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Abstract. This paper presents some recent advances in perception for mobile
robotics The main objective is, by fusing multisensor information, to obtain suf-
ficiently robust perception capabilities for the successful completion of typical
mobile robotics tasks, including human-machine interaction. The use of these
techniques is tailored at service robotics applications, such as cleaning of large
industrial areas, inspection, security, transportation, costumer service, etc.
The article focuses in two specific topics: a) simultaneous localization and map-
ping of large indoor industrial settings, and b) localization and tracking of human
faces in image sequences. We tackle the simultaneous localization and mapping
problem (SLAM) from an stochastic estimation perspective, and propose tech-
niques to solve the effects of partial observability inherent with having two cou-
pled inference problems. With respect to the localization and tracking of human
faces (and other objects), we have developed an articulated head mounted vision
system capable of tracking an individual under the most severe changing illu-
mination conditions. With this platform, we have tested a mirage of estimation
techniques for tracking color histograms.

1 Introduction

During the last few years, our efforts at the Learning and Vision Mobile Robotics Group
have been tailored at giving our mobile platforms the ability to navigate autonomously
in unknown structured settings. In this sense, we have contributed new insight in the
classical simultaneous localization and map building problem, from a control systems
theory point of view [1–5]. Furthermore, we have developed new feature validation
techniques that improve the robustness of typical map building algorithms [6, 7].

Moreover, very good results have been achieved in the tracking of subjects under
varying illumination conditions and in cluttered scenes. On the one hand, we have mas-
tered now the use of histogram based techniques to color segmentation and illumination
normalization [8–11]. On the other hand, we have tested different statistical estimation
paradigms to track subject candidates using not only color information but shape as well
[12, 13]. Most of our video demonstrations from last year show results in this topic.

As a result of these efforts, within the past three years, the mobile robotics platforms
developed in our group have been portrayed numerous times on live and printed me-
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Fig. 1. Simultaneous mobile robot localization and map building. a) Hypothesis search range for
walls extracted from a laser range scan. b) The blue dots indicate sensor raw data coming from
a laser range finder. The green lines represent walls inferred from consecutive readings. The red
lines indicate the estimated robot trajectory. c) Graphical representation of the map built.

dia1. Financial support comes mainly from a continued set of projects from the Spanish
Interministerial Council of Science and Technology (CICYT)2.

In the following sections I summarize the key contributions on the aforementioned
two topics: simultaneous localization and mapping, and face and object tracking under
varying illumination conditions. Each of them tackling very different problems typically
encountered in mobile robotics applications.

2 Simultaneous Localization and Map Building

2.1 Iterative End Point Fit

To univocally identify landmarks from sensor data, we study the mathematical founda-
tion necessary to extract the features that build them from laser range data. The features
extracted from just one sensor may not suffice in the invariant characterization of land-
marks and objects, pushing for the combination of information from multiple sources.

An efficient algorithm for the extraction of straight line segments from noisy data,
originally by Douglas and Peucker [14], was conceived primarily to reduce the num-
ber of points required to represent a vector encoded polygonal digitized line. Within
the cartography community, this problem is referred as the line simplification problem.
Douglas and Peucker’s approach to line simplification is probably the most cited algo-
rithm when it refers to cartographic generalization. We also find the technique nicely
applicable to the extraction of straight landmarks from laser and sonar data in mobile
robot indoor navigation, as is the case with walls and furniture.

1 La Politècnica, Num 4. UPC: Criatures Cibernètiques (2001), Canal Blau TV: The IRI Robots
in Canal Blau (2002), El Periòdico de Catalunya: El Robot Doméstico Llama a la Puerta
(2002), Televisión Española: Informe Semanal (2002), Televisió de Catalunya: Robot Casolà
(2003), UPC Libraries: More Than Just Machines (2003).

2 TAP96-0629-C04-03, TAP98-0473, and DPI2001-2223
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A set of ordered points in a plane, v0,v1, . . . ,vn, forms a polygonal chain of line
segments v0v1,v1v2, . . . ,vn−1vn. Given a chain C with n segments, the line simpli-
fication problem asks for the best chain C′, with fewer segments that represents C well.
Furthermore, we assume that the chain C is simple, that is, C has no self-intersections.

Representing well has many possible meanings. For example, that C and C′ are
close to each other, that the area between C and C′ be small, or that other measures
of curve discrepancy be small. A recursive version of the original algorithm is shown
in Table 1. The key point of the algorithm resides in the technique used to find the ap-
propriate point where to subdivide a line into consecutive line segments. In the original
method, subdivision takes place at the farthest point in C from vivj . Table 2 shows
the algorithm to find the farthest point to a line in a stream of planar data points. The
notation ṽ indicates homogeneous coordinates, i.e., three dimensional points with the
last dimension equal to one.

