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Overcoming Superstrictness
In Line Drawing Interpretation

Lluis Ros and Federico Thomas

Abstract—This paper presents a new algorithm for correcting incorrect line drawings—incorrect projections of a polyhedral scene.

Such incorrect drawings arise, e.g., when an image of a polyhedral world is taken, the edges and vertices are extracted, and a drawing
is synthesized. Along the way, the true positions of the vertices in the 2D projection are perturbed due to digitization errors and the
preprocessing. As most available algorithms for interpreting line drawings are “superstrict,” they judge these noisy inputs as incorrect
and fail to reconstruct a three-dimensional scene from them. The presented method overcomes this problem by moving the positions of
all vertices until a very close correct drawing is found. The closeness criterion is to minimize the sum of squared distances from each
vertex in the input drawing to its corrected position. With this tool, any superstrict method for line drawing interpretation is now practical,

as it can be applied to the corrected version of the input drawing.

Index Terms—Line drawing interpretation, superstrictness, scene understanding, correction algorithms.

1 INTRODUCTION

ONSIDER the pictures of the plane-faced alarm devices in

Fig. 1a and the line drawings extracted from them in
Fig. 1d. How can we tell whether these drawings represent
correct projections of the spatial objects they come from?
Even more, how can we reconstruct the 3D objects they
represent? Answering these questions and producing an
algorithm able to reconstruct a plane-faced object from its
line drawing, with similar results as a human gets, has been
one of the goals of Computer Vision and Artificial
Intelligence since the early 1970s.

Along the years, several methods have been proposed to
test the correctness of line drawings and give their possible
reconstructions [2], [3], [4], [5], [6], [7]. These tests succeed in
judging as incorrect such impossible figures as those in Fig. 2.
However, even when the drawings come from a picture of a
real scene, the tests usually judge them as incorrect, failing to
derive a spatial reconstruction. To see why, consider the
examples in Fig. 1d, showing the projections of two truncated
pyramids. These drawings can only be correct when the three
edge lines [, m, and n meet at a common point, as this holds in
any spatial reconstruction of the drawing (Fig. 1e), and such
conditions are preserved after projection. This is a general
characteristic of all line drawings: they are only correct for
very specific positions of the vertices, satisfying a number of
concurrence conditions on triplets of lines [6], [8]. Hence, as
many geometric relationships between the vertices are lost
due to digitization errors and the image processing, most
existing tests will judge a drawing as incorrect when it just
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deviates slightly from a correct and reconstructible config-
uration. This is why these tests are called superstrict [5,
chapter 7].

Our contribution is a new procedure to search for the
closest correct drawing to a given incorrect one. Such a
procedure allows overcoming the superstrictness problem
in an easy way: to apply a superstrict method on an
incorrect drawing D", first compute the closest correct
drawing D" to it. If the vertices of D*" are too far from
those of D™ (according to a well-defined distance and a
given tolerance), D" is judged as incorrect, otherwise, we
accept it as “practically correct” and we can start the
reconstruction process from D",

The next section shortly reviews three classic correctness
tests and shows, through an example, why they are
superstrict. Then, in Section 3, we compare our approach
to two previous methods for overcoming the superstrictness
issue. The key point of our correction method is a rational
parameterization of the class of correct drawings for a given
polyhedron (Sections 5 and 6), which allows us to write
down the correction problem as an unconstrained minimiza-
tion of a rational function (Section 4). This minimization can
be tackled using a conjugate gradient method and the
results of an implementation, together with several experi-
mental results are shown in Section 7. To prevent the
minimization from falling into local minima, a good starting
point for the search is needed and Section 8 provides one.
Finally, Section 9 shows how we can deal with more
complicated scenes of opaque polyhedra and the paper
concludes in Section 10 summarizing points for further
attention.

