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Abstract An interval propagation method for spherical kinematic loops is used
in a branch and prune algorithm to solve the direct kinematics of par-
allel spherical mechanisms. The algorithm finds all solutions with a
desired resolution. The use of specific properties of the rotation equa-
tions involved allows the method to be more efficient than more general
algorithms for this problem.
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1. Introduction

The direct kinematics of parallel manipulators has proven to be very
complex. In the spatial domain, for example, it is well known that the
general Stewart-Gough platform can have as many as 40 different solu-
tions for a given position of the actuators (Dietmaier, 1998). If we stay
into the domain of spherical mechanisms, we still find that the paral-
lel platform studied in Gosselin et al., 1994 is described by an 8-degree
polynomial and has 8 possible solutions. An alternative to the tradi-
tional algebraic approaches to find the solutions of the direct kinematics
of parallel manipulators consists in using interval methods to progres-
sively reduce the length of the interval containing a solution through a
branch and prune process, until the desired precision is reached. Typical
problems of branch and prune interval methods are the sensitivity to the
size of the initial intervals, the availability of an efficient pruning mech-
anism, and the decision about how much pruning must be done before
branching takes place.

Here we present an interval method for spherical mechanisms that
is well suited for this problem, since it uses an efficient algorithm for
determining the set of all allowed values for a variable in a spherical
kinematic loop. Besides this, a low cost interval propagation algorithm
that provides the set of values for one variable compatible with a given
interval of another one with no overestimation is used for pruning. Using
enough precision in the computations, the method grants to find all the



solutions of the mechanism. Interval methods are also well suited for
underconstrained problems whose solution presents one or more degrees
of freedom, so that the set of allowed values for a variable is not a finite
number of isolated points, but one or more intervals of values. In this
case, the algorithm will return a set of boxes (of the size of the working
resolution) containing the solution.

This paper is structured as follows: first, the procedure to find the
allowed values for variables in rotation equations is described in Section
2, while the algorithm for interval propagation is described in Section
3. In Section 4, the description of the branch and prune algorithm for
the solution of the direct kinematics of parallel spherical manipulators is
presented, and an application example is given in Section 5. The main
conclusions of the paper are resumed in Section 6.

2. Solution sets for variables in spherical
kinematic loops

A spherical kinematic loop yields a rotation equation of the form:

n∏

i=1

Rx(θi)Rz(αi) = I, (1)

where Rx and Rz are rotations around the x and z axis, respectively,
θi are the rotation variables, and αi are constant angular parameters
that can be assumed to be in the interval [0, π]. The rotation equation
written in this form has an intuitive geometric interpretation, according
to which αi are the sides of a spherical polygon, and θi its exterior angles.
For n > 3, equation (1) has, in general, an infinite number of solutions,
that is, each variable θi can take an infinite number of values. In Celaya
and Torras, 1994, a way to describe the solution of a rotation equation
is proposed, that consists in determining the set of allowed values for
each variable. Such a description provides a kind of information that is
not directly available when the solution is expressed in algebraic form,
as for example, the enclosing box (or set of boxes) that contains all
the solution vectors (θ1, ..., θn). This description permits obtaining any
solution vector by sequentially fixing the value of a variable within its
solution set, then finding the set of allowed values for the next variable
in the resulting equation, fixing it to a value within this set, and so on.

The computation of the set of allowed values for a variable θs is sim-
ple provided all parameters αj, (j 6=s) are ≤π/2, a condition that can
always be fulfilled, since the equation can be rewritten by appropriately
substituting sides of length αi>π/2 by sides of length, (π−αi), what
corresponds to consider a supplementary polygon whose relation with
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Figure 1. Solving for θs in a spherical polygon.

the original one is straightforward (Chiang, 1988). Denoting by φs the
arc delimited by the extreme points of sides αs and αs−1 (Fig. 1), we
have, according to the cosine law of spherical trigonometry:

cos φs = cos αs−1 cos αs − sin αs−1 sin αs cos θs, (2)

On the other hand, φs is also the arc delimited by the extreme points of
the chain of sides αj, (j 6=s,s-1), which is a function of θj, (j 6=s-1,s, s+1).
Assuming that αj≤π/2, ∀j 6=s, it can be shown that cos φs can only take
values in the interval [cos σ, cos δ], where σ=min(π,

∑
i6=s,s−1

αi), and
δ=max(0, αM−

∑
i6=M,s,s−1

αi), with αM=maxi6=s,s−1(αi) (see Celaya, 1992
or Celaya and Torras, 1994 for details). Then, using (2), we obtain that
the allowed values for cos θs are those that satisfy:

cos αs−1 cos αs − cos δ

sinαs−1 sinαs

≤ cos θs ≤
cos αs−1 cos αs − cos σ

sin αs−1 sin αs

(3)

Taking into account that the arccos function is double-valued, the set
of allowed values for θs, according to (3), will consist of two symmetric
intervals, except when the left hand side of (3) is ≤−1 or the right-hand
side is ≥1 (or both), in which cases the two intervals join in a single one.