The original algorithm has quadratic worst-case time complexity. However, a re-
vised version of the algorithm by Hershberger and Snoeyink [15] that uses path hulls
and the geometric structure of the problem allows for a reduction of the time complexity
of the algorithm to O(n log n). In our map building implementation [16] we have opted
for this latter version. The reader is referred to the proceedings from the talk by Her-
shberger and Snoeyink [15] for the details of the algorithm. Fig. 1b shows the results
of line simplification from raw depth data with a Leuze Rotoscan RS4 and our mobile
robot Marco.

LineSimplification(C, i, j)
FindSplit(C, i, j)
if d > ε

LineSimplification(C, i, f)
LineSimplification(C, f, j)

else
return vivj

Table 1. Recursive version of the Douglas and Peucker algorithm to line simplification.

2.2 Extended Kalman Filter Approach to SLAM

Once landmarks are accurately extracted and identified, the second part of the problem
is to use these observations for the localization of the robot, as well as the refinement of
the landmark location estimates. We consider robot motion and sensor observations as
stochastic processes, and treat the problem from an estimation theoretic point of view,
dealing with noise by using probabilistic methods.

Fig. 1a shows some of the model compatibility heuristics devised for the validation
of straight lines extracted from laser range data into walls. Frame b shows data as ex-
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FindSplit(C, i, j)
d = 0
for k = i + 1 to j − 1

dk =

∣∣∣ ṽi ṽj ṽk

∣∣∣
‖vi−vj‖2

if dk > d
d = dk
f = k

return f, d

Table 2. Algorithm to find the vertex vk farthest from the line vivj , and the squared distance to
it.

Fig. 2. State estimation approach to simultaneous localization and map building.

tracted from a laser range finder, and 2σ covariance ellipses around hypothesized land-
mark estimates. The third frame shows a virtual reality model of the map constructed
during a run of the algorithm.

The study of stochastic models for simultaneous localization and map building in
mobile robotics has been an active research topic for over fifteen years. Within the
Kalman filter (KF) approach to SLAM, seminal work by Smith and Cheeseman [17]
suggested that as successive landmark observations take place, the correlation between
the estimates of the location of such landmarks in a map grows continuously. This ob-
servation was ratified by Dissanayake et al. [18] with a proof showing that the estimated
map converges monotonically to a relative map with zero uncertainty. They also showed
how the absolute accuracy of the map reaches a lower bound defined only by the initial
vehicle uncertainty.

In spite of these fundamental convergence properties of the KF approach to SLAM,
there exist some limitations that still hinder full development of SLAM applications.
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The three most criticized of these limitations are the time and space complexity of the
algorithm, the restriction to unimodal zero mean white Gaussian models of uncertainty,
and the data association and landmark quality problems. We go even further in our anal-
ysis of the SLAM problem, and show one more fundamental limitation of the algorithm,
that full reconstruction of the map state vector is not possible with a coupled measure-
ment model, regardless of the vehicle model chosen, and that the expected error in state
estimation is proportional to the number of landmarks used.

An explicit solution to the SLAM problem for a one-dimensional vehicle called
the monobot was presented by Gibbens et al. [19]. It shed some light on the relation
between the total number of landmarks and the asymptotic values for the state error
covariance P. They observed for example, that in SLAM, the rate of convergence of P
is fixed, and that its asymptotic value is independent of the plant variance. In their solu-
tion to the 1-d Brownian motion SLAM case, the state error covariance is linked to the
total number of landmarks in the form of the total Fisher information IT =

∑n
1 (1/σ2

w).
The expression indicates the “informational equivalence of the measurements and the
innovations” [20], and was derived from a simple likelihood function, one that does not
contain the fully correlated characteristics of the measurement model. We derive a more
general expression for the total Fisher information in SLAM that shows explicitly the
unobservable directions of the map state.

In summary; in SLAM, the state space constructed by appending the robot pose
and the landmark locations is fully correlated; a situation that hinders full observability.
Moreover, the modelling of map states as static landmarks yields a partially controllable
state vector. The identification of these problems, and the steps taken to palliate them,
are covered in this section.

Formally speaking, the motion of the robot and the measurement of the map features
are governed by the discrete-time state transition model

xk+1 = f(xk,uk,vk) (1)

zk = h(xk,wk) (2)

The state vector x�k = [x�r,k,x�f ]� contains the pose of the robot xr,k at time step k,
and a vector of stationary map features xf . The input vector uk is the vehicle control
command, and vk is a Gaussian random vector with zero mean and covariance matrix
V, representing unmodeled robot dynamics and system noise of the possibly nonlinear
difference equation f . Both, the inaccuracies of the also possibly nonlinear observa-
tion model h, and the measurement noise, are represented by the zero mean Gaussian
random vector wk, with covariance matrix W. See Fig. 2.

