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Abstract— Current techniques to concurrent map building and
localization (CML) have been devised for static envirenments,
and lack robustness in more realistic situations. In this commu-
nication we provide new ideas that extend the typical stochastic
estimation approach to CML, to take into account the dynamics
of the environment. The basic idea consists on using the history of
data association mismatches for the computation of the likelthood
of future data association, The incorporation of a novel temporal
land@mark quality test, together with the spatial compatibility tests
already available, help alleviate the difficulty of data association.

We propose a pair of temporal landmark quality functions
to aid in those situations in which landmark observations might
not be consistent in time; and show how by incorporating these
functions, the overall estimation-theoretic approach to CML
is improved. Special attention is paid in that the removal of
landmarks from the map does not violate the basic convergence
properties of the localization and map building algorithms al-
ready described in the literature. Namely, asymptotic convergence
and full correlation.

1. INTRCDUCTION

The use of stochastic models for map building and localiza-
tion in mobile robotics has gained much popularity in recent
years. Of particular interest is the use of predictive filters to
estimate the robot position and uncertainty, and to update these
estimates from sensor readings while at the same time building
an incremental map of the environment [1]-[4].

One of the most critical limitations in the application of
such estimation-theoretic approaches to map building and
localization is the data association problem. Data association
refers to the issue of matching observations with previously
learned elements from the environment, As we address issues
such as viewpoint invariance and feature extraction from
sensor data, it is overwhelming how undesired environment
dynamics, occlusions, and sensor noise can still make data
association a daunting task. One possibility to overcome the
data association problem altogether is with the deployment of
uniquely identifiable man-made beacons to aid in localization.
Unfortunately, there exist multiple situations where this is not
possible, and a map must still be constructed without environ-
ment contamination. An alternative approach explored in this
work is the inclusion of temporal landmark quality measures,
along with the already available spatial compatibility tests.

We start our discussion with a short review of the traditional
full covariance extended Kalman filter approach to concurrent
map building and localization (EKF-CML in short). Next, we
present the two temporal landmark quality measures proposed
that help alleviate the data association problem. We then show
that when testing for temporal landmark compatibility with
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these functions it is still possible to achieve a monotonically
decreasing map covariance matrix, and how in the limit, the
map still becomes fully correlated. That is, the two funda-
mental properties of the EKF-CML algorithm first reported in
Newman’s PhD work [5] hold also in our revised version, the
EKF-CML-LV algorithm.

In Section IV, explicit formulas for a planar mobile robot
are presented. Finally, in Section V, our planar mobile robot
configuration is used to evaluate the original EKF-CML algo-
rithm as reported by Smith and Cheeseman [4], as well as our
improved algorithm, the EXF-CML-LV, both in the presence
of various noise levels, and ultimately, in cases with limited
field of view and extreme data mismatch.

II. FULL COVARIANCE APPROACH TO CML

In the typical EKF-CML model, the state vector x;, includes
the position of the robot x, ; at time step k, and a vector
of stationary map features x ;. The input vector uy indicates
the vehicle control command, and v, is a random vector with
zero mean and covariance matrix Vg, representing unmodelled
robot dynamics and systemn noise. A possibly nonlinear differ-
ence equation f(xg, ug, vz ) is used to model the motion of the
robot. Furthermore, the random vector w ;. represents both, the
inaccuracies of the also possibly nonlinear observation model
h(x;, w), and the measurement noise with zero mean and
covariance matrix Wy. ’

A. Prediction

An a priori prediction of the location of the robot and the
state of the map is obtained from the neise free state dynamics

] — l: fr,k(xr,k|kyuk>0) (1

X k+1)k
Xfklk

Xik+1|k

and the a priori estimate to the map state error covariance

is Pip1je = FxPpFy + Fy ViFl. The Jacobian matrices
Fx and F, contain the partial derivatives of f with respect
to x and v. Similarly, noise free sensor measurements can be
estimated a priori with zg1x = W(Xeq 1k, 0).