2 SUPERSTRICT CLASSIC METHODS

We begin with a few definitions and assumptions used
along the paper. To simplify, we will deal with drawings
produced by orthogonally projecting a single spherical
polyhedron, onto the XY plane, showing all edges (even
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Fig. 1. A picture of an alarm device (a) can be processed to detect the
sharp edges (b), extract the straight lines (c), and derive a polyhedral
projection (d) which is usually incorrect since it must verify a number of
concurrence conditions (e).

the hidden ones). By spherical, we mean here that it is
homeomorphic to a sphere. This is not too restrictive and
Section 9 explains how to extend the results to drawings of
more complicated scenes, without hidden edges, several

D

(a) (b) (© (d)

Fig. 2. Some impossible figures: (a) is adapted from Penrose and
Penrose [9], (b) from Draper [10], (c) from Huffman [11], and (d) from
Ernst [12].

objects, and possible occlusions between them. So, we say
that a drawing is correct, or reconstructible, if there exists a
spherical polyhedron that projects onto it, with distinct
planes for adjacent faces. Such a polyhedron is called an
interpretation or a reconstruction of the drawing. The vertices,
edges, and faces of a line drawing are the projections of their
spatial counterparts on the reconstruction.

We will also assume that the drawing is given along with
its incidence structure. The incidence structure tells the
combinatorial structure of the spatial interpretation—basi-
cally, which vertices will be incident to which faces. More
formally, it is a triple I = (V,F, R), where V is the set of
vertices of the drawing and F is the set of its faces. We put a
face in F for every subset of vertices that must be kept
coplanar in the spatial reconstruction. R C V x F is the
incidence set: there is an incidence pair (v, f) in R if vertex v
must lie on face f in space. The incidence structure can be
computed by applying the method in [5, p. 45], after a
consistent labeling of its edges has been obtained. Although
finding a consistent labeling is an NP-complete problem
[13], several efficient techniques exist to this end. See, for
example, the works by Huffman [11], Waltz [14], Hancock
and Kittler [15], Myers and Hancock [16], Parodi and Torre
[17], or Parodi et al. [18].

In his book [5], Sugihara gives an algebraic test for
correctness that, roughly speaking, consists of telling
whether a system of linear equalities and inequalities has
a solution, which is solvable via linear programming. This
system contains an equation of the form

(02, 0,0:,1) - (A7, By, 1,Dp)" =0 (1)

for every incidence pair (v, f) € R, to express the con-
straint that, in any interpretation, vertex v must lie on the
plane of face f: Asx + Bry+ 2+ Dy =0. To have a set of
necessary and sufficient conditons for correctness, Sugi-
hara also adds other depth relations, but, for simplicity,
these are omitted here.

One can easily see that, after collecting all the equations
(1) for the drawing in Fig. 3a, this linear system has a
solution space of dimension four, corresponding to the
heights of four vertices that one must fix to get a spatial
interpretation. However, the reader can easily check the
superstrictness of this test: after moving slightly vs, the
dimension of the solution space drops to three, meaning
that the only spatial interpretation is a flat object, with all
vertices coplanar, and the drawing is judged as incorrect.

In Whiteley’s cross-section test [6], a drawing of a
spherical polyhedron is correct if, and only if, it is possible
to draw a compatible cross-section of it. The cross-section is a
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Fig. 3. A correct truncated tetrahedron (a), with two compatible diagrams: the cross-section (b), and the gradient-space diagram (c). If v is slightly

moved (d), the diagrams are not compatible anymore ((e) and (f)).

diagram showing the lines of intersection of all faces with
one selected face of the polyhedron. Fig. 3b shows (in bold
gray) a cross-section of a correct truncated tetrahedron:
every line Ly is the intersection of a face plane f with the
background face f5. The cross-section is compatible if the line
of any edge between a pair of faces contains the point of
intersection of the cross-section lines of these faces.

This is also a superstrict test. For example, after slightly
moving v (Fig. 3e), the cross-section is not compatible
anymore: Edge e does not meet the intersection of lines Ly,
and Ly,.