Provided the set of observations Zk = {z1, . . . , zk} was available for the computa-
tion of the current map estimate xk|k, the expression

xk+1|k = f(xk|k,uk,0) (3)

gives an a priori noise-free estimate of the new locations of the robot and map features
after the vehicle control command uk is input to the system. Similarly,

zk+1|k = h(xk+1|k,0) (4)
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constitutes a noise-free a priori estimate of sensor measurements.
Given that the landmarks are considered stationary, their a priori estimate is simply

xf,k+1|k = xf,k|k; and the a priori estimate of the map state error covariance showing
the increase in robot and landmark localization uncertainty is given by

Pk+1|k = E[x̃k+1|k x̃�k+1|k] = FxPk|kF�
x + FvVF�

v (5)

The Jacobian matrices Fx and Fv contain the partial derivatives of f with respect to
x and v, evaluated at (xk|k,uk,0). Assuming that a new set of landmark observations
zk+1 coming from sensor data has been correctly matched to their map counterparts,
one can compute the error between the measurements and the estimates with z̃k+1|k =
zk+1 − zk+1|k.

This error aids in revising the map and robot locations. The a posteriori state esti-
mate is

xk+1|k+1 = xk+1|k + Kz̃k+1|k (6)

and the Kalman gain is computed with

K = Pk+1|kHx
�S−1 (7)

where S is termed the measurement innovation matrix,

S = HxPk+1|kHx
� + HwWHw

� (8)

and Hx and Hw contain the partial derivatives of h with respect to x and w, and
evaluated at (xk+1|k,0).

Finally, the a posteriori estimate of the map state error covariance must also be
revised once a measurement has taken place. It is revised with the Joseph form to guar-
antee positive semi-definiteness.

Pk+1|k+1 = (I − KHx)Pk+1|k (I − KHx)� + KWK� (9)

The contribution to the revision of the robot pose and landmark location estimates
is proportional to our degree of trust in the motion and sensor models, respectively. If
the plant error covariance V is large, and the measurement error covariance W is small,
the EKF-SLAM algorithm trusts the observations more than dead-reckoning, revising
more heavily the robot pose estimate than that of the landmarks. Conversely, when the
measurement error covariance is larger than the plant error covariance, the algorithm
trusts more on the motion of the robot and ends up revising more heavily the landmark
estimates.

Partial observability of the system (1-2) hinders full reconstructibility of the state
space, making the final map estimate dependant on the initial observations, and does not
guarantee convergence to a positive definite covariance matrix. Partial controllability
on the other hand, makes the filter believe after a small number of iterations, that it
has accurate estimates of the landmark states, with their corresponding Kalman gains
converging to zero. That is, after a few steps, innovations are useless. We will next show
the unobservable state space directions in the Fisher Information Matrix, and show how
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to palliate the effects of full correlation and partial controllability by modifying the
measurement model in SLAM.

Under the Gaussian assumption for the vehicle and sensor noises, the Kalman fil-
ter is the optimal minimum mean square error estimator. And, as pointed out in [20],
minimizing the least squares criteria E[x̃k+1|k+1x̃�k+1|k+1], is equivalent to the max-

imization of a likelihood function Λ(x) given the set of observations Zk; that is, the
maximization of the joint probability density function of the entire history of observa-
tions, conditioned on the state x

Λ(x) =
k∏

i=1

p(zi|Zi−1) (10)

Given that the above pdfs are Gaussian, and that E[zi] = Hxi|i−1, the pdf for each
measurement in SLAM is

p(zi|Zi−1) = N(z̃i|i−1;0,Si) = (2π)−
dim z

2 |Si|− 1
2 e−

1
2 (z̃�i|i−1S

−1z̃i|i−1) (11)

That is, the joint pdf of the sequence of measurements Zk is equal to the product
of the marginal pdfs of the corresponding innovations. In practice however, it is more
convenient to consider the log likelihood function ln Λ(x). The maximum of lnΛ(x)
is at the value of the state x that most likely gave rise to the observed data Zk, and is
obtained by setting its derivative with respect to x equal to zero, which gives

∇x ln Λ(x) =
k∑

i=1

H�S−1
i z̃i|i−1 (12)

An intuitive interpretation of the maximum of the log-likelihood is that the best
estimate for the state x, in the least squares sense, is the one that makes the sum of
the entire set of Mahalanobis distances

∑k
i=1 z̃�i|i−1S

−1
i z̃i|i−1 as small as possible. A

measure that is consistent with the spatial compatibility test described in [21].
The Fisher information matrix, a quantification of the maximum existing informa-

tion in the observations about the state x, is defined (in [20] and [22]) as the expectation
on the dyad of the gradient of ln Λ(x):

J = E[(∇x ln Λ(x))(∇x ln Λ(x))�] (13)

Taking the expectation on the innovation error E[z̃i|i−1z̃�i|i−1] = Si in the above
formula gives the sum

J =
k∑

i=1

H�(HPH� + W)−1H (14)

It is easy to verify that in the linear case, this expression for the total Fisher informa-
tion is only a function of Pr,0|0, V, and W. If, on the other hand, the Extended Kalman
Filter is used, the Jacobian H in (14) should be evaluated at the true value of the states
x0, . . .xk. Since these are not available, an approximation is obtained at the estimates
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Fig. 3. First entry in the total Fisher information matrix (
∑ ∑

ςij) for a monobot with variance
parameters Pr,0|0 = V = W = 1, and various sizes for the measurement vector.

xi|i−1. The pre and post multiplying H is, in this context, also known as the sensitivity
matrix [23].