B. Correction

The vehicle and map state estimates are revised in an EKF
fashion from the difference between estimated and actual
SENsor measurements

Bkl = Zisllk @
Xie1k + Ket1Zrpax 3)

5k+1|k =
Xe+1lk+1 =
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and the error covariance matrix updated with the Joseph form

Pt = (I - Kep Hi)Pry (1~ Kip Hy)' +
Ket1 Wi Kiy “

with Kgy1 = Pryy HLS™! the Kalman matrix gain, S
the measurement innovation matrix (see Eq. 10), and Hy =
[ H., H,, ] the measurement Jacobian, ie., the derivative
of h with respect o x.

C. Sequential innovation

Sequential innovation refers to the update of state estimates
one observation at a time. The result of applying this technique
is equivalent to that of using the full covariance extended
Kalman filter approach, provided the observations are inde-
pendent, or that at least they can be whitened.

The main advantage of using sequential innovation is that,
by considering the measurement innovation vector Zy ;) as a
set of single measurements zg:_?_l that can be treated sequen-
tially, the measurement of the joint measurement innovation
covariance matrix S in equation 4 is no longer necessary.
Instead, a series of smaller individual innovation covariance
matrix inverses is computed, reducing considerably the time
complexity of the algorithm.

f

D. Covariance initialization

The function that maps an observation inte world coordi-
nates is given by our lincarized measurement model, and has
the form [xI,x_(;)T]T = G[x!,z"7|T. G is known as the
Jfeature initialization matrix,

I 0
G= _H'(ln H H_(li) CY
xf - Xf

The initialization of the corresponding map state error covari-
ance for such landmark is given by

P 0

P=G[ 0w

] G’ (®

Once the robot has observed a sufficiently robust new
feature which cannot be associated to any other landmark in
the map, it is labeled as the n-th landmark, and a new row
and column must be appended to the map covariance matrix
with

P

SPTIRNES _Prr,klk(H;(ln)Hx(“) )y (7
() el

- —1 T
Projoo g = HX(}—)Hx5i>Prr,k;k(Hx(fn3Hx£n)) 8

-1 -1 T
Pyin) pen) g Hx(n)Hx(")Prr,Hk(Hx(n)Hx(“)) +
£ T i r

- ) gpy~1 AT
Hx(ln)w(‘)(Hx(ln)) ¢l
f f
Eqs. 7-9 indicate that the initialization of the new feature

map error covariance is a function of the actual vehicle
position and its accumulated uncertainty.

E. Spatial compatibility

The estimated uncertainty in the localization of every land-
mark in the map, as well as that of the robot, is maintained in
the state error covariance P. The uncertainty of its location in
observation space is given by the change of basis of P plus that
of the independent sensor uncertainties W (¥, This quantity is
called the innovation covariance matrix, and is given by the
expression

i i ot i i ol
8O — HIP,  HE + HP W] HE) (10)
For any particular landmark measurement z ﬂl, the squared
Mahalanobis distance
2 _ =) Tl
di = zgci]“c st z§c+1|k an

represents a measure of spatial disparity between the ob-
servation zy_?_l and the estimated location in robot centered
coordinates of the hypothetical landmark match x
Two spatial landmark compatibility tests that appear in the
literature are the individual compatibility test:

& < Xl 29 (12)
and the joint compatibility test [6]:
2 =(p..r)T oy da(por
a2 =gl sl e (13
B v < Xiimatoo) o (i4)

the indices {p...r) need not be consecutive. The former
considers landmark observations independently; whereas the
latter, considers cross correlated landmark uncertainties when
testing match hypotheses, at the expense of higher computa-
tional cost.

F. Convergence properties of the full covariance EKF ap-
proach to CML

It has been shown {2] how in the original full covari-
ance EKF-CML formulation, the map state error covariance
submatrix associated with the landmark estimates decreases
monotenically as successive observations take place, and how
in the limit, as the number of iterations tends to infinity, the
map becomes fully correlated.

detPysprintr < det Prpggs (15)
Jim devPyp gy =0 (16)

We show later in this contribution how the removal of tem-
porally weak landmark does not violate these two properties.