Huffmann [19] and Mackworth [2] use the so-called dual
diagram for the same purpose.' For a drawing to be correct,
it must have a compatible dual diagram. In this diagram,
there is a dual vertex vy for every face f in the drawing and
there is a dual edge joining two dual vertices if their
corresponding faces share an edge in the drawing. The dual
diagram is compatible if every edge in the drawing is
perpendicular to its dual edge in the diagram. Hence, it is
possible to generate a dual diagram for a correct truncated
tetrahedron, but not for an incorrect one (Figs. 3c and 3f),
and “almost correct” drawings are judged as incorrect.

3 RELATED WORK

To the authors’ knowledge, the literature offers two
approaches to overcome the superstrictness issue: a draw-
ing correction strategy due to Sugihara [5, chapter 7] and an

1. Actually, this diagram was already discovered in the last century by
Maxwell. See, for example, [20].

explicit handling of uncertainty, due to Ponce and
Shimshoni [21], [22].

Roughly speaking, Sugihara’s correction method works
as follows: Think about the truncated tetrahedron in Fig. 4a.
We see that fixing the heights of v;, v, v3, and v, is enough
to determine the heights of the others, as we can use the

A

(b)
e

o))

(c) (d)

Fig. 4. Sugihara’s method corrects (a) by fixing vy, vs, v3, and v, then
removing the incidence pair (vs, f1) (b) and, finally, computing planes for
all faces to derive a spatial position for v5 which is projected back to the
plane (c). Nevertheless, better corrections are possible by slightly
moving all vertices (d).
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Fig. 5. Sugihara’s correction strategy can not be applied on these examples (adapted from [24]). The arrows indicate contour edges where the

adjacent faces are actually separated in 3-space.

coplanarity constraint of each face to derive them. How-
ever, the height of vs is overconstrained, as it can be
deduced from both the coplanarity of f; and f,. Only when
the projection is correct, this height will be identical when
computed from both faces. As Fig. 4a is incorrect, a
possibility is to drop out the constraint that vs must lie on
fi (Fig. 4b), fix the heights of vy, v, vs,vs, compute the
resulting planes for the faces, intersect fi, f2, f1 to get a
corrected position for vs in 3-space, and project vs onto the
XY plane to get a corrected position for it. In general, the
steps are:

1. Take D™ with its incidence structure (V, F, R) and
remove some incidence pairs (v, f) from R, until no
vertex has an overconstrained height.

2. Mark all vertices in V' that are involved in some of
the removed incidence pairs.

3. Lift the new drawing to 3-space, computing the
spatial planes of all faces.

4. Derive new spatial positions for the vertices marked
in step 2, by computing the intersections of the
planes around them. Project these vertices onto the
XY plane.

5. Output the incidence structure of the original
drawing, but replace the original vertex coordinates
by the corrected ones.

For step 1, Sugihara provides a remarkable combinatorial
criterion to detect when a line drawing does not have
overconstrained heights. Such a line drawing is said to be
generically realizable to emphasize that it will be correctly
reconstructible as long as the vertices occupy generic
positions in the plane. Namely, he found this happens if
and only if the incidence structure (V, F, R) verifies

V(X[ +3[F(X)] = [ X] +4, (2)

for any subset X C R such that |F'(X)| > 2. Here, F(X) and
V(X) are, respectively, the set of all faces and vertices
involved in the incidence pairs of X. Sugihara proved this
result for incidence structures of trihedral or convex
polyhedra [3], and, in 1984, Whiteley extended its validity
to arbitrary incidence structures [23].

Although from this result it seems that deciding whether
a drawing is generically realizable takes O(2/f) time,

Sugihara gave an efficient graph-flow procedure that checks
the conditions in O(|R|*) time (see [5, chapter 8]), which also
permits a fast algorithm for step 1, that removes the least
possible number of incidence pairs.

However, as already noted by Sugihara, this correction
process is only possible when the removed vertices lie on at
most three nontriangular faces, because if a vertex lies on
more than three nontriangular faces, the intersection of their
planes is not a single point in general and step 4 above
cannot be performed. Unfortunately, as Whiteley notes in
[24], one can find drawings where this does not happen. For
example, the drawing in Fig. 5a is not generically realizable
(IV(X)] + 3|F(X)| < | X]| + 4 for the subset X in Fig. 5b) and
it can only be corrected by removing one of the vertices a, b,
or ¢, but these are incident with four nontriangular faces.
Fig. 5c shows a second “bad” example: The corrected
drawing must make the lines ad, be, and cf concurrent, but
all six vertices are incident with at least four nontriangular
faces.