A necessary condition for the estimator (the Kalman filter) to be consistent in the
mean square sense is that there must be an increasing amount of information about the
state x in the measurements. That is, as k → ∞, the Fisher information must also tend
to infinity. Fig. 3 shows this for the monobot with constant parameters Pr,0|0 = V =
W = 1, and various sizes for the observation vector. Notice how, as the total number of
landmarks grows, the total Fisher information also grows, directly relating the number
of landmarks to the amount of information available for state estimation in SLAM.

Solving for the k-th sum term in J for the monobot yields the expression

Jk =
[∑ ∑

ςij −ς
−ς� S−1

k

]
(15)

with ςij the ij-th entry in S−1
k , and ς = [

∑
ς1i, . . . ,

∑
ςni].

Citing Bar-Shalom et al. [20]: “A lower bound on the minimum achievable covari-
ance in state estimation is given by the posterior Cramer Rao lower bound”3

E[x̃k+1|k+1x̃�k+1|k+1] ≥ J−1 (16)

Unfortunately, it can be easily shown, at least for the monobot case, that the first
row (or column) of J is equivalent to the sum of the rest of the rows (or columns),
producing a singular total Fisher information matrix. In SLAM the Cramer Rao lower
bound cannot be evaluated. SLAM is unobservable.

Citing once more Bar-Shalom et al.: “if the Fisher information matrix is not invert-
ible, then the lower bound from (16) will not exist, actually it will have one or more
infinite eigenvalues (one in the case of SLAM), which means total uncertainty in a
subspace of the state space, that is, the information is insufficient for the estimation
problem at hand.”

3 The matrix inequality A ≥ B is to be interpreted as C = A − B ≥ 0. That is, the difference
C of the two matrices is positive semi-definite.
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This is a consequence of the form of the Jacobian H, i.e, of the full correlation in
SLAM. Zero eigenvalues of H�S−1H are an indicator of partial observability, and the
corresponding eigenvectors give the unobservable directions in state space.

So for example, for a one-landmark monobot, the innovation covariance is the scalar
s = σ2

r − 2ρrfσrσf + σ2
f + σ2

w, and since H = [−1, 1], the Fisher information matrix
in (14) evaluates to

J =
[

1 −1
−1 1

] k∑
i=1

1
si

(17)

The unobservable direction of the state space is the eigenvector associated to the
null eigenvalue of J, we denote it EKerO, since it represents a basis for the Kernel of
the observable subspace, and evaluates to

EKerO =
(

1
1

)
(18)

In Fig. 4 we have plotted the results of using the original fully correlated approach to
SLAM for a monobot that starts at location xr,0|0 = −1m, and moves along a straight
line with a temporal sinusoid trajectory returning to the same point after 100 iterations.
Landmarks are located at xf(i) = 1m. A plant noise model proportional to the motion
command, and a measurement noise model proportional to the distance from the sensor
to the landmark are used. The dotted line indicates 2σ bounds on the state estimate.

The effect of partial observability manifests itself in the dependence on the initial
conditions. Note how both the vehicle and landmark mean localization errors do not
converge to zero. Their steady state value is subject to the error incurred at the first
observation. That is, the filter is unstable. Partial controllability on the other hand, pro-
duces a zero Kalman gain for the revision of the landmark estimates. That is, after a few
iterations the Kalman filter believes it has a perfectly accurate estimate of the landmark
locations, contradictory to the localization error just described. The rate at which the
landmark localization Kalman gain approaches zero is dictated by the rate of conver-
gence of the system, i.e., the system’s time constant.

A Montecarlo simulation over 100 SLAM runs showed however filter unbiasedness,
a property of optimal stochastic state estimation (Kalman filter). That is, the average
landmark localization error over the entire set of simulations was still zero, thanks to
the independence of the initial landmark measurement errors at each test run. Moreover,
the steady state error for the robot and landmark localization is less sensitive to the
initial conditions when a large number of landmarks are used. The reason is the same as
for the Montecarlo simulation, the observations are independent, and their contribution
averages at each iteration in the computation of the localization estimate.