III. LANDMARK TEMPORAL UNCERTAINTY

Spatial compatibility tests are crucial for the solution of data
association in CML, but they can still be insufficient in situa-
tions with moederate scene dynamics. Consider for example the
case when a landmark is occluded for a short peried of time.
The spatial compatibility tests would not have any information
on the history of observations of such landmark, and might still
be trying to wrongly associate it with a neighboring observed
feature. If the algorithm succeeds in incorrectly associating
the occluded feature, it will enlarge the uncertainty of that
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landmark in the map; and given that the map covariance
is fully correlated, starting with the next iteration of the
algorithm, that uncertainty would be propagated to the rest of
the landmark locations, and that of the robot as well; ultimately
breaking down the entire estimation approach to CML.

To aid in those situations in which the landmark observa-
tions might not be consistent in time, we propose a new set of
landmark quality functions, that take into account the history
of data association mismatches.

A. Nonlinear model for temporal landmark quality: the expo-
nential decay rule

One possibility in the computation of the temporal landmark
quality is to have an exponential decay rule [7]. This way, each
landmark in the map will have an associated memory cel] that
registers how persistent, and how old that landmark is.

Imagine that at the k + 1-th iteration, the i-th landmark
measurement estimate zi 41 falls inside the current field of
view, but none of the entries in the observation vector z ;41 has
similar appearance properties, nor is sufficiently close (in the
sense of d?) to pass the spatial landmark compatibility tests.
This would be the situation if, for example, the i-th landmark
was learned from a temporary artifact in the scene that was
only tracked over sensor data for a short period of time, but is
no longer present. With the aid of an exponential decay rule to
data association, its quality measure will decay in the absence
of observation matches, indicating the map building algorithm
that such landmark is no longer present in the scene and should
not be considered a relevant feature for robot localization.

We propose a nonlinear update rule for landmark quality of

the form

W _ 1
R o PRy a7

()

where Uy 1s the landmark identification stamp

i 4
¢;={1

The scalar o is an input weight used to regulate the
contribution of such landmark identification over the previous
map configuration, and 2 is a memory weight used to regulate
the contribution of the previous landmark quality state over its
new value.

The asymptotic lower and upper bounds of Eq. 17 can be
evaluated by solving the equations

failed the spatial data association test
passed the spatial data association test

(18}

1

TqLOW = ———F —=———
a 14+ e*(,ﬂlq,LOW)

(19}

Tq,HIGH = 20y

1+ 6*(0+310.HIGH)

Using a symbolic manipulation math package, we find for
example, that for &« = f = 1, zgrow = 0.6590, and
T arcn = 0. 8659 Landmark initialization is at the middle
of the scale, i.e, .’1: = [.7682.

B. Linear model for temporal landmark quality: the data
association probability

Another possibility in the computation of the temporal
landmark quality is to consider the probability of correct data
association of such landmark in the next iteration.

According to the relative frequency definition of probability,
if an event (say, the correct association of landmark i) ocecurs
7 times in k trials (observations), and provided k is sufficiently
large, then the probability that the same landmark will be
pl('o)perly matched in the next iteration can be expressed as

Y= j/k.

NowJ ‘()nce a new observation is made, the data association
probablhly will change according to the new landmark asso-
ciation result Thls change in (probabﬂlty is represented by the
recursivity pk+1 (o} )k+u 1)/ (k+1}, with u(’) defined as
in Eq. 18. If we make the notanon change a = k/(k+ 1), and
.L'(t)k = psc), our second model for temporal landmark quality
becomes

$¢(ﬁc+1 = cm;q kit (i- a)“q 3

n

For fixed values of k&, the constant « accounts for a memory
weight with a role similar as those of o and 5 from the
previously discussed model. It can be fixed to a constant value
between 0 and 1, and it indicates the memory length to be used
in the computation of the new data association probability. So
for example, if a memory window of the last 5 iterations is
to be considered, the memory weight becomes a = 0.8333. In
this linear model for temporal landmark quality, x 4 is bounded

between 0 and 1, and initialization is made at 0.5.

