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tSymmetry often appears in real-world 
onstraint satisfa
tion problems, but strategies for ex-ploiting it are only beginning to be developed. Here, a framework for exploiting symmetry withindepth-�rst sear
h is proposed, leading to two heuristi
s for variable sele
tion and a domain prun-ing pro
edure. These strategies are then applied to two highly symmetri
 
ombinatorial problems,namely the Ramsey problem and the generation of balan
ed in
omplete blo
k designs. Experimentalresults show that these general-purpose strategies 
an 
ompete with, and in some 
ases outperform,previous more ad ho
 pro
edures.
�This paper is an extended and updated version of [17℄, presented at the IJCAI-99 
onferen
e.1



1 Introdu
tionSymmetry is present in many natural and arti�
ial settings. A symmetry is a transformation of an entitysu
h that the transformed entity is equivalent to and indistinguishable from the original one. We 
an seesymmetries in nature (a spe
ular re
e
tion of a daisy 
ower), in human artifa
ts (a 
entral rotation of180 degrees of a 
hessboard), and in mathemati
al theories (inertial 
hanges in 
lassi
al me
hani
s). Theexisten
e of symmetries in these systems allows us to generalize the properties dete
ted in one state toall its symmetri
 states.Regarding 
onstraint satisfa
tion problems (CSPs), many real problems exhibit some kind of symme-try, embedded in the stru
ture of variables, domains and 
onstraints. This means that their state spa
eis somehow �
titiously enlarged by the presen
e of many symmetri
 states. From a sear
h viewpoint, itis advisable to visit only one among those states related by a symmetry, sin
e either all of them lead toa solution or none does. This may 
ause a drasti
 de
rease in the size of the sear
h spa
e, whi
h wouldhave a very positive impa
t on the eÆ
ien
y of the 
onstraint solver.Previous works on symmetri
 CSPs have been aimed at eradi
ating symmetries from either the initialproblem state spa
e or the expli
it sear
h tree as it is developed. The former approa
h, advo
atedby Puget [20℄, 
onsists in redu
ing the initial state spa
e by adding symmetry-breaking 
onstraints tothe problem formulation. The goal is to turn the symmetri
 problem into a new problem withoutsymmetries, but keeping the non-symmetri
 solutions of the original one. Although this ideal goal isseldom rea
hed, the redu
tions attained are substantial enough to turn some hard 
ombinatorial problemsinto manageable ones. For generi
 problem statements, the dete
tion of symmetries and the formulationof the ad ho
 symmetry-breaking 
onstraints is performed by hand [20℄. Alternatively, in the 
ontextof propositional logi
, existing symmetries and the 
orresponding symmetry-breaking predi
ates 
an be
omputed automati
ally [7℄, although with a high 
omputational 
omplexity.The se
ond approa
h, namely pruning symmetri
 states from the sear
h tree as it develops, entailsmodifying the 
onstraint solver to take advantage of symmetries. A modi�ed ba
ktra
king algorithmappears in [4℄, where ea
h expanded node is tested to assess whether it is an appropriate representativeof all the states symmetri
 to it. Con
erning spe
i�
 symmetries, neighborhood inter
hangeable valuesof a variable are dis
ussed in [10℄, while value pruning after failure for strongly permutable variables isproposed in [21℄. This last strategy 
an be seen as a parti
ular 
ase of the symmetry ex
lusion methodintrodu
ed in [1℄ for 
on
urrent 
onstraint programming, and applied to the CSP 
ontext in [12℄.In this paper, we propose a third approa
h to exploit symmetries inside CSPs. The idea is to usesymmetries to guide the sear
h. More spe
i�
ally, the sear
h is dire
ted towards subspa
es with a highdensity of non-symmetri
 states, by breaking as many symmetries as possible with ea
h new variableassignment. This is the rationale for our symmetry-breaking heuristi
 for variable sele
tion, whi
h 
anbe theoreti
ally 
ombined with the popular minimum-domain heuristi
. The result of this 
ombinationis the new variety-maximization heuristi
 for variable sele
tion, whi
h has been shown more e�e
tivethan symmetry-breaking or minimum-domain separatedly, and it has speeded up signi�
antly the solvingpro
ess of CSPs with many symmetries. For problems without a solution, variable sele
tion heuristi
s 
ando nothing to avoid revisiting symmetri
 states along the sear
h. To 
ope with this short
oming, we havedeveloped several value pruning strategies (in the spirit of the se
ond approa
h mentioned above), whi
hallow one to redu
e the domain of the 
urrent or future variables. These strategies remove symmetri
values, without removing non-symmetri
 solutions. In parti
ular, there is a strategy based on nogoodslearned in previous sear
h states. Problem symmetries allow us to keep limited the potentially exponentialsize of the nogood storage. This strategy has been shown very e�e
tive for hard solvable and unsolvableinstan
es. Results for the Ramsey problem and for the generation of balan
ed in
omplete blo
k designs(BIBDs) are provided. On
e a set of symmetries is spe
i�ed, our approa
h provides a general-purposeme
hanism to exploit them within the sear
h. Moreover, it 
an be 
ombined with the two previousapproa
hes and in
orporated into any depth-�rst sear
h pro
edure.The paper is stru
tured as follows. In Se
tion 2, we introdu
e some basi
 