In order to gain full observability we propose to extend the measurement model do-
ing away with the constraint imposed by full correlation. We present two techniques to
achieve this. One is to let one landmark serve as a fixed global reference, with its local-
ization uncertainty independent of the vehicle pose. The second proposed technique is
the addition of a fixed external sensor, such as a camera, a GPS, or a compass, that can
measure all or part of the vehicle location state at all times, independent of the landmark
estimates. Both techniques are based essentially on the same principle. Full observabil-
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Fig. 4. Full-covariance EKF SLAM for a monobot in a sinusoidal path from xr,0|0 = −1m to
x100 = −1m with 100 iterations. The noise corrupted sinusoidal vehicle trajectory is indicated
by the darkest curve in the first column of plots. In the same set of figures, and close to it is
a lighter curve that shows the vehicle location estimate as computed by the filter, along with a
pair of dotted lines indicating 2σ bounds on such estimate. The dark straight lines at the 1m
level indicate the landmark loction estimates; and the lighter noise corrupted signals are used
to represent sensor measurements. Also shown, are a pair of dotted lines for 2σ bounds on the
landmark location estimates. The second column of plots shows the vehicle localization error and
its corresponding covariance, also on the form of 2σ dotted bounds. The third column shows the
same for the landmark estimates. And, the last column contains on dark the vehicle correction
Kalman gain, whereas on light, the landmark correction Kalman gain.

ity requires an uncorrelated measurement Jacobian, or equivalently, a full rank Fisher
information matrix.

We next present, without loss of generality, the extensions to the monobot SLAM
model in order to obtain full observability.

A fixed global reference The plant model is left untouched, i.e., from equation (1),

xk+1 = xk + uk + vk (19)

The measurement model takes now the form[
z
(0)
k

zk

]
=

[ −1 01×n

−1n×1 I

]
x +

[
w

(0)
k

wk

]
(20)

One of the observed landmarks is to be taken as a global reference at the world
origin. No map state is needed for it. The zero-th superscript in the measurement vector
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Fig. 5. Full-covariance fully observable SLAM for a monobot in a sinusoidal path from xr,0|0 =
−1m to x100 = −1m with 100 iterations. The global reference is observed at the origin.

is used for the consistent indexing of landmarks and observations with respect to the
original model. It can be easily shown that the observability matrix for this new model
is full rank.

The innovation covariance matrix for the augmented system SO,k is of size (n +
1) × (n + 1), and its inverse can be decomposed in

S−1
O,k =




ςO,00 ςO,01 . . . ςO,0n

ςO,01

...
ςO,0n

Ŝ−1
k


 (21)

with ςO,ij the ij-th entry in S−1
O,k, ςO = [

∑
ςO,1i, . . . ,

∑
ςO,1i], and Ŝ−1

k its submatrix
associated to the landmarks that are under estimation (excluding the anchor observa-
tion).

The k-th element of the Fisher information matrix sum (14) is now

JO,k =
[∑ ∑

ςO,ij −ςO

−ς�O Ŝ−1
k

]
(22)

Unlike in (15), this form of the Fisher information matrix is full rank. Moreover,
from the properties of positive definite matrices, if JO,k is positive definite, the entire
sum that builds up JO is also positive definite.

Fig. 5 shows the results of applying full observability to the same monobot model
as the one portrayed in Fig. 4. Note how the steady state (robot pose and landmark
locations) is now unbiased with respect to the initial landmark estimates.
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Fig. 6. Full-covariance fully observable SLAM for a monobot in a sinusoidal path from xr,0|0 =
−1m to x100 = −1m with 100 iterations. A fixed external sensor is used for the measurement
of the vehicle pose.

An external sensor Instead of using one of the landmarks as a global reference, one
could also use a fixed sensor to measure the position of the robot. For example, by
positioning a camera that observes the vehicle at all times. For such cases, the monobot
measurement model may take the form

[
z
(0)
k

zk

]
=

[
1 01×n

−1n×1 I

]
x +

[
w

(0)
k

wk

]
(23)

The characteristics of the observability matrix, and the Fisher information matrix,
are exactly the same as for the previous case. This new model is once more, fully ob-
servable. Fig. 6 shows the results of using an external sensor to measure the vehicle
pose. The results are theoretically equivalent to the previous case. The choice of one
technique over the other would depend on the availability of such external sensor, and
on its measurement noise covariance characteristics.

Planar vehicle The results from the previous section are easily extensible to more
complicated vehicle models. For example, the measurement model of a global reference
fixed at the origin, for the nonlinear vehicle from Fig. 2 is

h(0) = −R�t + w(0) (24)

and its corresponding Jacobian is

H(0)
x = [−R� −Ṙ�t 02×2n ] (25)
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a) Partially Observable SLAM b) Fully Observable SLAM

Fig. 7. EKF SLAM for a planar vehicle.

