IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 6, DECEMBER 2008

1571

Learning Inverse Kinematics: Reduced Sampling
Through Decomposition Into Virtual Robots

Vicente Ruiz de Angulo and Carme Torras

Abstract—We propose a technique to speedup the learning of
the inverse kinematics of a robot manipulator by decomposing
it into two or more virtual robot arms. Unlike previous decom-
position approaches, this one does not place any requirement on
the robot architecture, and thus, it is completely general. Param-
etrized self-organizing maps are particularly adequate for this
type of learning, and permit comparing results directly obtained
and through the decomposition. Experimentation shows that time
reductions of up to two orders of magnitude are easily attained.

Index Terms—Function approximation, learning inverse kine-
matics, parametrized self-organizing maps (PSOMs), robot
kinematics.

I. INTRODUCTION

EURAL networks have proved useful for learning the

inverse kinematics of robot manipulators, either lacking
a well-defined model or needing online recalibration while
functioning. Recently, the development of humanoid robots
has raised the interest in this topic. Due to the many degrees
of freedom involved, the learning task is usually restrained
to a specific trajectory, and a fixed cost function is used to
resolve redundancy. Following the trend of using localized rep-
resentations, some researchers [10], [11], have applied a super-
vised algorithm—Iocally weighted projection regression—in
this context, with promising results. Nevertheless, the task
of learning the complete kinematics of general mechanisms
remains challenging due to the large number of training samples
(i.e., robot movements) required to attain an acceptable preci-
sion [2, ch. 7], [3].

Several attempts have been made at reducing the number of
required samples, among them the use of hierarchical networks
[4], [13], the learning of only the deviations from the nominal
kinematics [5], and the use of a continuous representation by
associating a basis function to each knot [12].

In [6] and [7], we proposed a practical trick that can be
used in combination with all the methods above. It consists in

Manuscript received August 16, 2007; revised February 15, 2008 and
May 13, 2008. First published October 10, 2008; current version published
November 20, 2008. This work was supported in part by the Generalitat de
Catalunya under the consolidated Robotics group, by the Spanish Ministry
of Science and Education under Project DPI2007-60858, by the “Comunitat
de Treball dels Pirineus” under Project 20061TT-10004, and by the European
Commission under Project PACO-PLUS, CogSys Integrated Project FP6-IST-
4-27657. An earlier version of this paper was presented at IWANN-2005 [8].
This paper was recommended by Associate Editor H. Qiao.

The authors are with the Institut de Robotica i Informatica Industrial (CSIC-
UPC), 08028 Barcelona, Spain (e-mail: ruiz@iri.upc.edu; torras @iri.upc.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2008.928232

decomposing the learning of the inverse kinematics into several
independent and much simpler learning tasks. This was done at
the expense of sacrificing generality: The procedure works only
for some robot models subject to certain types of deformations.
Specifically, the procedure assumes that the last three robot
joints cross at a point, a condition satisfied by some classic
robot architectures.

Here, we present another decomposition technique for learn-
ing inverse kinematics that is not limited by the above as-
sumption. While being more general, it still retains the main
advantage of the trick above: The input dimensionality of each
of the tasks resulting from the decomposition is half that of the
original one. Thus, for a given desired accuracy, if the number
of training samples required to learn inverse kinematics directly
is O(q™), through the decomposition it reduces to O(q™/?),
where n is the number of robot joints, and ¢ is the number
of sample points along each joint dimension. This yields an
enormous reduction in the number of samples required for high-
precision applications.

This paper is structured as follows. In the next section, we
describe the proposed decomposition of the inverse kinematics
mapping. Section III explains how the workings of two net-
works encoding the kinematics of the component virtual robots
can be combined to provide the inverse kinematics of the origi-
nal robot. Section IV introduces parametrized self-organizing
maps (PSOMs). The following two sections are devoted to
the training scheme and the way to retrieve the kinematics
from the component PSOMs, respectively. In Section VII, some
illustrative experimental results of learning with and without the
decomposition are presented, permitting to quantify the savings
obtained. Finally, some conclusions and prospects for future
work are put forth in Section VIII.