Also, another drawback of Sugihara’s technique is that
the corrected drawing may deviate substantially from some
original vertices, when moving all of them just a bit, one can
find drawings that fall in a smaller neighborhood (compare
Figs. 4c and 4d). The correction scheme presented in this
paper overcomes these two inconveniencies: All drawings
of opaque objects will be correctable and we will allow the
movement of all vertices to get correct drawings closer to
the input incorrect one.

On a different approach, Ponce and Shimshoni explicitly
consider that a vertex true position (z;,y;) is unknown in
the drawing, but that must fall in a square of side 2¢ around
the measured position (Z;,;). Then, they take Sugihara’s
system of linear equation (1) and do the change of variables
i =&+, yi =0 +v; for every vertex (z;,y;) of the
drawing and add the constraints |u;| < ¢, |v;| < e. This leads
to a system of nonlinear equalities and inequalities that, after
a clever addition of gradient-space constraints, and some
algebraic manipulation, they are able to linearize again. The
linearization, however, is gained at the cost of the
sufficiency of the test and, as they note, the resulting
constraints are only necessary for a drawing to be correct.
The approach we present does not suffer from this problem:
as we avoid adapting to a specific correctness test, any one
offering necessary and sufficient conditions can be applied
to the corrected version of the drawing.
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4 THE OVERALL ALGORITHM

Given an incorrect drawing D™, our goal is to obtain a
correct one D" with the same incidence structure as D™
which is as close to D™ as possible. As a function
measuring the distance between the two drawings, we
have chosen the sum of the squared Euclidean distances
between pairs of corresponding vertices in D" and D"

The problem can be stated as follows: If v/"* and v
denote, respectively, the 2D coordinates of the 1th vertex of
D" and D", we want to minimize

n .
Z ||’U§nc —
i=1

subject to the constraint that the vertices v{”" define a correct
drawing D" with the same incidence structure as D™
However, we will show that it is possible to parameterize
the 2D coordinates of the vertices of all correct drawings
with a given incidence structure. More precisely, given an
incidence structure I = (V, F, R), it is possible to write the

cor H 2

coordinates (z(",y5"") of every vertex v?”" € V as functions
T = Xl(p1:p27 s 7pn)7
yi’or = 1/%(1017172, cee 7pn)7

in such a way that any tuple of parameters (p1,ps,...,pn),
p; € R" — F Vi, where F is a zero-measure subset of IR",
fixes a correct drawing of I. x; and ; are rational functions
and, thus, everything reduces to the unconstrained mini-
mization of the rational function

n

Z HUW = (xi(p1,p2; - - -

i=1

7pn)7¢i(p17p25 s 7p7l))||27

which can be computationally solved by starting a gradient
search at an initial correct drawing that estimates the final
solution. The next section presents the resolvable sequence,
the key concept that leads to this parameterization.

5 RESOLVABLE SEQUENCES

Is there a set of independent choices that can be made to
construct a polyhedron in a consistent manner? To illustrate
this question, let us focus on the simple example of Fig. 6a, a
pyramid with a quadrilateral base. The shape of this
polyhedron can be fixed by, for example, giving the
coordinates of all its vertices or the face plane coefficients
of all its faces. But care must be taken in any of the two
ways. If we arbitrarily fix all planes, then fi, fo, f3, and fi
will not probably have a common point of intersection and
vertex v; will be inconsistently defined. On the contrary, if
we arbitrarily fix all vertices, vy, v3, v4, and vs need not be
coplanar and face f; might be inconsistently defined.