on
epts. Se
tion 3 presentsthe symmetry-breaking heuristi
 and its 
ombination with the minimum-domain one, generating thevariety-maximization heuristi
. Se
tion 4 details several strategies for symmetri
 value pruning alongthe sear
h, espe
ially those based on nogood re
ording. Se
tion 5 is devoted to the Ramsey and BIBDproblems. Finally, Se
tion 6 puts forth some 
on
lusions and prospe
ts for future work.2



2 Basi
 De�nitions2.1 Constraint Satisfa
tionA �nite CSP is de�ned by a triple (X ;D; C), where X = fx1; : : : ; xng is a set of n variables, D =fD(x1); : : : ; D(xn)g is a 
olle
tion of domains, D(xi) is the �nite set of possible values for variable xi,and C is a set of 
onstraints among variables. A 
onstraint 
i on the ordered set of variables var(
i) =(xi1 ; : : : ; xir(i)) spe
i�es the relation rel(
i) of the allowed 
ombinations of values for the variables invar(
i). An element of rel(
i) is a tuple (vi1 ; : : : ; vir(i)); vi 2 D(xi). An element of D(xi1)�� � ��D(xir(i) )is 
alled a valid tuple on var(
i). A solution of the CSP is an assignment of values to variables whi
hsatis�es every 
onstraint. A nogood is an assignment of values to a subset of variables whi
h does notbelong to any solution. Typi
ally, CSPs are solved by depth-�rst sear
h algorithms with ba
ktra
king.At a point in sear
h, P is the set of assigned or past variables, and F is the set of unassigned or futurevariables. The variable to be assigned next is 
alled the 
urrent variable.A 
lassi
al example of CSP is the n-queens problem. It 
onsists in pla
ing n 
hess queens on a n� n
hessboard in su
h a way that no pair of queens is atta
king one another. Constraints 
ome from 
hessrules: no pair of queens 
an o

ur at the same row, 
olumn or diagonal. This problem is taken as runningexample throughout the paper.2.2 SymmetriesA symmetry on a CSP is a 
olle
tion of n+ 1 bije
tive mappings f�; �1; : : : ; �ng de�ned as follows,� � is a variable mapping, � : X ! X� f�1; : : : ; �ng are domain mappings, �i : D(xi)! D(�(xi))� 
onstraints are transformed by the adequate 
ombination of variable and domain mappings; a
onstraint 
i is transformed into 
�i , with var(
�i ) = (�(xi1 ); : : : ; �(xir(i))) and rel(
�i ) =f(�i1(vi1); : : : ; �ir(i)(vir(i) ))g,su
h that the set C remains invariant by the a
tion of the symmetry, i.e., 8
j 2 C, the transformed
onstraint 
�j is in C. There exists always a trivial symmetry, that in whi
h the variable mapping andthe domain mappings are all the identity. The remaining symmetries, those interesting for our purposes,will be referred to as nontrivial symmetries. Moreover, when no ambiguity may o

