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The Kalman Filter developed in the early sixties by R.E. Kalman [7, 8]
is a recursive state estimator for partially observed non-stationary stochastic
processes. It gives an optimal estimate in the least squares sense of the actual
value of a state vector from noisy observations.

1 Recursive State Estimation

Consider a discrete-time stochastic process

xk+1 = f(xk,uk,vk) (1)

with system input u and unmodeled process dynamics plus noise v. The task at
hand is to find an estimate of the state vector x. However, x is only accessible
from noise distorted sensor measurements

zk = h(xk,wk) (2)

in which as with the process model, w represents observation model inaccuracies
and sensor noise.

Recursive state estimation consists on iteratively reconstructing the state
vector from our knowledge of the process dynamics, the measurement model,
and the sensed data.

Let xi|j , i ≥ j, be the estimate of the state xi using the observation infor-
mation up to and including time j, Zj = {z0, . . . , zj}. Given an estimate xk|k,
and the input to the system uk, the predicted state xk+1|k is ideally given by
the expectation

xk+1|k = E[f(xk,uk,vk)|Zk]. (3)
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We call xk+1|k the a priori estimate of xk+1, and compute it from a noise-
free version of Eq. 1, the estimate xk|k, and the input that hypothetically would
drive the process from xk to xk+1

xk+1|k = f(xk|k,uk,0). (4)

Combining this result with the discrete-time measurement model from Eq. 2,
we can also predict a noise-free a priori estimate of the sensor measurements

zk+1|k = h(xk+1|k,0). (5)

By comparing the actual measurement vector zk+1 with the predicted data
zk+1|k, we obtain an observation prediction error which in turn is added in a
correction term to the a priori state estimate to produce an a posteriori state
estimate.

xk+1|k+1 = xk+1|k + Kk+1(zk+1 − zk+1|k). (6)

The choice of the gain matrix K usually meets some optimality criteria. In
the case of the Kalman Filter, the stochastic nature of the process and mea-
surement dynamics is taken into account in the derivation of K, producing an
optimal linear estimator that minimizes the squared error on the expected value
of the state estimate xk+1|k+1.

2 Linear Kalman Filter

Consider the case in which the process and measurement models correspond to a
possibly non-stationary1 discrete-time linear system, and that both the process
and sensor noises are zero-mean white2 and Gaussian with covariance matrices
Qk and Rk respectively, then Eqs. 1 and 2 become

xk+1 = Fkxk + uk + vk (7)

zk = Hkxk + wk (8)

where

E[vk] = 0, E[vkvk
>] = Qk, and E[vivj

>] = 0, ∀i 6= j (9)

E[wk] = 0, E[wkwk
>] = Rk, and E[wiwj

>] = 0, ∀i 6= j (10)

The a priori and a posteriori state estimation errors can be written as

ek+1|k = xk+1 − xk+1|k (11)

ek+1|k+1 = xk+1 − xk+1|k+1 (12)

1Hence Kalman filter’s beauty, compared to its predecessor the Weiner filter that only

works for stationary linear systems.
2Temporally uncorrelated and with equal power at all frequencies.
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and from the linear model in Eq. 7, the noise-free a priori state estimate in Eq. 4
takes the form

xk+1|k = Fkxk|k + uk. (13)

It follows that the a priori state estimate error is given by

ek+1|k = Fkek|k + vk. (14)

Substituting Eq 6 and the observation models

zk+1|k = Hk+1xk+1|k

and
zk+1 = Hk+1xk+1 + wk+1

in Eq. 12, we obtain a recursive expression for the a posteriori state estimation
error

ek+1|k+1 = ek+1|k − Kk+1(Hk+1ek+1|k + wk+1). (15)

The state error covariances are given by the expectations of the square of
the state errors.

Pk+1|k = E[ek+1|kek+1|k
>] (16)

Pk+1|k+1 = E[ek+1|k+1ek+1|k+1
>]. (17)

Substituting Eq. 14 in Eq. 16 and taking the expectations on v, we get the
following expression for the a priori state error covariance

Pk+1|k = FkPk|kFk
> + Qk. (18)

For simplicity of notation, in the sequel we rewrite the dependencies (k+1|k)
and (k+1|k+1) as 	 and ⊕ respectively, and when no step reference is provided,
(k + 1) is assumed. Substituting Eq. 12 in Eq. 17 and taking the expectations
on w and e	, the a posteriori error covariance takes the form

P⊕ = P	 − P	H>K> − KHP	 + K(HP	H> + R)K>. (19)

The gain matrix K is chosen to minimize the a posteriori error covariance.
Making the derivative of the trace of P⊕ with respect to K equal to 0, and
solving for K we get the optimal gain for the computation of Eq. 6, i.e., the
Kalman gain

K = P	H>(HP	H> + R)−1. (20)

Substituting Eq. 20 back in Eq. 19 reduces P⊕ to the well known form

P⊕ = P	 − KHP	. (21)

By inspecting the Kalman filter equations the behavior of the filter agrees
with our intuition. The Kalman gain is proportional to the uncertainty in the
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state estimate and inversely proportional to that in the measurements. If sensor
readings are very uncertain, and the state estimate is relatively precise, then
the Kalman gain has little impact on the update of the state estimate in Eq. 6,
and the system relies heavily on the system model. If, on the other hand,
the uncertainty in the measurement is small and that in the state estimate is
large, then K is also large, thus trusting more in sensor measurements for the
correction of the state estimate.

However, when sensor measurements are uncertain the second term in Eq. 21
is small and the state estimate error covariance sees little reduction. Conversely,
accurate sensor measurements contribute considerably in reducing the state es-
timation error.