In general, we say that a polyhedron is resolvable if it is
possible to list its vertices and faces in a sequence S =
(..o30iy. ., fj,...) in such a way that

(C1) when a vertex occurs in S, it is incident to at most three
previous faces;

(C2) when a face occurs in S, it is incident to at most three
previous vertices;

(C3) when two faces f and f’ share three or more vertices
(Fig. 6b), f and f’ appear earlier in S than the third of the
common vertices;

Fig. 6. (a) A pyramid with a quadrangular base. (b) Two faces sharing
more than two vertices. (c) Two vertices sharing more than two faces.

(C4) when two vertices v and v are incident to three or more
common faces (Fig. 6¢), both v and v' appear earlier than
the third of the common faces.

S is called a resolvable sequence for the polyhedron. Note that
if such a sequence exists, then we can construct the
polyhedron in a consistent way. We just need to fix its
vertices and faces, one by one, following the order in S.
Along the way, when an element is underconstrained by
previous choices, additional choices can be taken arbitrarily.

In 1934, Steinitz proved that all polyhedra whose graph
of vertices and edges is planar and vertex 3-connected are
resolvable [25]. Actually, for these polyhedra, it suffices to
find a sequence satisfying conditions (C1) and (C2) above
as their 3-connectedness ensures they have no face sharing
more than two vertices nor any pair of vertices sharing
more than two faces.

It is well-known that a graph G is the graph of a spherical
polyhedron if and only if G is a vertex 2-connected and
edge 3-connected planar graph [26, proposition 2.8]. Hence,
Steinitz’s result only applies to a subclass of spherical
polyhedra. However, very recently, Sugihara has extended
Steinitz’s results, finding that actually all spherical poly-
hedra are resolvable [25], a result which has definitely
permitted the correction method we present, valid for
drawings with the incidence structure of a spherical
polyhedron, and other topologies described in Section 9.
Moreover, [25] shows that the resolvable sequence is not
unique, in general, and that it only depends on the
combinatorial structure of the polyhedron at hand.

6 PARAMETERIZING CORRECT PROJECTIONS

The resolvable sequence induces a parameterization of all
polyhedra with a given incidence structure. For example, a
trivial resolvable sequence for the truncated tetrahedron in
Fig. 3a is to first list all faces and then all vertices:

=(fi,-.., f5,v1,...,06). (This is clearly valid for any
trihedral polyhedron, one where every vertex has three
incident faces.) Thus, here, the coordinates (z;,v;,z) of
every vertex v; can be written as functions of the coefficients
of its three incident planes by, e.g., solving for z;, y;, and z;,
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Fig. 7. Line drawings used as a testbed for the correction algorithm: (a) a truncated tetrahedron, (b) a dodecahedron, (c) a truncated icosahedron,
(d) a rhombitruncated cubeoctahedron, (e) and a rhombitruncated icosidodecahedron.

and varying these coefficients we get different realizations of
the truncated tetrahedron.

Note that the resolvable sequence also induces a para-
meterization of all correct drawings with the given incidence
structure, as we only need to project the (parameterized)
spatial polyhedron onto the XY plane, keeping the para-
meterization for the X and Y coordinates of every vertex.

In the general case, we can construct a parameterization
of all polyhedra with a given incidence structure I as
follows: First, we compute a resolvable sequence S for I.
Then, we visit every element of S, following the order of the
sequence. If the element is a face, then:

e If it is not incident to any previous vertex, there is
total freedom in choosing its position and the four
coefficients of its plane are free parameters.

e If it is incident to three previous vertices, the
parameters of the plane are totally fixed and no
new parameter is introduced.

e Ifitis incident to two previous vertices, say p and g,
we must select one of all the planes meeting the
segment pq. Such a plane can be written as:

Pz Qe Tz T
by 4y Ty Y| _ 0,
P q. T Z

1 1 1 1

and the three coordinates of a third point r =
(ry,ry,7.) are introduced as new parameters.

e Ifa faceis incident to one previous vertex p, its plane
can be expressed as

(nwanyynz) : ((x,y, Z) - (pz'apy»pz)) =0,

and the three coordinates of the normal vector
(ng,ny,n,) are chosen as parameters.
If the element is a vertex v, then:

e If v is incident to no previous face, there is total
freedom in choosing its position and its three
coordinates are taken as free parameters.