II. KINEMATICS DECOMPOSITION

The technique described here is based on the idea of de-
composing the kinematics of a serial manipulator into those
of several “virtual robots.” The advantage of the approach is
that, since the component robots are much simpler than the
original one, the learning of their inverse kinematics requires
less sampling points to be acquired.

We will explain the technique using only two virtual robots
(see Fig. 1). The extension to more virtual robots is straigh-
forward. Let @ = (01,05 ...0,,) and T1,T5, ..., T}, be the joint
angles and the associated transformation matrices, respectively,
of the real robot. Therefore, the transformation matrix J associ-
ated to the end-effector reference frame is 7 = 1115 ...T,,. To
decompose the real robot into the two virtual robots, we select

1083-4419/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 03:57 from IEEE Xplore. Restrictions apply.



1572
end-effector A
G
virtual robot A
G
H
virtual robot B
Ha
Hy
end-effector B
Fig. 1. Decomposing the (left) robot manipulator into (right) two virtual
robot arms.

a point I of joint k. Thus, the reference frame F; associated
to I is rigidly linked to the reference frame of joint k& and
Fr=TT15...T;T,, where T, is a constant matrix. Ideally,
k = n/2, as we will justify at the end of this section.

The first virtual robot, or robot A, has k joints ¢ = ({3,
Ca2,...,Cx), and their associated transformation matrices are
Ty, T5,...Ty_1,TT,.. The second robot, or robot B, is com-
posed of n — k joints o = (1, . . ., tbn—g) With associated ref-
erence matrices T, ', T 1y ... T} L, T T

We could consider that we have virtually broken the original
robot into two pieces, exactly at point I of link k. Robot A is the
first piece of the robot and has its end-effector at the extreme of
the broken link. Robot B is the other piece of the original robot,
the base of robot B being the original end-effector (translated
and rotated to the origin of coordinates), and the end-effector of
robot B, the extreme of the other half of the broken link. The
second robot can also be seen as the remaining of the original
robot, inverted and translated to the reference frame.

By 6 = (¢, 1), we mean

0; =G

0; = fhn—i+1

Vi=1,...,k (1)
VI=k+1,...,n. )

We denote DK 4 (¢) and DKg () the direct kinematics of
robots A and B, respectively. It is easy to see that § = (¢, ) is
a valid inverse kinematics solution for a given position X and
orientation {2 of the real robot iff

DKA(¢) = TR(X, 2)DKg(p) 3)

where TR (X, Q) is the matrix transformation yielding a trans-
lation X and an orientation €2. Note that the knowledge of the
kinematics equations of the original and virtual robots is not
required. We can replace DKz and DKg by black boxes found
through learning, and, taking (X, ) as input, if equation (3)
holds for (¢, ), these joint values are a solution of the inverse
kinematics for the original whole robot.

Now, we can easily justify the way to choose k. As for the
whole robot, we can assume that the number of samples that

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 6, DECEMBER 2008

(NA,(B) = (X + NBy(w))? +(NA(L) - (@ NBo(w)?

PN

NA(©),NA(T) NB (W), NBo(u)

|

Network NA Network NB
G1,62,Gs JAWONES

Fig. 2. Workings of the two networks are linked through the cost function at
the top.

we need to approximate DK (¢) and DKg(u) depend on the
number of joints of robots A and B, respectively. Therefore, the
number of samples needed by the decomposition approach is
q* + ¢" %, where ¢ is the number of sample points in each joint
dimension assuming that the samples are obtained following
rectangular grids. The minimum of this quantity as a function
of k occurs when k£ = n/2 and increases almost exponentially
as k differs from the minimum.

