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Abstract

This communication addresses the issue of concurrent
map building and localization (CML) for a mobile robot in
an unknown environment. The proposed solution extends
over previous contributions in that the environment must not
be static, nor the landmarks be uniquely identifiable. To this
aim we introduce a map model that includes not only the
robot and landmark locations in a reference frame, but also
a model for landmark quality assessment. Convergence of
the map covariance is preserved in the new map model.

Keywords: map building, mobile robot navigation,
CML, SLAM.

1. Introduction

The use of stochastic models for map building and lo-
calization in mobile robotics has gained much popularity in
recent years [3, 5, 9]. Of particular interest is the use of
predictive filters to estimate the robot position and uncer-
tainty, and to update these estimates from sensor readings
while at the same time building an incremental map of the
environment from observations [1, 2, 4, 6].

One of the most critical limitations to the application of
such estimation-theoretic approaches to CML is the data as-
sociation problem. Data association refers to the issue of
matching an observation with a previously learned entity
in the environment. Some techniques can be used to al-
leviate the data association problem, such as search space
reduction, or landmark invariance characterization. Obvi-
ously there is always a compromise between the possibility
of full invariant landmark characterization and the difficulty
to extract such characterizing features from raw sensor data.

Nevertheless, as we address issues such as viewpoint in-
variance or feature extraction from sensor data, it is over-
whelming how undesired environment dynamics, occlu-
sions, and sensor noise can still make data association a
daunting task. One possibility to overcome these difficul-
ties is the deployment of man-made beacons to aid in local-
ization. Unfortunately, there exist multiple situations when
this is not possible, and a map must be constructed with-
out environment contamination. An alternative explored in

this article is the inclusion of temporal and spatial landmark
quality measures into the map model.

In [4] for example, landmark robustness is addressed as
an implementation detail only, suggesting a quality mea-
sure based on the probability density function of the ob-
servations associated to a given landmark, disregarding the
temporal dispersion of such observations.

In [7] the problem of temporal dispersion of observations
is analyzed in the context of landmark initialization. A re-
vised implementation of the CML algorithm is presented
where the robot pose at each time instance is added to the
map state vector until all landmark measurements from that
given step had been either processed or discarded. The idea
suggests that the combination of observations of the same
landmark from various viewpoints aids in assessing the ro-
bustness of such landmark. However, this methodology not
only increases the computational burden of the CML algo-
rithm, but diverges from the fundamental motivation of us-
ing a Kalman filter to maintain a parametric representation
of the history of the uncertainty of robot and landmark lo-
calization by means of an estimated full-covariance matrix.

On the contrary, we propose an extended map model that
includes the pose of the robot and the location of the land-
marks in the map, and a set of landmark quality states. The
advantages offered by the possibility of landmark quality
assessment allow the pruning of the map state at each itera-
tion in terms of both spatial and temporal landmark quality,
thus reducing the impact of false data association. In the
proposed approach, the size of the state vector does not de-
pend on the number of iterations. Moreover, it is still possi-
ble to achieve a monotonically decreasing map covariance
matrix.

2. Map model

In the typical full-covariance KF-based CML the state
vector is composed of the position of the robotxr and the
map featuresxfi [9]. Consider an extension to this model
by appending landmark quality statesXfi .

x = [x>r ;x
>
f1
; : : : ;x>fN ;X

>
f1
; : : : ;X>fN ]> (1)

The motion of the robot is governed by the discrete-time
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state transition model

x(k) = f(x(k � 1);u(k);v(k)) (2)

zi(k) = hi(x(k);wi(k)) 8i (3)

where the row elements in Eq. 2 take the form

fr(k) = xr(k � 1) + ur(k) + vr(k) (4)

ffi(k) = xf1(k � 1) (5)

fXi(k) = fXi(Xfi(k � 1);ufi(k);vfi (k)) (6)

The termfr(k) represents the robot dynamics,ur(k) is
the vehicle control command,vr(k) includes unmodeled
robot dynamics and noise with zero mean and covariance
matrix Qr(k), ufi(k) is a landmark identification stamp
with zero mean data association uncertaintyvfi(k) and co-
variance matrixQfi(k). The nonlinear observation model
zi(k) for the i-th landmark at time stepk is expressed as a
combination of the robot pose and the location of such map
feature, withwi(k) the measurement noise with zero mean
and covariance matrixSi(k).