e If v is incident to three previous faces, the vertex is
totally fixed and can be found computing the
intersection of the three planes.

e If vis incident to two previous faces, say f; and f;,
we can write two equations:

Ajvy + Bivy + Cv, + D; = 0,
Aﬂ]m =+ Bj?]y =+ C]"UZ =+ D]' = O,

and solve for v, and v, in terms of v, which is
introduced as a new parameter.

e Finally, if v is incident to one previous face, say f, we
can freely choose v, and v, and get v, from the
equation of f’s plane.

Note that this parameterization is rational as, at each step
of its construction, we can write a vertex or face coordinate
as a quotient of polynomials in the parameters. Although
for certain choices of the parameters it may fail to provide a
polyhedron (e.g., there is an indetermination when a vertex
is incident to three previous faces, and the chosen planes for
them are not all distinct), this only happens for a zero-
measure subset of the parameter space, posing no problem
to the minimization, as the next section explains.

7 IMPLEMENTATION AND RESULTS

The correction algorithm has been implemented in C for
drawings of trihedral polyhedra, as these have the
advantage that every vertex position is easily parameterized
by the 12 coefficients of its three incident planes.

For the minimization, we use TNPACK, a freely
available package specially suited for large-scale problems
with possibly thousands of variables [27]. To minimize a
function F(X), X € IR”, TNPACK implements the iterative
truncated Newton method, based on minimizing a local
quadratic approximation of F' at every step. For efficiency,
an approximated (truncated) solution of this local mini-
mization is allowed which is computed through a pre-
conditioned conjugate gradient algorithm.

The user must essentially supply three routines, return-
ing F, its gradient, and the Hessian matrix, evaluated at a
given point X € IR". For the gradient, we directly provide
the symbolic expressions, as they are easy to derive. For the
Hessian matrix, we rely on an (optional) internal TNPACK
routine that uses finite differences of the gradient to
compute it. To prevent the minimization from falling in a
point X of parameter space yielding indetermination (see
Section 6), the routine computing F'(X) is implemented to
return a very high value for these configurations.

We have tested the correction process on several
drawings of spherical polyhedra: a truncated tetrahedron,
a dodecahedron, a truncated icosahedron, a rhombitrun-
cated-cubeoctahedron, and a rhombitruncated-icosidodeca-
hedron (Fig. 7). The number of optimization variables
involved in these examples is 20, 48, 104, 128, and 248,
respectively—that is, four times the number of faces.

For each of these drawings, the following experiment has
been done. First, a correct drawing D™ is generated by
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Fig. 8. Correction of a truncated tetrahedron (top) and of a dodecahedron
(bottom).

projecting the spatial polyhedron to a plane. Then, the vertices
of D™ are randomly perturbed to get an incorrect drawing
D" with the same incidence structure. Finally, the correction
algorithm is applied to D™*, by starting a gradient search from
D™ The resulting corrected drawing D" is shown in Fig. 8
for the truncated tetrahedron and the dodecahedron.

The gradient search has taken four seconds of CPU time
in the toughest case of Fig. 7, using a SUN Ultra-80. This
running time does not include that of computing the
incidence structure, which is assumed to be given, as
already mentioned in Section 2. We note that, although
simple, these drawings are far more complex than those one
can find in the literature [5], [22]. Extensive tests have been
done in all cases, starting the gradient search at different
initial drawings and the minimization always converged
rapidly to a small neighborhood of the incorrect drawing.

