
Fast Multiresolutive Approximations
of Planar Linkage Configuration Spaces

Tom Creemers, Josep M. Porta, Lluı́s Ros, and Federico Thomas
Institut de Robòtica i Informàtica Industrial (UPC-CSIC)

Llorens Artigas 4-6, 08028 Barcelona, Catalonia
{tcreemers,jporta,llros,fthomas}@iri.upc.edu

Abstract— This paper presents a numerical method able to
compute all possible configurations of a planar linkage. The
procedure is applicable to rigid linkages (i.e., those that can
only adopt a finite number of isolated configurations) and to
mobile ones (i.e., those that have internal degrees of freedom).
The method is based on the fact that this analysis always reduces
to finding the roots of a polynomial system of linear, quadratic,
and hyperbolic equations, which is here tackled with a new
strategy exploiting its structure. The method is conceptually
simple, geometric in nature, and easy to implement, yet it
provides solutions of the desired accuracy in short computation
times. Experiments are included which show its performance on
the double butterfly linkage, for which an accurate an complete
discretization of its configuration space is obtained.

I. INTRODUCTION

A planar linkage is a set of rigid bodies, also called links,
pairwise articulated through revolute or slider joints, all lying
in a plane. A linkage configuration is a specification of its
spatial shape, i.e., an assignment of positions and orientations
to all links that respects the kinematic constraints imposed by
all joints. As it is well known, the configuration space of a
linkage—the set of all possible configurations—corresponds
to the solution set of a system of polynomial equations, and
thus forms an algebraic variety. This paper presents a numer-
ical method able to approximate this variety at any desired
resolution, irrespective of whether it contains a finite number
of isolated points (corresponding to rigid configurations) or
higher-dimensional connected components (corresponding to
finite motions of the linkage).

Many problems translate into the above one, or require an
efficient module able to solve it. For instance, in Robotics this
problem arises when solving the forward kinematics of parallel
manipulators [1], when planning the coordinated manipulation
of an object or the locomotion of a reconfigurable robot [2],
[3], or, as recently shown, in simultaneous localization and
map-building [4]. The problem also appears in other domains,
such as in the simulation and control of complex deployable
structures [5], the theoretical study of rigidity [6], or the
conformational analysis of crystalline substances [7]. The
common denominator in all cases is the existence of one or
more kinematic loops in the system at hand, defining a linkage
whose configurations must eventually be sought for.

Whereas specific methods for many linkages abound, a
few recent methods are already universal, being able to
manage arbitrary planar mechanisms. For example, Dhingra

used reduced Gröbner-Bases and Sylvester’s elimination to
obtain a simple polynomial condition describing the solution
set [8]. Nielsen and Roth also gave an elimination-based
method that uses Dixon’s resultant to derive the lowest degree
polynomial of the algebraic system under study [9]. This
technique was later improved by Wampler [10], who used
a complex-plane formulation to reduce the size of the final
eigenvalue problem by half. The problem can also be tackled
using general continuation-based solvers like [11], that start
with a system whose solutions are known, and then transform
it gradually into the system whose solutions are sought, while
tracking all solution paths along the way. In general, it can
be said that while elimination techniques tend to be faster and
acceptably accurate when the number of roots is moderate,
continuation methods seem more efficient and accurate when
this number is large.

Although the previous strategies properly manage configura-
tion spaces with isolated points, it is unclear how they could be
applied to deal with higher-dimensional components. While re-
cent continuation methods are able to compute the irreducible
decomposition of the solution variety [12], [13], informing on
the number of connected components and their degree, to the
best of our knowledge, they can only provide a sample-based
approximation of each component. Contrarily, the method
herein presented is able to return complete discretizations (i.e.,
discretizations that include all solution points and not just
samples) of all the solution components, independently of
their dimensionality. This discretization is in the form of a
collection of boxes, not larger than a user-defined size, that
fully encloses the solution variety. The method is conceptually
simple, geometric in nature, and easy to implement, yet it
provides solutions at the desired accuracy in short computation
times, as the experiments below demonstrate.