A function denoted by SolveSpherical(eq, θ) will be used in the re-
maining of this paper to provide the set of solution values of variable θ
in the rotation equation eq as explained above.

3. Interval propagation between variables in
spherical kinematic loops

To obtain the set of values Si[θj=xj] of variable θi that are compat-
ible with the value xj of θj, we can rewrite the rotation equation (1)
substituting θj for this value and find the set of allowed values for θi in



the resulting equation using the SolveSpherical() function. But, if what
we are interested in is the set of values of θi that are compatible with an
interval of values Ij of θj, then we will use the propagation algorithm
described next.

Clearly, the set Si[θj∈Ij] of values of θi that are compatible with θj∈Ij,
is a subset of Si=SolveSpherical(eq, θi). Since Si[θj∈Ij] is defined as the
set of all those values of θi that are compatible with any value of θj∈Ij,
it must include, in particular, all the values compatible with the extrema
of the interval. Thus, if Ij=[a, b], then (Si[θj=a]∪Si[θj=b])⊂Si[θj∈Ij].
Therefore, all we need is to check the compatibility in the difference set

Di = Si − (Si[θj = a] ∪ Si[θj = b]).

Note that the set Di is composed of at most six non-intersecting in-
tervals, since each of the Si consists in, at most, two separate intervals.
Due to the symmetry properties of the functions involved, it is possible
to show (see Celaya and Torras, 1994) that each of the intervals com-
posing Di is either completely included in, or completely excluded from
Si[θj ∈ Ij ]. As a consequence, it is sufficient to check the compatibility of
a single value into each interval forming Di. This is done by choosing the
central point xk of each interval (six in the worst case), substituting it in
the equation, and computing the intersection Sj[θi = xk]∩ Ij. If this in-
tersection is 6= ∅, then the whole interval must be included in Si[θj ∈ Ij ],
otherwise it must be excluded. A function denoted by Prop(eq, θj , Ij , θi)
implementing this propagation algorithm will be used in the remaining
of this paper to compute the set Si[θj ∈ Ij].

4. Direct kinematics of parallel spherical
mechanisms

Solving the direct kinematics of a spherical mechanism consists in
computing the orientation of the output link from the values of those
variables of the mechanism’s equations that are taken as input variables.
For sure, the orientation of the output link can be determined once the
values of all variables in the mechanism’s equations are known, though,
in general, this orientation can be directly expressed in terms of just a
subset of the variables that can be considered as the output variables of
the mechanism. So, we can formulate the problem of solving the direct
kinematics of a mechanism as that of finding the values that the output
variables can take when the input variables are fixed to some values.

Consider a parallel spherical mechanism with two independent kine-
matic loops, i.e., two rotation equations of the form (1). Let k be the
number of variables shared between the two equations, excluding the
input variables (since they remain fixed during the solution process).



Obviously, if k=0, each equation can be solved independently, and the
problem does not really correspond to a parallel mechanism. In this
paper, we will restrict our discussion to the cases of k=1 and k=2.

4.1 Two equations sharing one variable

If k=1, the set of solution values for the shared variable θs can be
obtained by computing the set of values allowed by each equation for
this variable and intersecting them. Then, for each solution value of θs,
solution values for all the output variables can be found by solving the
corresponding equation with the fixed value of θs.

4.2 Two equations sharing two variables

In the case of k=2, to obtain the solution values for the shared vari-
ables θs and θt, it is not sufficient to find the sets of values allowed
for them by both equations: it is also necessary that the values of the
two variables are simultaneously compatible with each other in the two
equations. To grant this, the propagation algorithm can be used in an
iterative process: Once the set of values for θs allowed by the two equa-
tions is obtained, it is propagated to θt through both equations, and the
resulting sets are intersected. The so obtained set of values for θt is then
propagated back to θs through both equations and intersected with the
initial set for θs to get a smaller set for it. This process is iterated until
the convergence to a stable set for θs is reached.

If the process converged to an isolated value, this is a solution for
θs, and the corresponding values of θt and of all output variables can
be obtained as in the case of k=1, after fixing θs to the solution value.
If the process converged to a set that is not an isolated value, it must
be split in two subsets, and the process must be recursively repeated in
each subset until all of them either vanish or converge to isolated values
(or to subsets of a size smaller than the working resolution ǫ). The
resulting algorithm, called SolveParallelSpherical(), is shown in Fig. 2.
It receives 6 arguments, the two rotation equations, the shared variables
θs and θt, and their initial sets of values Is and It into which solution
values are looked for. The algorithm returns the set of all solution values
for the shared variable θs contained in Is.