Both temporal landmark guality measures, the exponential
decay rule, and the data association probability were chosen
to be asymptotically bounded by above and below by

Tq,Low K g < Xg HIGH (22)

Any other function with such monotonicity could be also
used as temporal landmark quality function. However, such
function must have some way of tuning the memory length
of the algorithm. The left plot in Fig. 1 shows the behavior
of the exponential decay rule for the parameter values o =
7 = 1. The right plot shows the data association prebability
with parameter ¢ = 0.5. The labels 0-1 and 1-0 indicate the
change in the landmark identification stamp u, representing
the presence or loss of data association.

C. Temporal landmark quality test

In the same way that the spatial compatibility test is used
to validate if observations are consistent with the already
learned map entries; the temporal landmark quality test must
be used to validaie if any map entry is sufficiently robust
to be kept in the map. The test verifies if the history of
data association has kept the value for the temporal landmark
quality above a user defined cut threshold =, 7m;p. All
landmarks expected to appear in the current field of view,
and for which no occlusion has been predicted, must have
their landmark quality measure updated. Furthermore, those
landmarks whose temporal quality measure falls below the
user defined threshold should be removed from the map. The
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heuristics needed to handle occlusions, depend on the type of
landmarks and sensors used. The temporal landmark quality
test is ‘
it =) <zgrmLp

. ; 23
RemoveLandmark(x_(;)) @)

In the case of the exponential decay rule with parameters
o = 3 =1, for example, the cut threshold =, ryrp = 0.66
is reached once a landmark has not been observed for 5
consecutive iterations, or more if these were not consecutive.
Similar effects are obtained when using the data association
probability with the parameter value ¢ = 0.5, and a cut
threshold of zyryip = 0.03. Fig. 2 shows both the ex-
ponential decay rule, and the data association probability as
landmark quality measures for a test run of 100 steps and 10
landmarks, when 25% of the observations are misidentified
to their closest neighbor. The individual compatibility test
catches some but not all of these mismatches, and yields
an identification stamp value u, = 0 for them. By adding
the more restrictive temporal landmark quality tests, those
landmarks with a large amount of mismatches end up being
removed from the map, and are reinitialized as new landmarks
once they become robust again.

‘We have opted for a simplified heuristic for the removal of a
landmark from the map, with the advantage of computational
efficiency, but at the expense of suboptimality. Our algorithm
simply erases the low quality landmark entries from the state
vector and its corresponding row and column in the state
error covariance matrix. Once the landmark is robust again,
it is considered as a new different landmark, and initialized
according to the discussion from Section II-D. Note however
that, given the fact that CML is fully correlated, the contribu-
tion of a misidentified landmark estimate in revising the errer
covariance matrix has already propagated to the entire map.
The right thing to do, would be to trace back the intermediate
results of the algorithm up to the point in which the landmark
was criginally inserted, and to recompute forward once more
the map state and map error covariance up to the current
iteration, without considering that landmark, as if it had never
existed.

Saving the state vector and error covariance matrix for all
iterations has space complexity of O{kn?), with k the number
of iterations, and n the number of landmarks. Furthermore,
recomputing the state vector and error covariance matrix
from the point at which the spurious landmark was initially
inserted, would most likely lead to different values on P, and
consequently on S, producing even different data association
results. So, not only the state vector and covariance matrix
history must be maintained, but the full measurement data
as well, requiring for a full run of the algorithm every time
a landmark is found to be spurious. The optimal solution
is rather cumbersome, and we have opted for suboptimality,
with the aforementioned simplification of just deleting the
corresponding entries in x and P, with the following insight,

Gibbens er. al. [8], show how in CML all entries in the
covariance matrix P depend on the number of landmarks

-~ DAP 10
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Fig. I. Landmark quality models.