The rest of the paper is organized as follows. Section II
starts by showing how to derive the cycle equations of a planar
linkage only containing revolute joints. The strategy used to
solve them is then presented in Section III, followed by some
experimental results showing its performance in Section IV.
A note on the convergence order of the algorithm is added
next, in Section V. Finally, Section VI summarizes the main
contributions of this work.

Proceedings of the 2006 IEEE International Conference on Robotics and Automation
Orlando, Florida - May 2006

0-7803-9505-0/06/$20.00 ©2006 IEEE 1511

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on February 17, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

II. FORMULATING THE CYCLE EQUATIONS

To ease the explanations, we will start by considering
linkages only containing revolute joints. Also, for the purpose
of this paper, a link will either be a single bar, or multiple
bars forming a rigid compound.

To obtain the kinematic equations of a planar linkage, we
follow the same formulation used in [9], which references the
rotation angles of all bars to a fixed, ground coordinate system.
With this, every angle θi assigned to a bar bi defines a unit
vector ui = (cos(θi), sin(θi)) that gives the orientation of the
bar. We then consider the dual graph of the linkage, containing
a node for each link, and an edge connecting two links if they
are sharing a joint. By traversing a cycle c of this graph, it
must hold that ∑

bi∈c

λ(i, c) · li · ui = 0, (1)

where the sum spans all bars bi found around c, li is the length
of the ith bar, and λ(i, c) is +1 or −1 depending on whether
ui has the same or opposite orientation than the cycle. This
vector sum yields two scalar equations of the form∑

bi∈c

λ(i, c) · li · cos(θi) = 0, (2)

∑
bi∈c

λ(i, c) · li · sin(θi) = 0, (3)

and, by collecting all of these for a maximal set of independent
cycles of the dual graph, we finally get a set of necessary and
sufficient conditions describing the valid configurations of the
linkage.

To illustrate the process, and to facilitate the comparison
with previous work, we consider the same example as in [9]
and [10], a double butterfly linkage, which is the only one

θ1

θ2

θ3
θ4

θ5

θ6

θ7

γ0

γ1 γ2

η6

a0

l1
l2

l3
l4

l5

b6

l7

b0

b1 b2

c6

Ground link

Fig. 1. The double butterfly linkage.

of the sixteen eight-bar linkages that does not contain a four-
bar loop (Figure 1). Using Laman’s theorem [14], it can be
shown that this mechanism moves with one internal degree of
freedom, and that it becomes rigid if the orientation of one
more link is fixed, having up to eighteen assembly modes
in this case [15]. On this mechanism, we select the three
independent cycles that leave the ground link via link 7, and
return via links 4, 5, and 3, respectively, to get the following
equations

l7c(θ7) + b2c(θ2 + γ2) − l4c(θ4) − b6c(θ6) + a0c(γ0) = 0
l7s(θ7) + b2s(θ2 + γ2) − l4s(θ4) − b6s(θ6) − a0s(γ0) = 0

l7c(θ7) + a2c(θ2) + a1c(θ1) − l5c(θ5) + b0 = 0
l7s(θ7) + a2s(θ2) + a1s(θ1) − l5s(θ5) = 0

l7c(θ7) + a2c(θ2) + b1c(θ1 + γ1) − . . .

. . . − l3c(θ3) − c6c(θ6 + γ6) + a0c(γ0) = 0
l7s(θ7) + a2s(θ2) + b1s(θ1 + γ1) − . . .

. . . − l3s(θ3) − c6s(θ6 + γ6) − a0s(γ0) = 0

where s(·) and c(·) stand for the sine and cosine of their
argument.

It is important to realize that one can always derive a similar
system for any planar linkage, and that all of its equations
will be linear in the sines and cosines of the unknown angles.
(The sines and cosines of the shifted angles can always be
appropriately expanded so as to satisfy the previous statement.)
Actually, if the linkage has l links and j joints, the dual graph
will have c = j − l + 1 independent cycles [16] and the
system will be formed by m = 2c = 2j−2l+2 trigonometric
equations involving v = l − 1 variables (one angle for each
link, except for the ground link, whose orientation is fixed,
and used as a reference.)