III. KINEMATICS COMPOSITION

The approach consists in creating two neural networks NA
and NB approximating the functions DK (¢) and DKg(u)
(see Fig. 2). When a desired pose (X, (2) is given, a search
in the inputs of the two networks is carried out to find values
of ¢ and p satisfying (3) as much as possible. This can be done
by imposing a common cost function to be minimized in (C, 1)
such as

INA(¢) = TR(X, 2)NB(u)|? )

or by decomposing the output of the networks into two compo-
nents: position (NA,, NB,) and orientation (NA,, NB,), and
then minimizing

INAL(C) = (X + NBy (1)) |I* + [NAG(¢) — (2 NBo(N))H(;

The dimension of NA, and NB, is, of course, 3. The
dimension of NA,(¢) and 2 NB, (1) depends on the represen-
tation chosen for orientations. In our case, this representation
(explained in Section VII) is of dimension 6. If NA and NB
approximate reasonably well the kinematics of robots A and
B, respectively, for a reachable pose (X, (2), the minimum of
(5) will be zero. However, under a pragmatic point of view,
even in this case, a numerical algorithm will output some point
slightly different from the minimum, with a value not exactly
zero. This means that the output of the minimization will de-
pend somewhat on the units used for position coordinates (our
representation of orientation is unit free, since it is composed

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 03:57 from IEEE Xplore. Restrictions apply.



DE ANGULO AND TORRAS: LEARNING INVERSE KINEMATICS

of elements of the rotation matrix). In our case, “meter” units
yield an equilibrated balance in the minimization of position
and orientation, but a weighting constant can be introduced to
correct or manipulate this balance.

To facilitate the search, we require the output of the neural
networks to be differentiable with respect to the input. We con-
sider that the memory-based neural networks are particularly
well suited to our application, since they use stored function
points to build the approximation of the function. On the one
hand, they allow a quick search among the stored points to
find a good starting point for continuous minimization. On the
other hand, we can apply TR(X, Q) to the stored points of
network NB, so that the whole approximation of the function
gets translated and rotated, becoming NB’. In this way, the
function to be minimized (4) becomes |[NA(¢) — NB'(u)]|?,
whose derivatives are more easily obtained.

A PSOM [12] is the type of network better suited to our
requisites. It approximates a function using a regular grid of
sampled points. Because of its excellent interpolation capabili-
ties, the required number of points is very small. Of particular
interest to us is that PSOMs treat input and output variables
in the same way. This means that it is as natural to ask which
output corresponds to a given input as asking which input
correspond to a given output. Therefore, our search in the input
variables is naturally addressed and embedded in the framework
of these networks.

Iv. PSOM

We give a brief overview of the main PSOM concepts in-
troduced in [12]. A PSOM is basically a continuous extension
of the Kohonen self-organized maps (SOM). A SOM is a
neural network producing low-dimensional representations of
the training samples while preserving the topology of the data
space. The units are arranged in an m-dimensional grid. Usu-
ally, m is 2, and, in any case, smaller than the dimensionality of
the data space d. Each input is connected to all units. Attached
to every unit, there is a reference weight vector of the same
dimensionality as the data. The output of the network to a
new input is the attached vector closest to the data. The SOM
learning algorithm modifies these attached vectors to become
good representatives of the training data. Besides, the learning
algorithm arranges the units so that two units topologically
close in the grid tend to have also similar attached vectors.
Thus, a SOM induces a discrete topology-preserving mapping
from grid coordinates to data space.

A PSOM turns this mapping into a continuous one. The
mapping in this model goes from continuous grid coordinates
S C R™ to data space, w(s) : S — R?, which will be referred
to as the interpolated manifold. The data space includes all
components irrespective of which ones a usual supervised
neural network model would consider as input data or output
data for the mapping to be learned. The response of the network
to a new data vector x is w(s*) s.t. s* € .S, the closest point to
x in the interpolated manifold, i.e.,

s* = arg min dist (w(s),x). (6)