The case of the external sensor is even simpler, the corresponding equations are

h(0) = t + w(0) (26)

H(0)
x = [ I 02×(2n+1) ] (27)

In both cases, the symbolic manipulation of (25) and (27) with a commercial algebra
package, produce full rank observability matrices. That is, for the planar mobile robot
platform used, only one two-dimensional global reference, or the use of a sensor that
can measure the xy position of the robot, are sufficient to attain full observability in
SLAM. Figure 7a shows a run of the EKF SLAM algorithm over a 300m2 area in the
second floor of the USC SAL building with data acquired with a laser range finder4.
The effects of nonlinearities, together with the marginal stability of the filter produce
large localization errors at the end of a nearly 90m loop. The map obtained with the
fully observable SLAM algorithm for the same data set is shown in Figure 7b. In this
run, the first observed landmark is used as an anchor. Furthermore, and to guarantee full
observability during the entire run of the algorithm, every landmark revised more than
50 times by the filter was removed from the state vector, but its observations were still
used to revise the remaining state vector elements.

3 Fusion of Color and Shape for Object Tracking under Varying
Illumination

Color represents a visual feature commonly used for object detection and tracking sys-
tems, specially in the field of human-computer interaction. For such cases in which the
environment is relatively simple, with controlled lighting conditions and an uncluttered
background, color can be considered a robust cue. The problem appears when we are
dealing with scenes with varying illumination conditions and confusing background.
See for example, Fig. 8, with some frames and the corresponding color distributions (in
RGB color space), from a motion sequence of a reddish Lambertian surface, in which

4 Data from the Robotics Data Set Repository [24]. Thanks to Andrew Howards.
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Fig. 8. Example frames of a time-varying color illuminant.

the object of interest revolves around the light source. The path followed by the color
distribution for the entire sequence is shown in the last plot.

Thus, an important challenge for any color tracking system to work in real uncon-
strained environments, is the ability to accommodate variations in the amount of source
light reflected from the tracked surface. The choice of different color spaces like HSL,
normalized color rgb, or the color space (B−G,G−R,R+G+B), can give some ro-
bustness against varying illumination, highlights, interreflections or changes in surface
orientation. But none of these transformations is general enough to cope with arbitrary
changes in illumination.

Instead of searching for color constancy, other approaches try to adapt the color dis-
tribution over time. One such technique is to use Gaussian mixture models to estimate
densities of color, and under the assumption that lighting conditions change smoothly
over time, the models are recursively adapted. Another option is to parameterize the
color distribution as a random vector and to use a second order Markov model to predict
the evolution of the corresponding color histogram. These techniques perform much
better than the mere change of color space representation, but have the drawback that
they do not check for the goodness of the adaptation, which can still lead to failure.

The fusion of several visual modules using different criteria offers more reliability
than methods that only use one feature. As an example, systems that track in real-time
an individual might model the head of a person by an ellipse and use intensity gradients
and color histograms to update the head position over time. In [12], color histograms
are fused with stereovision information in order to dynamically adapt the size of the
tracked head. These real time applications however are constrained only to the tracking
of elliptical shapes.

A new methodology that addresses the problems present in the approaches de-
scribed above, results in a robust tracking system able to cope with cluttered scenes
and varying illumination conditions. The fusion is done using the CONDENSATION al-
gorithm that formulates multiple hypothesis about the estimation of the object’s color
distribution and validates them taking into account the contour information of the object
[25].
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3.1 Method Overview

Before entering into a detailed description of the proposed method we give a short
glimpse of its main features:

– Integration of color and shape information: fusion of both vision modules makes
our method appropriate to work in cluttered scenes. If the color distribution of the
tracked subject is known, the image can be segmented using color histograms [26],
and this information can be used to discriminate many false edges.

– Ability to adapt shape deformation and varying illumination: accommodation
to varying illuminating conditions is needed to get a good color segmentation of
the tracked object. Color segmentation is used to eliminate many false edges from
the region of interest, simplifying a final stage of adapting a snake (maintaining
affinity) to the contour of the object (assuming that the set of possible shapes of
image contours do indeed form affine spaces). We introduce a restriction to the
classical snake minimization procedure [27], to obtain affine deformations only.
This feature makes our system robust to partial occlusions of the target.

– Fusion of color and shape in a probabilistic framework: the CONDENSATION
algorithm offers the appropriate framework to integrate both color and contour in-
formation, and to perform tracking of the object color distribution in color space,
and that of the object contour in image space, both simultaneously. That is, using the
predictive filter, multiple estimates of the object color distribution are formulated
at each iteration. These estimates are weighted and updated taking into account the
object shape, enabling the rejection of objects with similar color but different shape
than the target. Finally, the best color distribution is used to segment the image and
refine the object’s contour.

3.2 Color module

Our color module is highly inspired in Birchfield’s real-time head tracking system [28],
where the projection of a head in the image plane is modeled by an ellipse. We initialize
the process by detecting a human head on an image, using the technique described in
our previous work [29]. This method, executed off-line, gives an initial position and
scale of the subject head on the image, and lets us construct a model color histogram
by filling the buckets of a discretized color space (B-G,G-R,B+G+R), with the pixels
inside the ellipse. To cope with situations where the subject turns around, we use a
bimodal histogram containing skin and hair data samples.