However, the used objective function certainly has local
minima and one can find initial drawings D" from which
the algorithm gets stuck on them. Fig. 9 gives an example of
this undesired behavior. Here, D™ is generated by
projecting the dodecahedron onto the XY plane. Also, a
copy of D™ is generated, then translated downwards,
rotated 180 degrees about its center and randomly
perturbed to finally obtain D™™. The sequence to the left
shows the path followed by the gradient method. Notice
how the vertices follow crossing trajectories, from their
origin to the destination, to undo this 180° rotation. As we
see, the final correction is a local minimum compared to
that of Fig. 8 bottom, while the input drawing D" is exactly

Fig. 9. A correction sequence of a dodecahedron using a bad starting
point (left). The incorrect drawing (in gray lines), the initial estimation
(dashed) and the final correction (black) have been singled out to the
right. The final correction falls on a bad local minimum because the initial
estimation is actually translated and rotated with respect to the input
drawing.

the same in both cases. Clearly, there is a need for feeding
the search with a good starting point and next section
proposes a method to this end.

8 A GooD STARTING POINT

A reasonably good starting drawing can be easily computed
using again the resolvable sequence. The idea is to properly
place every vertex and face of the sequence, so that the
2D projection is locally close enough to D™“. Let us see this
in detail. We distinguish several situations, depending on
whether we are fixing a vertex or a face.

Assume first that we are fixing a vertex v, whose
2D position in the incorrect drawing is v"". v can be incident
to zero, one, two, or three previously-fixed faces. In the first
case, thereis total freedom in choosing v's spatial position but,
to be compliant with the drawing, we choose it to lie in the
vertical line over v, at any height. If v is incident to just one
previous face, then we choose it over this face’s plane, in the
vertical line at v"". If v is incident to two faces with planes «
and (3 (respectively), we fix v on the line of intersection of o
and @ at the place where its 2D projection is at a minimum
distance from v""“. Finally, if v is incident with three previous
faces, we fix it in the intersection of their respective planes.

On the other hand, if we are fixing a face f, it can be
incident to three, two, one, or zero previously-fixed vertices.
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(@) (b)

(©

Fig. 10. When a drawing (b) is a projection of an opaque scene (a), all we can reconstruct is a collection of polyhedral surfaces, each one

topologically equivalent to a disk with possible holes (c).

In the first case, there is no choice for the plane of f asitis fully
determined by the three vertices. If the face is incident to two
fixed vertices, say p and ¢, we can choose among all the planes
meeting the line pg. But which one? If some of the neighboring
faces of f have already been fixed, say faces f; , fi,,..., then
we would like that the lines of intersection of these faces with
f lie reasonably close to the corresponding edges in the
incorrect drawing. If we label the common vertices between f
and f;, fi,,... aswi, ..., wpn, and z(w;) denotes the height of
vertex w; as computed on the plane of its already-fixed face,
over its position in the drawing, then a reasonable way to
achieve this is to fix f to the plane « that meets the line pg and
minimizes the sum of squared residuals:

m

> ((wi) = za(wi)?,

i=1

where z,(w;) denotes the z-coordinate of vertex w; as given
by the plane a. Obviously, if no adjacent face of f was
previously fixed, we simply fix f at any plane meeting pq.

The remaining cases, when f is incident to one or to no
previous vertex are analogous, the only difference being
that we choose among all the planes meeting a fixed point
in the first case, and among all possible planes of 3-space in
the second.

Of course, following this strategy, the resulting correct
drawing may deviate substantially from D™ at some
vertices, specially if the drawing is large enough. However,
from the good convergence behavior seen in the experi-
ments above, we judge this approximation as good enough
to avoid local minima.

9 CORRECTION OF OTHER TOPOLOGIES

Real scenes of polyhedra differ substantially from the
model assumed in Section 2. Hidden edges are not visible
when the objects are opaque and if several objects are
present, they may occlude one another (Fig. 10a). When this
happens, the incidence structure of the line drawing is not
that of a spherical polyhedron. This can be seen with the
help of Fig. 10: although the drawing in the middle is a
projection of the scene to the left, all we can reconstruct is a
collection of objects as those to the right since only the
topmost portions will be visible. The topology of these
objects is clearly not spherical. Each of them is actually

homeomorphic to a disk possibly containing any number of
holes in it. Thus, in practice, the required tool is an
algorithm able to correct drawings whose incidence
structure is that of a polyhedral disk, maybe with polygonal
holes in it. Hereafter, this plane faced object will be called
polydisk for short, and its vertices and edges will be referred
to as boundary or interior according to whether they
correspond or not to the boundaries of the spatial objects,
as seen from the center of projection. Fortunately, the
drawings of these objects are also correctable, as the results
in [28] imply that any surface composed of polygons that is
homeomorphic to a disk with possible holes is resolvable.