To algebraize this system, we can apply the usual change of
variables xi = c(θi), yi = s(θi), and add one circle equation
x2

i
+ y2

i
= 1 for each angle, ending up with a polynomial

system of the form

L(v) = 0, C(v) = 0, (4)

where v = (x1, y1, . . . , xv, yv) are the newly defined vari-
ables, L(v) = (l1(v), . . . , lm(v)) is a block of linear functions
in the xi’s and yi’s, and C(v) = (c1(v), . . . , cv(v)) is a block
of quadratic functions with ci(v) = x2

i
+ y2

i
− 1, i = 1, . . . , v.

Finally, note that since all variables are sines or cosines of
angles, the search space where the solutions of (4) must be
sought for is the set

B = [−1, 1] × . . . × [−1, 1] ⊂ R
2v.

In the text below, any set of this kind—defined by the
Cartesian product of 2v intervals—will be referred to as a
box of R

2v and we will write [xl
i
, xu

i
] to denote the interval

of a box along dimension i.

III. SEARCH STRATEGY

A. Outline

The algorithm starts with the initial box B, and isolates
the valid configurations it contains by iterating over two oper-

1512

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on February 17, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

yi

xi

Bc

xl
i xu

i

yl
i

yu
i

L(v) = 0

Pi

Qi

t

yi

xi

Bc

xl
i xu

i

yl
i

yu
i

l

yi

xi

Bc

xl
i

xu
i

yl
i

yu
i

L(v) = 0

(a) (b) (c)

Fig. 2. (a) Shrinking Bc to fit the linear variety L(v) = 0. (b) Half-planes approximating the circular arc inside Bc. (c) Smallest box enclosing the
intersection of L(v) = 0 with the half-planes in (b).

ations, box shrinking and box splitting. Using box shrinking,
portions of B containing no solution are eliminated by narrow-
ing some of its defining intervals. This process is repeated until
either (1) the box is reduced to an empty set, in which case
it contains no solution, or (2) the box is “sufficiently” small,
in which case it is considered a solution box, or (3) the box
cannot be “significantly” reduced, in which case it is bisected
into two sub-boxes via box splitting—which simply divides
its largest interval at its midpoint.

Provided box shrinking is sufficiently efficient, the third case
above is symptom that the box contains two or more solution
points, with some of them lying close to its walls. Thus, box
splitting allows separating such solutions. To converge to all
solutions, the whole process is then repeated for the newly
created sub-boxes, and for the sub-boxes recursively created
thereafter, until one ends up with a collection of small boxes
whose sizes are under the specified size threshold, σ.

Before further precising this process, we will first see how
to eliminate portions of a box that cannot contain any solution.
Detailed pseudo-code of the whole strategy will be given later,
in Section III-C below.

B. Box Shrinking

When reducing any box Bc ⊆ B note first that, since any
solution inside Bc must be in the linear variety L(v) = 0,
we may shrink Bc to the smallest possible box bounding the
portion of this variety falling inside Bc. The limits of this new
box along, say, dimension xi can be easily found by solving
the two linear programs

LP1: Minimize xi, subject to: L(v) = 0,v ∈ Bc,

LP2: Maximize xi, subject to: L(v) = 0,v ∈ Bc,

giving, respectively, the new lower and upper bounds for xi.
Figure 2-(a) illustrates the process on the xi-yi plane, in the
case that L(v) = 0 is a straight line.

Note however that Bc can be further reduced, as the circle
equations C(v) = 0 must also be satisfied. We take them
into account as illustrated in Figure 2-(b). In short, for each

angle θi, one only needs to consider the grey area bounding
the portion of x2

i
+ y2

i
= 1 lying inside the rectangle

B′
c = [xl

i
, xu

i
] × [yl

i
, yu

i
]. This area is the intersection of two

half-planes defined by two linear constraints that can be added
to the previous linear programs. More formally, for each θi,
we (1) compute the points Pi and Qi of intersection of B′

c with
the circle, (2) obtain the line l through them, and its parallel
line t tangent to the circle, and (3) add the two inequalities
defining the region between l and t to LP1 and LP2. If we
let Ri = (Pi − Qi)/2, these inequalities are simply

wi · xi ≥ di,

wi · xi ≤ 1,

where xi = (xi, yi), di = ||Ri||, and wi = Ri/di. Although
other more sophisticated linearizations could be developed, to
ease the implementation we just consider this simple one, and
we only apply it when B′

c is fully contained in one quadrant
of the xi-yi plane.