At run time, when a new image is presented, a head candidate is searched on a lo-
cal region around the previous position trying to maximize the intersection between the
model histogram M and the candidate histogram C. The size of the candidate ellipse is
given by the previous iteration of the stereo module. C(i) and M(i) represent the num-
ber of pixels inside the i-th bucket of the candidate and model histograms respectively,
with N the total number of buckets. Swain and Ballard [26] propose the following ex-
pression as a measure of histograms intersection:

φ(C) =
∑N

i=1 min (C(i),M(i))∑N
i=1 C(i)

(28)
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a) rotations b) occlusions c) Other objects

Fig. 9. Face tracking under varying illumination conditions. Robustness under complex situations.

In the search for an ellipse that maximizes the intersection function in an interest
region, there will be an overlapping between adjacent ellipses, meaning that adjacent
ellipses have common pixels. This redundancy can be exploited since for each new
candidate ellipse, its color histogram can be computed from the adjacent ellipse by
only subtracting those common pixels of the histogram and adding the new ones. We
have adopted this strategy from Birchfield’s work, in order to fulfill real-time results.

To obtain a model histogram robust to varying illumination [30], we have updated
it over time with the equation:

Mk(i) = (1 − a)Mk−1(i) + (a)Ck(i) i = 1..N (29)

In order to avoid updating with false head candidates, equation (29) is applied
only when the measure of the model and candidate intersection is above an empirically
determined threshold.

3.3 The Tracking Algorithm

In this section a detailed description of the steps used in the method is presented. For
ease of explanation these steps are divided as in the CONDENSATION algorithm (Fig. 10
shows the one dimensional case):

Parameterization and pdf of color distribution It has been pointed out that an inter-
esting feature of the presented method is that tracking is performed simultaneously in
both color and image spaces. In fact, the element being directly tracked by the filter is
the object color distribution C, that at time t is the collection of all image pixel color
values It that belong to the target, i.e, Ct = {(Ri, Gi, Bi) | i = 1, . . . , Mt}, where Mt

is the number of object points at time t, and 0 ≤ Ri, Gi, Bi ≤ 1 (we assume without
loss of generality, that the color space is RGB, but it is extensible to any color space).
As the set of object points can be arbitrarily high, the state vector xt will be a param-

eterization of Ct with components (adapted from [30]) xt =
[
m�

t ,λ�
t , θt, φt

]�
, where

mt =
[
R̄, Ḡ, B̄

]�
is the centroid of Ct, λt = [λ1, λ2, λ3]

� are the magnitudes of the
principal components of Ct; and θt, φt are the angles centered at mt that align the two



17

Fig. 10. One iteration of the CONDENSATION algorithm for the one-dimensional case. The
weight of each sample is represented by its gray level.

most significant principal components of Ct with respect to the principal components
of Ct−1.

At time t, a set of N samples s(n)
t−1 (n = 1, . . . , N) of the form of x, parameterizing

N color distributions C(n)
t−1 are available (step (a) from Fig. 10). Each distribution has

an associated weight π
(n)
t−1. The whole set represents an approximation of the a poste-

riori density function p (bxt−1|Zt−1), where Zt−1 = {z0, . . . , zt−1} is the history of
measurements.

Sampling from p (xt−1|Zt−1) The next step in the estimation of p (xt|Zt) consists

of sampling with replacement N times the set
{
s(n)
t−1

}
, where each element has proba-

bility π
(n)
t−1 of being chosen (step (b) from Fig. 10). This, will give us a new set

{
s′(n)

t

}
of color distribution parameterizations. Those distributions having higher weights may
be chosen several times, so the new set can have identical copies of elements. On the
other hand, those distributions having lower weights may not be chosen (see Fig. 11a).

Probabilistic propagation of samples Each sample s′(n)
t of the set is propagated (see

Fig. 10c and Fig. 11a) according to the following dynamic model:

s(n)
t = As′(n)

t + Bw(n)
t

where A is the deterministic part, assigned as a first order model describing the move-
ment of an object with constant velocity. Bw(n)

t is the stochastic component, with w(n)
t

a vector of standard normal random variables with unit standard deviation, and BB�
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(a) (b)

Fig. 11. (a) Sampling and probabilistic propagation from color distributions C(n)
t . Observe that

the sample having the highest weight has been chosen two times, while another sample with
lower weight has not been chosen. (b) Construction of the histograms H(n)

t and results of the
corresponding segmentations S(n)

t .

is the process noise covariance. The parameters A and B are estimated a priori from a
training sequence.

Each predicted sample s(i)
t represents the set of parameters defining the rigid trans-

formations that will be used to warp the color distribution C′(i)
t associated with the

sample s′(i)t , in order to obtain the new estimated distribution C(i)
t (with parameters

s(i)
t ).