The possibly nonlinear expression in Eq. 6 models the
proposed landmark quality. In the following sections we de-
scribe a candidate function to model this landmark quality,
and rework the formulation of the full-covariance Extended
Kalman Filter approach to CML. Convergence of the map
covariance is also shown.

3. Landmark temporal uncertainty

One possibility in the selection offXi(k) is to have an
exponential decay rule for the computation of the landmark
temporal quality. In this way, each landmark in the map
will have an associated memory cell to register how persis-
tent, and how old that landmark is. If a landmark can only
be tracked over sensor data for a short period of time, its
quality measure will decay, indicating the map building al-
gorithm that it should not be considered a relevant feature
for robot localization. Moreover, the map state vector could
be pruned if the value of the landmark quality state falls
below some criteria.

Thus, the nonlinear update rule in Eq. 6 can be of the
form

Xfi(k) =
1

1 + e�(�(ufi (k)+vfi (k))+�Xfi (k�1))
(7)

with ufi(k) a new input to the system, i.e., a landmark iden-
tification stamp

ufi(k) =

�
0 : unobserved landmark
1 : observed landmark

(8)

and� an input weight used to regulate the contribution of
such landmark identification over the previous map configu-
ration,� a memory weight used to regulate the contribution

of the previous landmark quality state over its new value,
andvfi(k) zero mean Gaussian noise indicating the proba-
bility of landmark mismatch.

4. Prediction

To predict the location of the robot and the state of the
map purely from motion commands and landmark match
stamps one can compute a noise free estimate of an a priori
approximation to the map model in Eq. 2 with

x(kjk � 1) = f(x(k � 1jk � 1);u(k); 0) (9)

And, as the mobile robot is commanded, the uncertainty
of its location and that of the map features is incremented.
An a priori estimate to the map state covariance matrix
showing this increase of uncertainty can be computed with

P(kjk � 1) = Fx(k)P(k � 1jk � 1)Fx(k)
> +

Fv(k)Q(k)Fv(k)
> (10)

Fx(k) =

"
I

I

rX fX

#
; Fv(k) =

"
I

0

rvfX

#
(11)

For the case whenfXi is chosen as in Eq. 6, the diagonal
entries on the partial derivatives in Eq. 11 take the form

rxfXi =
��e�(�ufi (k)+�Xfi (k�1jk�1))�
1 + e�(�ufi (k)+�Xfi (k�1jk�1))

�2 (12)

rvfXi =
��e�(�ufi (k)+�Xfi (k�1jk�1))�
1 + e�(�ufi (k)+�Xfi (k�1jk�1))

�2 (13)

5. Correction

Once the observationzi(k) of a landmark coming from
sensor data has been matched to its corresponding map
item, the estimate computed in Eq. 9 can be revised by
adding a correction term

x(kjk) = x(kjk � 1) +Ki(k)ei(k) (14)

with measurement error

ei(k) = zi(k)� hi(x(kjk � 1); 0) (15)

The Kalman gainKi(k) is computed with

Ki(k) = P(kjk � 1)Hi(k)
>��

Hi(k)P(kjk � 1)Hi(k)
> + Si(k)

��1
(16)



with Hi(k) the observation Jacobian, comprised of the
robot and landmark observation Jacobians

Hi(k) = [rrhi(k);0; : : : ;0;rfihi(k);0; : : : ;0;

0; : : : ;0;rXihi(k);0; : : : ;0] (17)

Finally, the a posteriori estimate of the map state er-
ror covariance can also be revised once a measurement has
taken place. It is computed with

P(kjk) = (I�Ki(k)Hi(k))P(kjk � 1) (18)

Note that the incomplete measurement provided by each
matched landmark contributes only to the revision of the
map states directly associated to that particular landmark.
By successively computing Eqs. 14-18 for all matched land-
marks the constraints of the system are met regaining ob-
servability [10].