The effect of using these inequalities in conjunction with
L(v) = 0 is usually a much larger reduction of Bc, as
illustrated in Figure 2-(c). Note also that, altogether, these
constraints define a convex polytope bounding the solution
space of System (4), i.e., the intersection of the line and
the circle in the example of Figure 2. The smaller Bc, the
tighter this polytope approximates the solution space or, in
other words, the smaller the error introduced in the circle
approximations. For small enough boxes, the error will become
negligible and, therefore, the algorithm will converge to the
solutions.

If the linkage has one or more slider joints, the method
must be only slightly modified. A slider joint acting between,
say, link i and link j, fixes the angle γ between them, only
allowing a translation of one link with respect to the other.
Then, Equations (2) and (3) will look like

. . . + li · cos(θi) + lj · cos(θj) + . . . = 0,

. . . + li · sin(θi) + lj · sin(θj) + . . . = 0,

1513

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on February 17, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

SOLVE-LINKAGE(B, L, C, σ, ρ)

1: S ← ∅
2: P ← {B}
3: while P 	= ∅ do
4: Bc ← EXTRACT(P)
5: repeat
6: Vp ← VOLUME(Bc)
7: SHRINK-BOX(Bc, L, C)
8: Vc ← VOLUME(Bc)
9: until IS-VOID(Bc) or SIZE(Bc) ≤ σ or Vc

Vp
> ρ

10: if not IS-VOID(Bc) then
11: if SIZE(Bc) ≤ σ then
12: S ← S ∪ {Bc}
13: else
14: SPLIT-BOX(Bc,B1,B2)
15: P ← P ∪ {B1,B2}
16: end if
17: end if
18: end while
19: return S

Algorithm 1: The top-level search scheme.

for any cycle traversing links i and j. Since θj = θi − γ,
one of the angles can be eliminated, and only θi and li are
true variables in the previous terms. Note that after performing
the substitutions xi = sin(θi), yi = cos(θi), these equations
will contain bilinear products of the form lixi and liyi, which
cannot be dealt with by the proposed algorithm. To obtain
a whole block of linear equations again, we may simply
substitute such terms by dummy variables, say zi and ti,
and add the hyperbolic equations zi = lixi and ti = liyi to
System (4). With this, the problem reduces to deriving linear-
based bounds for these equations, in a similar way as done for
the circle equations. For one of these equations, say zi = lixi,
it can be seen that, if xi and yi take values inside the rectangle
[a, b] × [c, d], then by lifting the vertices of this rectangle to
the surface zi = lixi, the resulting points form a tetrahedron
providing such bounds.

C. Pseudocode

Algorithm 1 gives the main loop of the process. It receives
as input the box B, the lists L and C containing the equations
L(v) = 0 and C(v) = 0, and two threshold parameters σ
and ρ, and it returns as output a list of solution boxes. The
functions VOLUME(B) and SIZE(B) compute the volume and
the length of the longest side of B, respectively. These and
other low-level procedures of straightforward implementation
will be left unspecified in the algorithms below.

Initially, two lists are set up in lines 1 and 2, an empty list
S of “solution boxes”, and a list P of “boxes to be processed”
containing B. A while loop is then executed until P gets
empty (lines 3-18), by iterating the following steps. Line 4
extracts one box from P . Lines 5-9 repeatedly reduce this
box as much as possible, via the SHRINK-BOX function, until
either the box is an empty set (IS-VOID(Bc) is true), or it

SHRINK-BOX(B, L, C)

1: T ← L
2: for all equations x2

i
+ y2

i
− 1 = 0 in C do

3: B′
c ← [xl

i
, xu

i
] × [yl

i
, yu

i
]

