on-line. All this
stages went through intensive real experimentation inamrtecenarios, by far more
challenging scenarios. The results are measured using arubits results give in-
formation regarding the success of the system.

In the “online face learning using robot vision” prototygeethuman-robot in-
teraction is performed in a very dynamic and efficient manRebot’s proactive
behavior has advantages in comparison with passive candiicstly, invitation
service, a robot offers information and invites people teract with it. And, sec-
ondly, this behavior increases the number of interactiand,therefore, people can
assist the robot to improve its skills continuously. Furthere, we have realized
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that using the interactive multimodal framework, we areeaiol handle large oc-
clusions, scaling and rotations in different environmerd with diverse number of
people.
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