Measure and weight In this step, each element s(n)
t has to be weighted according to

some measured features, and is precisely at this point where we integrate the structural
information of the object’s contour. From the propagated color distributions C(n)

t , we
construct the color histograms H(n)

t with R · G · B bins:

H(n)
t (r, g, b) = #

{
(R, G, B) ∈ C(n)

t | r − 1

R < R ≤ r

R ,
g − 1

G < G ≤ g

G ,
b − 1

B < B ≤ b

B
}

and where r = [1, . . . ,R], g = [1, . . . ,G], b = [1, . . . ,B], with {r, g, b,R,G,B} ∈ N.
This histogram is used to generate a segmentation S

(n)
t from the entire image It. That

is, given a pixel It(u, v) with color value (R,G,B) the corresponding value of the
segmented image S

(n)
t (u, v) will be assigned a value 1 if H

(n)
t (r, g, b) > 0, where

r = �R · R�, g = �G · G� and b = �B · B� (Fig. 11b).
The goal is to assign higher weights to the samples s(n)

t generating “better” seg-
mentations of the tracked object. To this end, simple morphological operations are per-
formed on S

(n)
t to extract a blob corresponding to the segmented object (Fig. 12a).

After adjusting a snake along the contour of this blob, the weight assigned to s(n)
t is

computed according to the function:

π
(n)
t = e−

ρ2

2σ2
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Fig. 12. (a) Segmented image S
(n)
t of a snail after postprocessing operations (b) The ellipse rep-

resents the initial snake (rt−1). The other curve is the boundary (∇S
(n)
t ) of the segmented image.

(c) Intermediate steps of the affine snake fitting. (d) Final result of the snake fitting (r(n)
t ). Observe

that if the deformations were not affine, the snake may have erroneously evolved to encompass
the neck of the snail.

and ρ = µ1(1 − Φaffine) + µ2(1 − Φarea) + µ3(1 − Φquality).
Functions Φaffine, Φarea and Φquality return a value in the range [0, 1] and repre-

sent a measure of the following features:

– Affine similarity: let ∇S
(n)
t be a binary image of the edges of S

(n)
t , and rt−1 a

collection of image points along the snake adjusted to the contour of the object
in the iteration t − 1. rt−1 is used as initialization of an affine snake r

(n)
t that is

adjusted to ∇S
(n)
t . Φaffine, measures the similarity between r

(n)
t = (ui,(n)

t , v
i,(n)
t )

(i = 1, ..., Nr), and ∇S
(n)
t :

Φaffine =
1

Nr

Nr∑
i=1

∇S
(n)
t

(
u

i,(n)
t , v

i,(n)
t

)

– Congruent value of area: another factor to take into account when evaluating the
goodness of the segmentation S

(n)
t is how close is the area Area

(n)
t of the snake

r
(n)
t to the predicted area Ãreat = Areat−1 + µ(Areat−1 − Areat−2), where

Areat−i is the area of the refined snake at iteration t − i. This is considered in the
function:

Φarea = |Ãreat − Area
(n)
t |/max

{
Ãreat, Area

(n)
t

}

– Quality of the segmentation: the function Φquality is introduced to penalize those
segmentations of “low” quality that present some holes into the area of the seg-
mented object. Φquality is a linear function of the Euler number of the processed

S(n)
t .

Finally, the set of N weights π
(n)
t associated to each of the samples s(n)

t , represents
an approximation to the a posteriori density function p (xt|Zt).

Contour updating The last step of our algorithm, consists in refining the fitting of
the object boundary, in order to obtain rt. This is done by taking the contour of the
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segmented image corresponding to the best sample (∇S
(i)
t | π

(i)
t ≥ π

(j)
t ∀j 
= i, 1 ≤

j ≤ N ), and instead of adjusting the snake rt−1 to ∇S
(i)
t , it is adjusted to ∇I∗t =

∇It · dil(∇S
(i)
t ), where ∇It is the gradient of It, and the function dil(·), refers to a

morphological dilate operation. ∇I∗t is in fact the original edge image, from which all
the clutter and disturbing edges have been eliminated.

3.4 Experimental Results

In this Section four sets of sequence results are presented (summarized in Fig. 13)
to illustrate the robustness of our system under different conditions. As the algorithm
has been implemented in an interpretative language (MATLAB), speed results will not
be analyzed. Attention will be focused on the effectiveness of the method. In the first
experiment we show how our system is able to accommodate color by applying it over
a synthetic sequence of circles moving around and changing randomly its color. In the
upper left image of Fig. 13 the path of the color distributions for the tracked circle
is shown. The second experiment (tracking of a colored rectangle) corresponds to the
sequence introduced in Fig. 8. It has to be pointed out that in the previous experiment
we used the RGB color space, but in the present and subsequent experiments the color
space used was the (B−G,G−R,R+G+B) in order to provide robustness to specular
highlights. The last two experiments, correspond to outdoor scenes, where although the
change in illumination conditions is limited, they are useful to show that our method
works with non-uniform shapes (third experiment of a beatle tracking), and in cluttered
scenarios (fourth experiment of a snail tracking).
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