4: if B′
c is contained in only one quadrant then

5: Compute wi and di (see the text)
6: T ← T ∪ {wi · xi ≥ di , wi · xi ≤ 1}
7: end if
8: end for
9: for each i ∈ {1, . . . , v} do

10: xl
i
← min. xi subject to all eqs. in T and v ∈ B

11: xu
i
← max. xi subject to all eqs. in T and v ∈ B

12: yl
i
← min. yi subject to all eqs. in T and v ∈ B

13: yu
i
← max. yi subject to all eqs. in T and v ∈ B

14: end for

Algorithm 2: The SHRINK-BOX procedure.

cannot be significantly reduced (Vc/Vp > ρ), or it becomes
small enough (SIZE(B) ≤ σ). In this last case, the box is
considered a solution for the problem If a box is neither a
solution nor it is empty, lines 14 and 15 split it into two sub-
boxes and add them to P for further processing (line 15).

Notice that this algorithm implicitly explores a binary tree
of boxes, the internal nodes being boxes that have been split at
some time, and its leaves being either solution or empty boxes.
Solution boxes are collected in list S and returned as output in
line 19. Clearly, the tree may be explored in either depth-first
or breadth-first order, depending on whether line 15 inserts the
boxes at the head or tail of P , getting identical output in any
case.

The SHRINK-BOX procedure is sketched in Algorithm 2.
It takes as input the box B to shrink, and the lists L and C
with the equations L(v) = 0 and C(v) = 0. The procedure
starts by gathering into a list T all linear constraints in L
(line 1) and all half planes approximating the circle equations
in C (lines 2-8). Then, the procedure uses these constraints to
reduce every dimension of the box, solving the linear programs
in lines 10 to 13, which possibly give tighter bounds for the
corresponding intervals.

Observe that if System (4) has a finite number of isolated
solutions, the previous algorithm returns a collection of small
boxes containing them all, with each solution lying in one,
and only one box. If, on the contrary, the solution space is
an algebraic variety of dimension one or higher, the returned
boxes will form a discrete envelope of the variety. The
accuracy of the output can be adjusted at will by using the
σ parameter, which fixes an upper limit for the width of the
widest interval on all returned boxes.

IV. EXPERIMENTS

The algorithm has been implemented in C, and all CPU
times will be given for an Intel Pentium IV PC, running at
2.66 GHz under Linux. The linear programs in the SHRINK-
BOX function have been solved using the Simplex method
provided by the GLPK package [17].

1514

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on February 17, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

θ1 θ2 θ3 θ4 θ5 θ7

[-0.49433, -0.49431] [0.78081, 0.78083] [-0.81924, -0.81923] [-2.42719, -2.42718] [-0.14221, -0.14220] [-2.96808, -2.96808]
[1.72769, 1.72771] [1.13863, 1.13865] [2.58872, 2.58873] [-2.66043, -2.66042] [1.31798, 1.31799] [3.12665, 3.12666]
[0.55302, 0.55303] [-0.71932, -0.71930] [-1.20077, -1.20076] [-1.96316, -1.96315] [-0.13237, -0.13236] [-2.96187, -2.96186]
[-2.66941, -2.66940] [-0.64815, -0.64813] [-0.40127, -0.40125] [0.56971, 0.56972] [0.41104, 0.41105] [1.54820, 1.54821]
[-2.25883, -2.25881] [2.77060, 2.77062] [-0.24062, -0.24061] [-0.01687, -0.01686] [0.41212, 0.41213] [0.86915, 0.86916]
[0.41349, 0.41351] [2.44494, 2.44497] [2.10928, 2.10929] [-2.79537, -2.79536] [1.08683, 1.08684] [2.71004, 2.71005]

TABLE I

THE SIX REAL SOLUTIONS OF THE DOUBLE BUTTERFLY LINKAGE FOR θ6 = 1.175 RAD (67.38◦), GIVEN IN RADIANS.