Moreover, note that when several polydisks are present
in the drawing, we can treat each one separately in the same
way. For this, we only need to have each one of them
identified, which can be done by collecting all regions
delimited by boundary edges after an edge-labeling algo-
rithm has been applied. However, an issue may arise here.
If we correct each polydisk separately, the final boundaries
of neighboring polydisks may not coincide as they
originally did. Depending on the application this disparity
might be irrelevant. For example, if all we want is an
approximate reconstruction of the objects in the scene, these
small errors may be acceptable. On the contrary, if they are
not, we propose the following strategy to make the
boundaries coincident again. It will only be valid for
trihedral scenes, but we note that this is the case that arises
when all faces lie on planes in general position.

First, observe that, if the objects are trihedral, only one of
the following three situations occurs (Figs. 11a, 11b, and 11c,
respectively): a boundary vertex either has 1) no incident
interior edge, or 2) only one interior edge on one side, or 3)
one interior edge on both sides. The correction algorithm
will separate the boundaries as depicted in Figs. 11d, 11e,
and 11f, yielding two copies of the original vertex, say v;
and v,. In the first two cases, the boundaries can be made
coincident again by moving vy, the vertex with no incident
interior edge, to the position of v;. Note that this will not
alter the correctness of the polydisk of v, (Figs. 11g and
11h). In the third case, we can move v; and v, to the point of
intersection of their interior edges without altering the
correctness of their respective polydisks (Fig. 11i).

This strategy has been implemented and Fig. 12 shows
the results on a synthetic polyhedral scene. In this example,
the scenes to the left have been projected to yield the
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Fig. 11. Independent correction of neighboring polydisks (left) will separate their boundaries (center) but these can be made coincident by properly
moving the vertices again (right) while preserving the overall correctness. Interior and boundary edges are indicated in dashed and solid lines,
respectively.

(@) (b) (©)

Fig. 12. Two views of a same polyhedral scene (a) together with two incorrect drawings of them, with boundary edges labelled in black (b), and the
final corrections (c).
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Fig. 13. An unresolvable torus.

drawings in the center, whose vertices have been randomly
perturbed to yield the shown incorrect configurations.
Boundary edges delimiting each polydisk are marked in
thick black lines while interior edges are marked in gray.
The resulting correct polydisks are shown in Fig. 12c.

Unfortunately, there are topological structures that
cannot be corrected. Namely, polyhedra with a genus equal
or greater than one do not have a resolvable sequence in
general. A simple counterexample is given by the torus in
Fig. 13. Since all vertices are incident to exactly four faces,
condition (C1) in Section 5 will be necessarily violated at
some vertex in any sequence. Although we note that this
type of incidence structures will never arise if the projected
objects are opaque, we find this is an interesting open
problem for future consideration.

10 CONCLUSIONS AND FUTURE WORK

This paper has presented a new approach to correct
incorrect projections of polyhedra and has discussed its
contributions with respect to the previous method by
Sugihara. Surprisingly, our improvements have only been
possible thanks to Sugihara’s latest finding of the resolvable
sequence, offering an unexpected new application of this
result. To conclude, it is worth to mention two points
deserving further attention.

Although the initial drawing we propose to start the
gradient search seems a fairly good approximation of the
result, the minimization is still not guaranteed to converge
to the global minimum. To mend this up, one can always
start the search at several different initial estimations, each
derived from a different resolvable sequence of the same
incidence structure, and select the best corrected drawing.

Another possibility could be to derive a polynomial
(rather than rational) parameterization, by working in
projective instead of affine coordinates, and attempt to find
the global minimum through interval arithmetic [29] or
Bézier-clipping techniques [30].
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