6. Convergence of the map covariance matrix

It has been shown in [8] how in the original KF-based
CML formulation the map state covariance submatrix as-
sociated with the landmark estimates decreases monotoni-
cally as successive observations are made. We show here
how this result also extends in our revised map model. The
key element in this analysis is the fact that no process noise
is associated to the position of the landmarks in the envi-
ronment, but only to their proper identification, i.e., data
association mismatches.

Writing the state covariance matrix in block form

P =

2
4 Pr Prf PrX

P>rf Pf PfX

P>rX P>fX PX

3
5 (19)

we want to prove the following theorem.

Theorem 1. The determinant of the map covariance ma-
trix decreases monotonically as successive observations are
made.

Proof. The proof benefits from the following three proper-
ties of positive semi-definite (psd) matrices: a) ifA is psd
thenBAB> is alsopsd; if B is alsopsdthen b)A +B is
psd, and c)detA � det (A+B).

Given an initialization ofP(0j0) with a psdmatrix, and
thatQ(k) andS(k) are both alsopsd; from the three prop-
erties cited above, and by induction from Eqs. 10 and 18,
P(kjk � 1), P(kjk), andKi(k)Hi(k)P(kjk � 1) are all
alsopsd. Moreover, from Eq. 18

detP(kjk) = det(P(kjk � 1)

�Ki(k)Hi(k)P(kjk � 1)) (20)

detP(kjk) � detP(kjk � 1) (21)

Substituting Eqs. 11 and 19 in Eq. 10 and solving forPf

we find that

Pf (kjk � 1) = Pf (k � 1jk � 1) (22)

consequently

detPf (kjk) � detPf (k � 1jk � 1) (23)

The result in Eq. 20 shows intuitively how the a priori er-
ror covariance (before observations are made) is larger than
the a posteriori (corrected) error covariance.

The final result on Eq. 23 does not hold however for the
rest of the elements in Eq. 19. And in particular, to the
newly introduced landmark quality covariance since it was
formulated as possibly nonlinear and process noise depen-
dent.

PX (kjk � 1) = rX fXPX (k � 1jk � 1)rX f
>
X

+rvfXQX (k)rvf
>
X (24)

7. Case study: 3-dimensional visual landmarks
for a planar robot

In the case of the mobile robot platform used in these ex-
periments the state variables included the pose of the robot
on a plane, three-dimensional visual feature points for the
landmarks, and scalar landmark quality states. The noise-
free measurement equation for this configuration is

hi (x(kjk � 1); 0) = R>(xfi � t) (25)

with

R = Rot(�(kjk � 1); z) (26)

xfi = [xfi(kjk � 1); yfi(kjk � 1); zfi(kjk � 1)]> (27)

t = [xr(kjk � 1); yr(kjk � 1); 0)]> (28)

The measurement Jacobians in Eq. 17 for our planar mo-
bile robot are computed with

rrhi(k) =
�
03�2 _R>(xfi � t)

�
�R> (29)

rfihi(k) = R> (30)

rXihi(k) = 0 (31)

and the measurement covarianceSi(k) is maintained as a
running unbiased sample covariance of the form

Si(k) =
(ni � 2)Si(k � 1) + ei(k)ei(k)

>

ni � 1
(32)
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Figure 1. Concurrent localization and map
building.

with ni a landmark identification accumulator.
Fig. 1 shows a run of the CML algorithm with and with-

out landmark validation. The mobile robot was commanded
along a squared trajectory and visual landmarks were auto-
matically extracted with its vision system [1]. Those land-
marks whose quality measure fell below a given threshold
or whose sample covariance grew considerably were auto-
matically reinitialized, resulting in a more accurate local-
ization. Fig 2. contains a plot of the determinant of the
map covariance for each landmark in the map. The figure
exemplifies the result obtained in Sec. 6.

8. Conclusions

The main contribution of this work is the extension of
the traditional full-correlation EKF CML algorithm for mo-
bile robot localization and map building by adding land-
mark quality measures to the map state vector. These qual-
ity measures permit the maintenance of the map by the elim-
ination of inconsistent observations. The proposed solution
contributes in simplifying the data association problem in
CML. Special attention has been paid in the selection of
the process and observation models for landmark quality to
guarantee that the uncertainty in the map estimates reduces
monotonically.
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Figure 2. Determinant of the map covariance
for each landmark.
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