Results on two test cases are provided. The first one solves
the position analysis of the double butterfly linkage when θ6 is
a fixed, known angle, yielding a finite number of isolated solu-
tions. The second one solves the same problem but assuming
that θ6 is a free variable, yielding a 1-dimensional continuum
of solutions. While the former case allows comparing the
results with those published in [9] and [10], the latter shows the
algorithm’s performance for problem rarely addressed in the
literature. In both cases, we adopt the geometric parameters
used in [9] and [10]: a0 = 7, a1 = 7, a2 = 5, b0 = 13,
b1 = 6, b2 = 3, γ0 = 36.87◦, γ1 = 22.62◦, γ2 = 53.13◦,
l3 = 7, l4 = 9, l5 = 12, l7 = 11, b6 = 3, c6 = 2, and
η6 = 36.87◦.

A. A rigid butterfly

The number of solutions of the double butterfly linkage
varies depending on the choice of driving joint and the angle
given to it. If we set θ6 = 67.38◦, the number of observed
solutions is six [9]. We note that, while continuation and
elimination-based methods must filter the solutions among the
eighteen possible complex roots, the one given here directly
provides the six real ones, shown in Table I. All roots are in
accordance with the results in [9], [10].

Due to the nature of the algorithm all solutions are obtained
as intervals that bound them, which allows estimating the error
with respect to the exact position of the roots. This is equal or
less than 2.3 ·10−5 radians (0.0013◦) in this case (the width of
the longest interval in Table I). The solutions were obtained by
running the proposed algorithm with σ = 0.0001 and ρ = 0.95
in 0.3 sec of CPU time, after processing 51 boxes. From them,
only the six shown in Table I were considered as solutions
(thus returning the minimum possible number of boxes) and
20 boxes were found to be empty.

It is difficult to tell at this point whether the presented
algorithm outperforms the previous methods based on Dixon’s
resultant [9], [10], mainly because no statistics are given in this
respect in those works, and we have found no publicly avail-
able package implementing them. We have checked, though,
that our method converges in substantially shorter times than
those used by the continuation method in [11], [12], using
the implementation available from [18], which spent about 8
seconds of CPU time on the same example, running on the
same machine. We remark, though, that we are comparing our
algorithm with a general-purpose solver targeted to arbitrary
systems of algebraic equations, and that a better performance

of our algorithm was to be expected, given the fact that it
exploits the specific structure of the obtained equations.

B. A mobile butterfly

If we now free θ6, a one dimensional continuum of solutions
is obtained. Figure 3 depicts the projection of the returned
boxes onto the cos(θ2)-cos(θ4) plane, on six different runs of
the algorithm, at decreasing values of the σ parameter. If the
algorithm is exploring in breadth-first order, the first five plots
can also be interpreted as earlier stages of the run for the last
case (σ = 0.05). In every plot we indicate the σ threshold, the
CPU time spent (t), the number of solution boxes returned
(ns), and the diagonal of the largest box (d). The latter serves
as an estimation of the maximum distance to the roots, from
any point inside the boxes. The ρ parameter is set to 0.95 in
all runs.

By zooming into the last snapshot on the electronic version
of the paper, one can clearly see that the final output is
obtained with no clustering, that is, boxes returned as a
solution do not intersect between them. We note that, although
from the plots it seems that the different solution branches
cross at many points, these are not true bifurcations of the
linkage, as revealed by observing other 3D projections of
the same output. Actually, four disjoint closed paths appear,
corresponding to the four possible ways to assemble this
mobile mechanism. It is worthwhile noting that, if we wish to
visualize the trajectory of any joint J of the linkage, we just
need to add the following equation to System (4),

(xJ , yJ) =
∑
bi∈p

λ(i, P) · li · ui (5)

where (xJ , yJ) are the unknown coordinates of point J with
respect to a reference frame placed on a joint O on the ground
link, and the sum is taken over all bars bi found on a path
p connecting O with J . The returned boxes will then have
xJ and yJ as extra dimensions and we need only to plot the
ranges for them on a plane to see the motion curve of J . The
trajectories of the coupler point B of the double butterfly are
shown in Figure 4 as an example.