1573

The distance function is defined as
dist(x,x')? = ij (zj — x’j)2 : (7

Setting some of the weights p;s to zero, w(s*) becomes an
associative completion of the data whose weights are not zero.
Therefore, a partial data vector (missing the components whose
p; = 0) could be considered as an input, and the components of
w (s") corresponding to null p;s could be considered as an out-
put. This means that we can select arbitrarily the components
of the data that we consider input or output. w(s) is chosen to
have the form of a sum of products of reference vectors in R?
and their associated basis functions

w(s) =Y H(a,s) wa ®)

acA

where A is the set of grid coordinates of all the units of the
PSOM. The basis functions H(a,s) determine the degree of
contribution of the reference vector w, based on the distance
between the grid coordinates a and s. The reference vectors
are, as a matter of fact, the training data. The basis functions
H(a,s) are Lagrange polynomials chosen to interpolate exactly
the reference vectors. To allow the interpolation, the reference
vectors must constitute an m-dimensional rectangular hyperlat-
tice, resulting from the Cartesian product of m 1-D point sets.

V. LEARNING THE INVERSE KINEMATICS
OF THE VIRTUAL ROBOTS

Usual inverse kinematics learning requires the capability to
observe the position and orientation of the robot end-effector,
represented by the transformation matrix F, as defined in
Section II. Our method requires also knowing the position and
orientation of the point I, encapsulated in the transformation
matrix F7. Thus, our method needs to acquire twice the number
of sensory measures required by the classic procedure, which
can be obtained using the same sensory system already in place.

Every time the robot performs a movement (even during
working operation), a sample point for each of the virtual robots
can be obtained. The learning amounts to supplying virtual
robot A with a sample point consisting of an input (; = 6;,
i=1,...,k and an output F;. For robot B, the sampling
point has as input p; = 0,,_;+1,% = 1,...,n — k and as output
F~1F;. We could understand this as moving the whole robot B
“freezed” in its current configuration to the place it is supposed
to be, before extracting its kinematics sample point.

VI. COMPUTING KINEMATICS WITH PSOMSs

When using PSOMs to learn the kinematics of robots, the
movements to obtain the data vectors are generated following
a regular grid in the space of joint angles. The training data
vectors (as well as the data interpolated manifold and the query
vector x) have as components all the joint values and all pose
values.

Once trained, a PSOM works by putting some constraints
on a subset of the variables of the system (input or output),
e.g., fixing them to a desired value. This is achieved by setting
the corresponding p;’s in (7) to 1. These variables will be

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 03:57 from IEEE Xplore. Restrictions apply.



1574

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 6, DECEMBER 2008

Algorithm 1: PSOMINVERSEKINEMATICS algorithm.

Algorithm 2: COMPOSITEINVERSEKINEMATICS algorithm.

Input: A Desired Pose, DP = (DP,...,DPF;)

A PSOM, N, with a set of training vectors {w, s.t. a € A}
following a grid in the n joint angles of the robot. Its distance weight
vector, current point in S, and current point in the interpolated
manifold are N.p, N.s, N.w(s), respectively
Output: A vector of n joint values that approximately generates the

robot pose DP

[

x « (DPy ... DP,,dummy, ... ,dummy); /* the last n components
can take any value */

N.p « (1,.9.,1,0,9.,0) /* the last n components
corresponding to the robot joint values are zero */

3 N.s < a s.t. w, minimizes dist(wa,, X)

4 while not Minimum(N.s) do

5 As « MINIMIZATIONSTEP(dist(N.w(s), x))

6 Ns«— Ns+ As

[N

7 return Last n components of N.w(s)

considered as input. The other p;’s are set to zero, and their
corresponding variables are considered as output. Therefore, by
manipulating the p;’s, one can obtain the forward or the inverse
kinematics at will. The system then carries out a quick opti-
mization aimed to find a point of the approximated input—output
manifold satisfying the constraints or, if impossible, the closest
one to satisfying them. The starting point of the process is
the stored point that best satisfies the constraints. From it, an
iterative minimization procedure is launched, which finishes in
a few steps.

For PSOMs trained on the kinematics of a robot, to get the
inverse kinematics (Algorithm 1), we simply fix the position
and orientation variables, and we let the minimization get the
point in the interpolating surface with the desired pose values,
the remaining components of the point are taken to be the result,
i.e., the joint values yielding the desired pose.