Meration
b) Data association probability

a) Exponential decay rule

Fig. 2. Landmark quality test for & test run with 10 landmarks and 100 steps.
a=F8=1,and a=0.5.

used in the form of the total Fisher information [r. This
is a measure of the total information per unit time available
to the filter. For a monobot (monodimensicnal robot) with n
landmarks, all with equal measurement covariance W& =
w, the total Fisher information is I+ = n/w. The more
landmarks available, the more information the filter has. That
is, the greater the number of landmarks used, the smaller the
asymptotic values for the entries in the error covariances.

The removal of a landmark from the state vector in the form
discussed is consistent with this observation. Fig. 3a shows,
how for the monobot, all the entries in P with the removal
of a landmark at some point in the algorithm are bounded
by below and above by the same entries in P, but with and
without considering the landmark for the entire run. Let us
call P.,, the entry in P for a map with n landmarks, and
P. .41, the entry in P for a map that went fromn+1 to n
landmarks via the removal of landmark states. Then, for the
entire run of the algorithm

Pw‘r,klk‘n+l S Pr-r,kik,n+1,n < Prr,k!k.n (24)
® 0] (&)

Porkkni S P kkntin S Pliiin (25}
(i) (4,5) (4,4)

P;f{klk!n-i—l < Pflf{k|-'€>"+1.ﬂ = Pflf~’¢|kv" (26)

Moreover, by removing a landmark from the map in the
form discussed, the asymptotic convergence property from
Eq. 16 is maintained. That is, the revised map is still fully
correlated, as indicated in Fig. 3b.

IV, PLANAR MORILE ROBOT

For the mobile robot shown in Fig. 6, the vehicle state
is defined by x, = [z,y,6]" where z and y are the center
of the robot with respect to some global coordinate frame,
and # is the vehicle orientation. The vehicle control command
W, = [tg, 1y, ug] indicates the desired positional increments
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Fig. 3. Evolution of the covariance matrix for a monobot with 3, 2, and
3-then-2 landmarks, V = W = P__ ;5 =1,

to the vehicle pose in robot local coordinates; with vehicle
error dynamics v, = [vz, vy, vg]' . We can observe how for an
error free vehicle, the input (uz k, uy ) would drive the robot
to the position (Ty 1)k Uk+1)x) at time step k. However, due
to unmodelled robot dynamics and noise, it ends up in the
position (Zx+1, yx+1)- This is, the vehicle process model f,. is
a noise-corrupted discrete-time nonlinear function of the form

Tkl Tk + du cos(Br + ¥} + du cos(G + o)
Yet1 | = | Y+ dusin(Be + ) + dy sin(fy, + &)
Okt O+ uok + Vo
27
with du = ful,+ul, do = Jul +2,, du =

arctan(uy.x/Ue k), 204 Py = arctan(vy x/ve k).
Given that the map is considered static £ ¢ (xg, ug, vi) = Xy,
and that the landmarks are constituted by two dimensional

0 _ [zgf), ) |"s we are able to formulate the partial

points x ¥
derivatives of Eq. 27 with respect to x and v for the state

model Jacobians

1 0 —dusin(@e + ¥u) — dy sin(Bx + 1ba)
Fy, = 0 1 ducos(f + ¥u) + dycos{(Ox + 1)
0 o 1
Vg g COS(Ok 4 o)/ dy vy g cos(8; +hy)fdy O
F., = Uz ke SO + ) /dy Uy psin(fe + ) /dy O
0 0 i
The measurement equation for the i-th landmark in this

configuration is h(} = RT(xSf) —t) + wl, with w(@ the
landmark observation error, and
= **
=

R = [ cos(fr) —sin(bi) } :

sin(0x)  cos(Bi) (8
The i-th set of rows of the measurement and noise

Jacobians for our planar mobile robot are HY =
[~RT BTG — 1), 00213, BT Oasean—g | and Ho = L

V. PERFORMANCE OF THE CML-LV ALGORITHM

We present now resulis on the improvement in the recon-
struction achieved with the various modifications to the EKF-
CML model proposed in this work. We will concentrate on
the situation of erroneous data association, which is considered
one of the most critical artifacts that might destroy the viability
of the EKF-based method to concurrent localization and map
building.