Given the initial conditions x0|0 and P0|0, the complete recursion in the
Kalman filter is computed iteratively with the following steps:

• Predict the a priori state, error covariance, and observation estimates

x	 = Fkxk|k + uk

P	 = FkPk|kFk
> + Qk

z	 = Hx	

• Compute the Kalman gain and correct the state and state error covariance
estimates

K = P	H>(HP	H> + R)−1

x⊕ = x	 + K(z − z	)

P⊕ = P	 − KHP	

3 Extended Kalman Filter

Consider now the case when the process and observation models in Eqs. 1 and
2 are non-linear. The Extended Kalman Filter (EKF) provides a solution by
linearizing the process about the current state, and linearizing the measurement
model about the predicted observation.

The linearization of f about the current estimate xk|k can be formulated as
a Taylor series with the higher order terms dropped, that is:

x ≈ x	 + ∇fx(xk − xk|k) + ∇fvvk.

Similarly, the linearization of the observation model takes the form

z ≈ z	 + ∇hx(x − x	) + ∇hww.

The noise-free estimates x	 and z	 are given in Eqs. 4 and 5, and the various
Jacobian matrices contain the partial derivatives of f and h with respect to x
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and the noises v and w
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Following the same discussion as in the previous section but with this new
linear model, it is easy to show how the complete recursion for the Extended
Kalman Filter involves the following steps:

• Predict the a priori state and observation estimates as well as the a priori
state error covariance estimate

x	 = f(xk|k,uk,0)

P	 = ∇fxPk|k∇fx
> + ∇fvQk∇fv

>

z	 = h(x	,0)

• Compute the Kalman gain and correct the state and state error covariance
estimates

K = P	∇hx

>(∇hxP
	∇hx

> + ∇hwR∇hw

>)−1

x⊕ = x	 + K(z − z	)

P⊕ = P	 − K∇hxP
	

It is important to note however, that the linearization of the nonlinear pro-
cess and measurement models in the EKF does not preserve the distributions
of the state and measurement random variables as normal. This may lead to
difficulties in the implementation and tuning of the EKF, making it only reliable
for systems that are almost linear on the time scale interval (k, k + 1).

4 Conditioning

It turns out that the recursion in Eq. 21 is ill-conditioned. As the filter converges,
the cancelling of significant digits on P⊕ may lead to asymmetries or to a non
positive semi definite (psd) matrix, which cannot be true from the definition in
Eq. 17 of the a posteriori error covariance matrix.

An algebraic manipulation that guarantees P⊕ psd is obtained by multiply-
ing Eq. 20 by (HP	H> + R)K>, rearranging terms

KHP	H>K> − P	H>K> + KRK> = 0 (22)
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and adding Eq. 22 into Eq. 21

P⊕ = (I − KH)P	(I − KH)> + KRK> (23)

The recursivity in Eq. 23 is known as the Joseph form of the a posteriori
error covariance matrix, and given its quadratic nature it is obviously psd.

5 Sequential Innovation

When combining information from multiple sensors or from multiple data sources,
the observation vector z can be seen as a collection of n independent mea-
surements z(i) coming from the same number of independent sources at any
particular time instance (k + 1).

It is possible to process each of these observations independently provided
R is block diagonal. This is, when the set of measurements taken at the same
time interval are uncorrelated. Even when the measurements are correlated,
they may always be transformed into uncorrelated data which then may be
treated sequentially. The process is called whitening (see [3]).

Starting from x⊕,0 = x	, and P⊕,0 = P	, the a posteriori state estimate is
iteratively given by

x⊕,i = x⊕,i−1 + K(i)

(

z(i) − H(i)x⊕,i−1
)

.

The key advantage of the sequential innovation method is that the com-
plexity in the computation of the Kalman gain is reduced considerably. From
Eq. 20

K(i) = P⊕,i−1H(i)>
(

H(i)P⊕,i−1H(i)> + R(i)
)−1

. (24)

The required inverse in Eq. 24 has the dimension of each of the observed
variables, and is considerably much smaller than the dimension of the entire
measurement vector z as required in Eq. 20. When a sensor returns scalar
values for each independent measurement, then the inverse in Eq. 24 becomes
just a scalar division.

Given the initial conditions x0|0 and P0|0, the complete sequential innovation
Kalman filter recursion is computed with the following steps:

• Predict the a priori state and state error covariance

x	 = Fkxk|k + uk

P	 = FkPk|kFk
> + Qk

• For each measurement, iteratively compute the corresponding innovation
and Kalman gain column and correct the state and state error covariance
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estimates

initialize x⊕,0 = x	

P⊕,0 = P	

∀i K(i) = P⊕,i−1H(i)>
(

H(i)P⊕,i−1H(i)> + R(i)
)−1

x⊕,i = x⊕,i−1 + K(i)

(

z(i) − H(i)x⊕,i−1
)

P⊕,i = P⊕,i−1 − K(i)H
(i)P⊕,i−1

restore x⊕ = x⊕,n

P⊕ = P⊕,n

6 Bibliographical Notes

The reader can find thorough discussions on the Kalman Filter in [1, 2, 7, 8,
9, 10, 11, 13], and on its predecessor the Weiner Filter in [4]. One approach
to reduce the effect of nonlinearities is to apply iteratively the filter (IEKF)
as in [15]. Another solution is to use the Unscented Kalman Filter (UKF), an
extension to the EKF that takes into account the nonlinear transformation of
means and covariances [5, 6]. Numerical instability may occur even with the
Joseph form of the error covariance matrix. An alternative is the use of the
square-root Kalman filter (SKF), in which recursive computations for P⊕ are

substituted by equations for a recursion in P⊕1/2
[2]. Sequential innovation in

Kalman filtering is discussed in detail in [1, 2, 12, 14].
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