To obtain the inverse kinematics of the real whole robot using
the PSOMs for the virtual component robots (Algorithm 2), we
first transform the points stored in NB with the desired pose to
become NB/, as explained in Section III. Afterward, we look
for a good starting point for the minimization by finding the
closest pair (in pose space) between the points stored in NA and
the transformed points in NB'. Let (NA.w(so), NB".w(s)) be
this closest pair, which we will denote (AO),BE))) for short.
Likewise, A;) and Bg) will denote points in the interpolated
manifold (containing pose coordinates and joint values) ob-
tained in intermediate minimization stages for networks NA
and NB', respectively. A minimization step is then carried out
in NA with B(’J) as target pose, and another step is performed
in NB’ with Ayg)y as desired pose. The result of these steps in
NA and NB' are two points Ay, and B/1)’ respectively. These
points will be the starting ones for the following steps in
which the desired poses for NA and NB’ will be B’l) and Al),
respectively. More iterations will be performed in the same way,
until the pose components of A;y and B;, are closer than a
certain threshold. Thus, the function being minimized is (5)
or, equivalently, dist(NA.w(s), NB'.w(s)). If the desired pose
cannot be reached, the above termination criterion may never be
satisfied. An alternative termination criterion, which is the one
we have implemented, is that the norm of the gradient of the
function being minimized is below a certain threshold. Then,
we extract the inverse kinematics of the real whole robot by
concatenating the joint components of the last obtained points.

Input: A Desired Pose, DP = (DP,, ..., DP,), whose matrix
transformation representation is TR(X, ()

A PSOM, NA, with a set of training vectors {w, s.t. a € A}
following a grid in the k joint angles of virtual robot A. Its distance
weight vector, current point in S, and current point in the
interpolated manifold are NA.p, NA.s, NA.w(s), respectively

A PSOM, N B, with a set of training vectors {wy, s.t. b € B}
following a grid in the n — & joint angles of virtual robot B.

Output: A joint vector that approximately generates the pose DP in

the real robot
1 Generate a new PSOM: NB' «— NB
2 foreach b’ € B’ do
3 L Wi« Apply transformation TR(X, Q) to the pose components of
Wph

NAp « (1,.4.,1,0,.%.0)
NBp e« (1,.9.,1,0,"5 0)
(NAs,NB's) — (a€ Ab’ € B) s.t. Wa, Wy minimizes dist(Wa, W)
while not Minimum(NA.s, NB'.s) do

/* Equivalent to a usual minimization step of NA with
NB'.w(s) as desired value */
8 | Asy « MINIMIZATIONSTRP(dist(N A.w(s), NB' .w(s))) on NA.s
9 NAs— NAs+ Asy

/* Equivalent to a usual minimization step of NB' with
NAw(s) as desired value */
10 Asp «+ MINIMIZATIONSTEP (dist(NA.w(s), NB'.w(s))) on NB'.s
11 NB's — NB's+ Asp
return Last & components of NA.w(s) and last n — k components of
NDB' w(s)

IS

N e oo

=
N

VII. EXPERIMENTAL RESULTS

The experiments have been performed in a new general
simulation environment developed at our institute, which allows
the visualization of any serial manipulator (Fig. 3). The only
input needed for the simulator is a Denavit-Hartenberg table,
from which the graphical model is created using a uniform link
and joint representation.

We used a PSOM variant known as LPSOM, the L standing
for Local. This model builds a PSOM extracting for each query
a subgrid of the sampling grid, which is centered on the closest
point to the query. We have used subgrids with four points
in each dimension. The representation of pose orientation has
thoroughly been studied, and different alternatives have ex-
perimentally been compared [9]. There exist many possible
representations, but none is completely satisfactory. For ex-
ample, the Euler representation is very compact, but lacks
continuity. This drawback affects also other in principle good
candidate representations such as quaternions. The classical
3 x 3 rotation matrix is continuous but not compact. The
solution was to select a subset of elements of the standard
rotation matrix that determine it. The five elements in the last
column and row are good in general, although not perfect
because the matrix is not determined in one point (when the
common element of the last row and last column takes the
value 0). Therefore, it is safer to use six elements, the last two
columns of the rotation matrix, which completely determine it.