From this point on we will consider as our standard test
case, and unless otherwise indicated, a planar robot with 3 dof
traversing an environment with 10 landmarks in 100 steps.

A. Data mismatch

Consider the situation where the landmark identification
module is not error-free. Such is the case when we allow the
system a percentage of landmark identification mismatches.
Imagine that we observe say visual landmarks, such as cor-
ners or lines extracted from intensity images, and that our
landmark tracking algorithm is not very accurate at matching
observations in consecutive frames upon illumination changes.
For the sample run shown in Fig. 4a, landmark matching is
performed with a 25 percent probability of mismatch within a
1m radius, and with a sensor with a limited field of view of
2m.

Localization and map building proceeds smoothly until the
first mismatch occurs. The algorithm is not able to recover
from this failure, and when the previously observed landmarks
re-enter the field of view two things happen. On the one hand,
the new observations of the already learned landmarks aid
in reversing the error trend in localization; and on the other
hand, the same new observations are used to revise the mere
location estimates of those landmarks. The contribution to the
revision of the robot pose and landmark location estimates
will be proportional to our degree of trust in the motion and
sensor models respectively. If the plant error covariance V is
large, and the measurement error covariance W is small, the
EKF-CML algorithm trusts more on the observations than on
dead-reckoning, revising more heavily the robot pose estimate
than that of the landmarks. Conversely, when the measurement
error covariance is larger than the plant error covariance, the
algorithm trusts more on the motion of the robot and ends up
revising more heavily the landmark estimates.

Even when the effects of using a limited field of view can
lead to inaccurate localization estimates, we have seen that
the effects of data mismatch are the most pervasive artifact in
CML. Given the fact that the map is fully correlated, landmark
mismaich effects propagate to the localization estimate of all
the landmarks in the model.

The estimation theoretic approach to CML, as presented by
Smith and Cheeseman, and later refined by Leonard, Newman,
Durrant-Whyte, Neira, and Tardés among others, is very
sensitive to data association errors; and as formulated lacks a
theoretical foundation to deal with the problem. Efforts have
been tailored at correcting the effects of data mismatches, and
at finding measures of the spatial compatibility of landmark
correspondence. We go one step further, providing a new
formulation in which temporal landmark quality measures are
also present.

B. Landmark validation

We present now results of the two strategies for the com-
putation of landmark quality herein discussed. First, we show
the results of using the compatibility test to validate landmark
observations in terms of their location within the measurement
innovation covariance only, as discussed in [6]. Fig. 4b shows
the improvement in the localization of the mobile robot when
the spatial compatibility test from Eq. 12 (x? goodness of fit
test) 1s performed, with a confidence level of 95%.
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Next, we include the temporal landmark quality test to our
results. Those landmarks whose probability of association falls
below a given threshold are reinitialized in the map. This is,
they can no longer be used for localization. Figs. 4c and d
show the improvement of using the two temporal landmark
quality tests together with spatial landmark quality association
in CML.

Lastly, we plot in Fig. 5 the norm of the robot localization
error in the xy plane to show a comparison between the orig-
inal EKF-CML algorithm with limited vision range and data
association errors {realistic case of CML); the advantage of
using the individual compatibility test; and the improvements
proposed using both the spatial and temporal compatibility
tests: DAP the data association probability, and EDR: the
exponential decay rule. Fig. 6 shows a sample application of
EKF-CML-LV over a real environment.

VI. CONCLUSIONS

This article presents a revision of the traditional full-
correlation EKF CML algorithm for mobile robot localization
and map building. We extend the traditional algorithm by
adding temporal landmark quality measures, and a temporal
landmark quality test to validate the history of data association.
These quality measures permit the maintenance of the map by
the elimination of inconsistent observations. The removal of
weak landmarks from the state vector and state covariance
matrix does not violate the convergence properties of CML.
Special attention has been paid in the selection of the temporal
landmark quality models, to guarantee that the uncertainty in

Fig. 6. EKF-CML-LV on a real environment,

the map estimates stifl reduces monotonically. The proposed
solution contributes in simplifying the data association prob-
lem in CML.
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