V. CONVERGENCE ORDER

The asymptotic performance of a root finding algorithm is
normally evaluated by examining its convergence order. An
algorithm is said to exhibit a convergence of order r if there
exists a constant k ∈ (0, 1), such that

d(xi+1,x∗) ≤ k · d(xi,x∗)r,

1515

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on February 17, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

σ = 0.5, t = 8.87s σ = 0.4, t = 10.38s σ = 0.3, t = 11.5s

ns = 137, d = 0.9840 ns = 178, d = 0.9756 ns = 207, d = 0.6293

σ = 0.2, t = 15.75s σ = 0.1, t = 26.17s σ = 0.05, t = 45.82s

ns = 329, d = 0.4651 ns = 644, d = 0.2272 ns = 1284, d = 0.1125

Fig. 3. Output boxes at increasing resolution. The horizontal and vertical axes respectively correspond to cos(θ2) and cos(θ4), spanning the range [-1,1]
in all cases, with marks separated 0.5 units apart.

where xi and xi+1 are estimations of the exact root x∗ at
iterations i and i + 1, and d(xi,x∗) and d(xi+1,x∗) indicate
their distance to x∗. The algorithm is said to exhibit linear or
quadratic convergence when r = 1 or r = 2, respectively.

The previous definition is valid for algorithms converging
to a single root, and adapting it to our case requires defining
d(xi,x∗) and the scope of an iteration. To this end, note that
the diagonal of a box is an upper bound of the distance from
any point inside that box, to any root in it. Thus, assuming that
the search tree explored by Algorithm 1 is traversed in breadth-
first order, it seems reasonable to define d(xi,x∗) as the
longest diagonal among all boxes waiting to be processed in
the list P . An iteration will then be defined as the application
of lines 4-14 to all boxes in the ith level of such tree.

Measuring the performance in this way, we have empirically
found that the algorithm converges quadratically to the roots,
if these are a finite number of isolated points, or linearly to
them, if they form a one-dimensional algebraic variety. In the
former case, the convergence order is the same as that of fast

single-root-finding procedures, like e.g. the Newton-Raphson
method. Although the performance seems worse in the latter
case, we should mention that a linear rate is the best one
could expect. Think for example of the behavior of an optimal
shrink-and-split algorithm discretizing a line (the simplest one-
dimensional variety one could consider). At each iteration, any
box Bc adjusted to the line would be split into two half-boxes,
and then, ideally, these would be shrunk to fit the line again.
Note that, in such perfect behavior, d(xi,x∗) would decrease
by half at each iteration, yielding the linear convergence order
we observe.

VI. CONCLUSIONS

We have presented a complete method able to give box
approximations of the configuration space of a planar linkage.
The method is universal, in the sense that it can manage
linkages of any number of links, jointed to form kinematic
loops of arbitrary topology. It is also complete, in the sense
that every solution point will be contained in one of the
returned boxes. Moreover, in all experiments done so far the

1516

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on February 17, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

Ground link

T1

T2

T3

T4

B

Fig. 4. Path followed by point B of the double butterfly linkage. As
observed, B may follow one of four different cyclic trajectories, T1, T2,
T3 and T4, reflecting four (mobile) assembly modes for the mechanism. A
sample configuration of the linkage following the fourth mode is also shown
overlaid.

algorithm was also correct, in the sense that all returned boxes
contained at least one solution point. Although in theory this is
not guaranteed, returning boxes with no solution seems rather
improbable, due to the fact that the linerization of circle and
hyperbolic equations introduce errors smaller than the size of
the considered boxes. Moreover the fact that all equations
are simultaneously taken into account during box reduction
(whether directly or in a linearized form) palliates the so-called
cluster effect, a known problem of bisection-based techniques
of this kind [19], whereby each solution is obtained as a
compact cluster of boxes instead of a single box containing
it. In the experiments performed so far, we never encountered
such spurious output.