We have chosen the well-known PUMA robot to validate our
technique. The experiments were carried out using a very large
workspace, allowing ranges for the six joints [1] as follows:
[—150,—35], [-215,—100], [—35,80], [—110,5], [—100,15],
[—100,15]. We trained one LPSOM in a classical way, by
generating samples of the kinematics of the robot in a regular
grid in the joint space covering the workspace above. Then,

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 03:57 from IEEE Xplore. Restrictions apply.



DE ANGULO AND TORRAS: LEARNING INVERSE KINEMATICS

£ NRS - Newal Robot Simulator =101 =]

Joint 0 : -90
-150 .115 .80 -5 -10
Joint 1:-122

225 -194 -163 -132  -101
Joint 2: 0

T

.35 7 21 a9 77

1575

zoom || wrasia.. | xvRot. | zRota.. | Goan. | Reset..

(a)

(b)

Fig. 3. (a) View of the neural robot simulator showing the 3-D representation of a PUMA-like robot arm. (b) Two virtual subrobots in which the robot in (a) is
decomposed. (X1, £21) and (X2, 22) are the position and orientation of subrobot A and subrobot B, respectively.

TABLE 1
CLASSIC ALGORITHM

number of position position orientation | orientation

movements | mean error | stdev. error | mean error | stdev. error

64 476 229 53 36
729 46 21 5.8 2.81
4096 11 17 0.69 1.55
TABLE II
DECOMPOSITION ALGORITHM
number of position position orientation | orientation
movements | mean error | stdev. error | mean error | stdev. error
8 377 236 44 37
27 48 42 5.27 2.58
64 10 35 0.92 3.38
125 3.6 27 0.29 2.80
216 2.1 8.3 0.11 0.63
343 1.6 6.4 0.11 0.80
512 0.9 2.9 0.11 1.20

we moved the robot to the different configurations represented
in the grid to obtain the associated positions and orientations.
Thus, each knot in the grid requires one movement. The results
are shown in Table I. The units are millimeters and degrees.

In the experiment to test our decomposition approach, we
used two smaller PSOMs, one for each of the two virtual robots
A and B. The corresponding regular grids were also generated.
In this case, with only one movement of the robot, we get
the required information for one unit in the grid associated to
robot A and for another unit in the grid associated to robot
B. Table II shows the results. The comparison of both tables

reveals that, for the only number of points in common (64),
the averages in position and orientation are around 50 times
more precise for the decomposition algorithm. We note also
that the limits of physical accuracy of the manipulator are
approximately reached with 512 movements with the decompo-
sition algorithm, whereas it was impossible with our computer
memory resources (allowing grids of up to 262 144 points)
to reach precisions under 1 mm and 0.6° with the classic
procedure.

To test the scalability of the proposed approach, we have
enlarged the workspace up to 9 times the preceding one:
[—150,15], [—-215,-50], [—35,130], [—110,55], [—100,65],
[—100,65]. Fig. 4 permits comparing the results obtained for
the two workspaces under the two approaches. While the scal-
ability of the classic approach is already quite good that of the
decomposition approach is remarkable.

VIII. CONCLUDING REMARKS AND FUTURE WORK

The purpose of this paper is to propose a technique to
learn inverse kinematics (IK) with a reasonable number of
movements when high accuracy is required.

Unlike our previous work on IK learning through function
decomposition [6], [7], the technique here proposed does not
place any restriction on the type of robot architecture to which it
can be applied. The kinematics of any serial manipulator under-
going whatever deformation can be learned with this technique.
However, a new “sensorial” requisite must be fulfilled: the
reference frame attached to a point in an intermediate link of the
robot must be known using some sensing system. We think that
this is not a shortcoming, since learning IK with any procedure
requires anyway a sensorial system to determine the position
and orientation of the gripper. Notice that by duplicating the
number of sensory inputs, we obtain training time reductions of
up to two orders of magnitude.