In order to improve efficiency, the loop for the convergence to a stable
set of values for θs is stopped as soon as the reduction obtained in a
single iteration is less than 50%, in which case, the set is immediately
split in two halves. Since, when one half of the set does not contain a
solution, it usually vanishes after the first iterations, this strategy makes
that most iterations result in a reduction of the set in, at less, one half,



SolveParallelSpherical(eqA, eqB, θs, Is, θt, It)

As = SolveSpherical(eqA, θs)
Bs = SolveSpherical(eqB, θs)
Is = Is ∩ As ∩ Bs

L0 = ∞
Ls = length(Is)

DO WHILE (Ls > ǫ) AND (Ls < L0/2)
At = Prop(eqA, θs, Is, θt)
Bt = Prop(eqB, θs, Is, θt)
It = It ∩ At ∩ Bt

As = Prop(eqA, θt, It, θs)
Bs = Prop(eqB, θt, It, θs)
Is = Is ∩ As ∩ Bs

L0 = Ls
Ls = length(Is)

END DO

IF (Ls < ǫ) THEN RETURN(Is)
ELSE

Split Is into I1s, I2s

S1 = SolveParallelSpherical(eqA, eqB, θs, I1s, θt, It)
S2 = SolveParallelSpherical(eqA, eqB, θs, I2s, θt, It)
RETURN(S1 ∪ S2)

END

Figure 2. Recursive branch and prune algorithm to find the solution values of
variable θs for two rotation equations sharing variables θs and θt.

which implies exponential convergence. Other improvements have been
implemented to skip the execution of propagation steps through one of
the equations when the resulting interval reduction is not large enough.

5. Example

We consider the spherical parallel manipulator analized in Gosselin et
al., 1994. It consists of two platforms connected by three identical legs,
each formed by two links joined by a revolute pair. The schematics of
the general mechanism, assuming some symmetries in the parameters,
is shown in Fig. 3.
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Figure 3. Parallel spherical manipulator and relation between the shared variables.

Two independent rotation equations are obtained from cycles involv-
ing legs 1,2 and 2,3, respectively:

Rx(θ1)Rz(α1)Rx(µ1)Rz(α2)Rx(ρ1)Rz(γ2)
Rx(ρ′

2
)Rz(α2)Rx(−µ2)Rz(α1)Rx(θ′

2
)Rz(γ1) = I,

Rx(θ2)Rz(α1)Rx(µ2)Rz(α2)Rx(ρ2)Rz(γ2)
Rx(ρ′

3
)Rz(α2)Rx(−µ3)Rz(α1)Rx(θ′

3
)Rz(γ1) = I,

where the inputs are the angles θ1, θ2, θ3 of the joints bi of the base
link, that we define as shown in Fig. 3. Angles θ′i are related to the
input angles θi in the form: θ′i = π-θi-ξ1, where ξ1 is the exterior angle
of the spherical equilateral triangle of sides γi, which, according to the
cosine law, is given by cos ξ1 = (cos2 γ1 − cos γ1)/ sin2 γ1. Similarly, for
the angles ρi of the end effector joints ai, we have ρ′i = π-ρi-ξ2, with
cos ξ2 = (cos2 γ2 − cos γ2)/ sin2 γ2.

In summary, once the input variables θi are given fixed values, we
have two rotation equations sharing two variables, µ2 and ρ2, that can
be solved with the SolveParallelSpherical() algorithm.

Taking the same parameter values used in Gosselin et al., 1994, γ1=π/7,
γ2=π/2, α1=1.12, α2=1.32, and solving the mechanism for the input val-
ues θi=−π/3, the algorithm returns the eight solutions shown in Tb. 2,
whose correctness can be checked by substituting these values into the
rotation equations. In this case, to find the 8 solutions the algorithm
performs the minimal number of interval partitions: 7, and the mean
reduction rate at each iteration of the pruning process is above 75%.



Table 1. Solution values for θ1 = θ2 = θ3 = −π/3.

1 2 3 4 5 6 7 8

ρ2 3.71014 4.14384 .01532 5.45702 6.03943 1.55548 1.81455 2.39696

µ2 3.74975 3.10884 .96645 5.27620 4.75242 5.89215 2.10617 1.58239

ρ1 2.39695 1.81454 .01532 4.14384 3.71013 1.55548 5.45703 6.03944

µ1 1.58239 2.10617 .96645 3.10884 3.74975 5.89215 5.27620 4.75242

ρ3 6.03943 5.45702 .01532 1.81455 2.39696 1.55548 4.14384 3.71013

µ3 4.75242 5.27620 .96645 2.10618 1.58239 5.89215 3.10884 3.74975

6. Conclusions

Interval propagation methods are a good alternative to numerical ap-
proaches when closed form algebraic solutions are not available. The
method presented here is specific for spherical mechanisms, thus it may
take advantage of the availability of the interval propagation algorithm
to reduce the solution interval, what makes the algorithm better suited
for this problem than more general interval methods. The algorithm is
rather insensitive to the selection of the initial intervals, since it starts by
reducing the sets of values for the variables to those allowed by the two
equations, which in combination with the propagation method, tends to
quickly isolate the different solutions.
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