A main contribution with respect to previous works is the
method’s ability to deal with configuration spaces of general
structure. This is accomplished by maintaining a collection
of boxes that form a tight envelope of such spaces, which
can be refined to the desired accuracy in a multiresolutive

fashion. Empirical tests show that the method is quadratically
convergent to all roots if these are isolated points, and linearly
convergent to them if these form a one-dimensional connected
components. Although an extensive study should be carried out
to determine how the method’s performance scales with the
complexity of the tackled linkages, on all tested examples it
was at least one order of magnitude faster than existing solvers
applied to the same problems.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Education and Science through the I+D project
DPI2004-07358, and through a Ramón y Cajal contract sup-
porting the second author.

REFERENCES

[1] J.-P. Merlet, Parallel Robots. Springer, 2000.
[2] J. H. Yakey, S. M. LaValle, and L. E. Kavraki, “Randomized path

planning for linkages with closed kinematic chains,” IEEE Trans. on
Robotics and Automation, vol. 17, no. 6, pp. 951–958, December 2001.

[3] J. Cortés and T. Siméon, “Sampling-based motion planning under
kinematic loop closure constraints,” in Proc. of Workshop on Algorithmic
Foundations of Robotics, ser. Springer Tracts in Advanced Robotics,
M. Erdmann, D. Hsu, M. Overmars, and A. Stappen, Eds., vol. 17.
Springer-Verlag, 2004, pp. 59–74.

[4] J. M. Porta, “CuikSlam: A kinematics-based approach to SLAM,” in
IEEE International Conference on Robotics and Automation. IEEE
Press, 2005, pp. 2436–2442.

[5] F. Jensen and S. Pellegrino, “Planar retractable roofs,” Public web
document, http://www-civ.eng.cam.ac.uk/dsl/roof/planar/planar.html.

[6] C. Borcea and I. Streinu, “The number of embeddings of a minimally-
rigid graph,” Discrete and Computational Geometry, vol. 31, no. 2, pp.
287–303, 2004.

[7] M. F. Thorpe and P. M. Duxbury, Eds., Rigidity Theory and Applications.
Kluwer Academic Publishers, 1999.

[8] A. K. Dhingra, A. N. Almadi, and D. Kohli, “Closed-form displacement
and coupler curve analysis of planar multi-loop mechanisms using
Gröbner bases,” Mechanism and Machine Theory, vol. 36, pp. 273–298,
2001.

[9] J. Nielsen and B. Roth, “Solving the input/output problem for planar
mechanisms,” ASME Journal of Mechanical Design, vol. 121, pp. 206–
211, June 1999.

[10] C. W. Wampler, “Solving the kinematics of planar mechanisms by
Dixon’s determinant and a complex plane formulation,” ASME Journal
of Mechanical Design, vol. 123, pp. 382–387, September 2001.

[11] J. Verschelde, “Algorithm 795: PHCpack: A general-purpose solver for
polynomial systems by homotopy continuation,” ACM Transactions on
Mathematical Software, vol. 25, no. 2, pp. 251–276, 1999.

[12] A. J. Sommese, J. Verschelde, and C. W. Wampler, “Advances in
polynomial continuation for solving problems in kinematics,” ASME
Journal of Mechanical Design, vol. 126, pp. 262–268, March 2004.

[13] A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems
of Polynomials Arising in Engineering and Science. World Scientific,
2005.

[14] G. Laman, “On graphs and rigidity of plane skeletal structures,” J. of
Engineering Math., no. 4, pp. 331–340, 1970.

[15] K. J. Waldron and S. V. Sreenivasen, “A study of the position problem
for multi-circuit mechanisms by way of example of the Double Butterfly
linkage,” ASME Journal of Mechanical Design, vol. 118, pp. 390–395,
1996.

[16] G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd ed. Chapman
and Hall, 1996.

[17] A. Makhorin, “GLPK - the GNU linear programming toolkit,” http:
//www.gnu.org/software/glpk.

[18] Jan Verschelde’s home page, http://www.math.uic.edu/∼jan.
[19] A. Morgan and V. Shapiro, “Box-bisection for solving second-degree

systems and the problem of clustering,” ACM Transactions on Mathe-
matical Software, vol. 13, no. 2, pp. 152–167, 1987.

1517

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on February 17, 2009 at 04:27 from IEEE Xplore. Restrictions apply.