One of the most promising applications of our technique is
to flexible robots. Since it reduces the dimensionality of the
functions to be learned from six to three, it is still affordable
to include the load change as an extra variable and still have
quick learning.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 03:57 from IEEE Xplore. Restrictions apply.



1576

1000 [

—0—— small workspace
—o— large workspace

800

400

200

mean position error (millimeters)

0 100 200 300 400 500
number of movements

(a)

1000 L \\ —0—— small workspace
— \ —0—— large workspace
M) \
9] \
2 oo \
T o600F |\
S
5 400
=
8 200 =y
E o T
o )
Ok ) . ! i
0 1000 2000 3000 4000
number of movements
(c)

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 6, DECEMBER 2008

1.2:[

—0— small workspace
1F —o0— large workspace

mean orientation error (radians)

200 300 400 500
number of movements

(b)

0 100

120\

———— small workspace
O large workspace

mean orientation error (radians)

0 1000 2000 3000 4000
number of movements
(d)

Fig. 4. Testing the scalability of (a) and (b) the proposed and (c) and (d) the classic approaches. The graphs on the left display position errors and those on the

right, orientation errors.

In addition to learning efficiency, our technique has other
advantages over classic IK learning. For instance, it allows the
robot to learn to move in the complete workspace without actu-
ally moving everywhere, and to approach risky zones only after
learning has been successfully completed. Moreover, we have
shown that the proposed technique scales well to workspace
enlargement.

Among the tasks left for future work, we can mention testing
the extension of this framework to more than two virtual
robots. Also, we think that appropriately weighting the learning
of the position and orientation of the two virtual robots can
further improve the results. The inaccuracies in the interpolated
position of the virtual subrobots are simply added (vectorially)
in the composite robot. Instead, inaccuracies in the orientation
components of the subrobots result in orientation inaccuracies
of the same order in the composite robot, but also add a possibly
large error component in position.

An open issue common to all the approaches to IK learning
is the representation of orientation. We think that the goodness
of representations for orientation can be evaluated with respect
to three criteria: 1) compactness; 2) continuity; and 3) whether
interpolated representations are proper representations. Com-
pactness saves memory (particularly in memory-based mod-
els) and should influence positively generalization. However,
continuity (two close orientations in the representation space
should also be close regarding robot motion) has a more radical
influence on the quality of the interpolation. Finally, it is
desirable that every interpolated representation corresponds to
a true orientation. Otherwise, one has the problem of how to
map interpolated values onto the representation space, as it
occurs with rotation matrices. By choosing as representation
six elements of the rotation matrix, we have given priority to

the continuity criterion, while trying to maximize compactness.
Interpolated representations do not necessarily correspond to
points inside the representation space, but this does not seem a
big problem in practice.

REFERENCES

[1] K. S. Fu, R. C. Gonzilez, and C. S. G. Lee, Robotics: Control, Sensing,
Vision, and Intelligence. New York: McGraw-Hill, 1987.

[2] B. J. A. Krose and P. P. van der Smagt, “Robot control,” in An Intro-
duction to Neural Networks, 5th ed. Amsterdam, The Netherlands: Univ.
Amsterdam, 1993.

[3] T. M. Martinetz, H. J. Ritter, and K. J. Schulten, “Three-dimensional
neural net for learning visuomotor coordination of a robot arm,” IEEE
Trans. Neural Netw., vol. 1, no. 1, pp. 131-136, Mar. 1990.

[4] H. Ritter, T. Martinetz, and K. J. Schulten, Neural Computation and Self-
Organizing Maps. New York: Addison-Wesley, 1992.

[5] V.Ruiz de Angulo and C. Torras, “Self-calibration of a space robot,” IEEE
Trans. Neural Netw., vol. 8, no. 4, pp. 951-963, Jul. 1997.

[6] V. Ruiz de Angulo and C. Torras, “Learning inverse kinematics via
cross-point function decomposition,” in Proc. ICANN, 2002, vol. 2415,
pp- 856-861.

[7]1 V. Ruiz de Angulo and C. Torras, “Speeding up the learning of robot
kinematics through function decomposition,” IEEE Trans. Neural Netw.,
vol. 16, no. 6, pp. 1504-1512, Nov. 2005.

[8] V. Ruiz de Angulo and C. Torras, “Using PSOMs to learn inverse kine-

matics through virtual decomposition of the robot,” in Proc. 8th INVANN,

2005, vol. 3512, pp. 701-708.

D. Saune Sinchez, “Recalibracion de un brazo robot mediante tecni-

cas de descomposicion de la cinematica,” in Proyectonal de Carrera.
Barcelona, Spain: Dept. LSI, Univ. Politécnica de Catalunya, 2003.
[10] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kinemat-
ics,” in Proc. IEEE/RSJ Int. Conf. IROS, 2001, vol. I, pp. 203-298.

[11] S. Vijayakumar, A. D’Souza, T. Shibata, J. Conradt, and S. Schaal, ““Statis-
tical learning for humanoid robots,” Auton. Robots, vol. 12, no. 1, pp. 55—
69, Jan. 2002.

[12] J. Walter and H. Ritter, “Rapid learning with parametrized self-organizing
maps,” Neurocomputing, vol. 12, pp. 131-153, 1996.

[13] J. Walter and K. J. Schulten, “Implementation of self-organizing neural
networks for visuo-motor control of an industrial robot,” IEEE Trans.
Neural Netw., vol. 4, no. 1, pp. 86-96, Jan. 1993.

[9

—

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 03:57 from IEEE Xplore. Restrictions apply.



DE ANGULO AND TORRAS: LEARNING INVERSE KINEMATICS

Vicente Ruiz de Angulo was born in Miranda de
Ebro, Burgos, Spain. He received the B.Sc. and Ph.D.
degrees in computer science from the Universidad
del Pais Vasco, Bilbao, Spain.

During the academic year 1988-1989, he was an
Assistant Professor with the Universitat Politecnica
de Catalunya, Barcelona, Spain. In 1990, he was
with the Neural Network Laboratory, Joint Research
Center of the European Union, Ispra, Italy. From
1995 to 1996, he was with the Institut de Cibernética,
Barcelona, participating in the ESPRIT project enti-
tled “Robot Control Based on Neural Network Systems” (CONNY). He also
spent six months with the Istituto Dalle Molle di Studi Sull’ Inteligenza Artifi-
ciale di Lugano, working in applications of neural networks to robotics. Since
1996, he has been with the Institut de Robotica i Informatica Industrial (CSIC-
UPC), Barcelona. His interests in neural networks include fault tolerance, noisy
and missing data processing, and their application to robotics and computer
vision.

1577

Carme Torras received the M.Sc. degree in mathe-
matics from the Universitat de Barcelona, Barcelona,
Spain, the M.Sc. degree in computer science from the
University of Massachusetts, Amherst, and the Ph.D.
degree in computer science from the Universitat
Politecnica de Catalunya, Barcelona.

She is currently with the Institut de Robotica i
Informatica Industrial (CSIC-UPC), Barcelona. She
is a Research Professor with the Spanish Scientific
Research Council, Spain. She has published four
books and more than 100 papers in the areas of
robot kinematics, geometric reasoning, computer vision, and neurocomputing.
She has been Local Project Leader of several European projects, such as
“Planning RObot Motion” (PROMotion), “Robot Control based on Neural Net-
work Systems” (CONNY), “Self-organization and Analogical Modelling using
Subsymbolic Computing” (SUBSYM), “Behavioural Learning: Sensing and
Acting” (B-LEARN), and the ongoing 6th framework IP project “Perception,
Action and COgnition through Learning of Object-Action Complexes”
(PACO-PLUS).

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 03:57 from IEEE Xplore. Restrictions apply.