ur, we will denote asymmetry f�; �1; : : : ; �ng by its variable mapping �.Note that the above de�nition of symmetry applies to CSPs, i.e., to problems formulated in termsof a triple (X ;D; C), and not to problems in general. To make this point 
lear, 
onsider the n-queensproblem, whi
h admits at least nine di�erent problem formulations as a CSP [18℄. These formulationsvary in the number of variables, sizes of the domains, and 
onstraint set. They spe
ify di�erent CSPsand, as su
h, it is not surprising that they have di�erent symmetries.Let us 
onsider the most widely used formulation, namely that in whi
h variables are 
hessboard rowsand domains are 
olumn indi
es. Figure 1 shows an example of a symmetry using this formulation inthe 
ase of 5 queens. It is a 
entral rotation of 180 degrees, whi
h ex
hanges variables x1 with x5 andx2 with x4, and maps domains with the fun
tion �i(v) = 6 � v, i = 1; : : : ; 5. This transformation is asymmetry be
ause the mappings on variables and domains are bije
tive, and the set of 
onstraints is leftinvariant by the transformation of variables and values. For example, the transformed 
onstraint 
�12 is
omputed as follows,var(
�12) = (�(x1); �(x2)) = (x5; x4) = var(
45)rel(
�12) = f(�1(1); �2(3)); (�1(1); �2(4)); (�1(1); �2(5)); (�1(2); �2(4)); (�1(2); �2(5)); (�1(3); �2(1));(�1(3); �2(5)); (�1(4); �2(1)); (�1(4); �2(2)); (�1(5); �2(1)); (�1(5); �2(2)); (�1(5); �2(3))g == f(5; 3); (5; 2); (5;1); (4;2); (4; 1); (3;5); (3;1); (2; 5); (2;4); (1;5); (1; 4); (1; 3)g= rel(
45)Thus, 
�12 = 
45. Two other nontrivial symmetries of this CSP formulation of 5-queens are the re
e
tionsabout the horizontal and verti
al axes, as depi
ted in Figure 2. The remaining four symmetries of the
hessboard are not symmetries of this formulation. 3
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�14 = 
25; 
�15 = 
15 ; 
�23 = 
34; 
�24 = 
24 ; 
�25 = 
14; 
�34 = 
23 ; 
�35 = 
13; 
�45 = 
12Figure 1: Central rotation of 180 degrees is a symmetry of the 5-queens problem.x1 1 2 3 4 5 x1 5 4 3 2 1x2 1 2 3 4 5 x2 5 4 3 2 1x3 1 2 3 4 5 x3 5 4 3 2 1x4 1 2 3 4 5 x4 5 4 3 2 1x5 1 2 3 4 5 x5 5 4 3 2 1x5 1 2 3 4 5x4 1 2 3 4 5x3 1 2 3 4 5x2 1 2 3 4 5x1 1 2 3 4 5Figure 2: Two other symmetries of the 5-queens problem. Top-right: re
e
tion about the verti
al axis. Bottom-left: re
e
tion about the horizontal axis.Now, let us turn to the formulation of n-queens where ea
h queen is a variable whose domain 
ontainsall the squares of the 
hessboard. The eight symmetries of the 
hessboard and all permutations of queensare symmetries of this parti
ular CSP formulation.Taken together, the two examples above illustrate the remark we made that our de�nition of symmetryapplies to CSP formulations and not to problems in general. Su
h symmetries 
an be viewed as mappinga triple (X ;D; C) onto itself, whi
h is needed to stay within the formulation. Thus, transformations that
hange variables into values and vi
e versa, as would be required to represent a rotation of 90 degreesunder the formulation in Figure 1, are not allowed within our framework.Following [23℄, we say that two variables xi, xj are symmetri
 if there exists a symmetry � su
h that�(xi) = xj. This 
on
ept generalizes the previous de�nition of strong permutability [21℄: xi and xj arestrongly permutable if they play exa
tly the same role in the problem, i.e., if there exists a symmetry �su
h that its only a
tion is ex
hanging xi with xj (�(xi) = xj, �(xj) = xi, �(xk) = xk, 8k 6= i; j, �k = I,8k, I being the identity fun
tion). We say that two values a; b 2 D(xi) are symmetri
 if there exists asymmetry � su
h that �(xi) = xi and �i(a) = b. This 
on
ept generalizes previous de�nition of valueinter
hangeability [10℄: a and b are neighbourhood inter
hangeable if they are 
onsistent with the sameset of values, i.e., if there exists a symmetry � su
h that its only a
tion is ex
hanging a with b (� = I,�i(a) = b, �i(b) = a, �i(
) = 
, 8
 6= a; b, �k = I, 8k 6= i).The set of symmetries of a problem forms a group with the 
omposition operator [23℄. Be
ause of this,it 
an be shown that the symmetry relation between variables is an equivalen
e relation. The existen
e ofthis equivalen
e relation divides the set X in equivalen
e 
lasses, ea
h 
lass grouping symmetri
 variables.Domains are also divided into equivalen
e 
lasses by symmetries a
ting on values only (with identity4



x1 - - - x1 - - q - - x1 q - - - -x2 - - x2 - - - x2 - -x3 - - q - - x3 - - - x3 - -x4 - - - x4 - x4 - -x5 - - - x5 - x5 - -sa sb s
Figure 3: Three states of the 5-queens problem, with di�erent types of lo
al symmetries.x1 - q - - - x1 - q - - -x2 - - - x2 - - - -x3 - - x3 - -x4 - - x4 - - - -x5 - x5 - - - q -sa sbFigure 4: The 
entral rotation symmetry is broken in sa and restored in sb.variable mapping). Regarding the 5-queens problem under the formulation of Fig. 1, there are threeequivalen
e 
lasses of variables: fx1; x5g, fx2; x4g and fx3g. Con
erning values, there are also threeequivalen
e 
lasses: f1; 5g, f2; 4g and f3g. Neither strongly permutable variables nor neighbourhoodinter
hangeable values exist in this problem.2.3 Symmetries in Sear
hSymmetries 
an o

ur in the initial problem formulation, and also in any sear
h state s, 
hara
terized byan assignment of past variables plus the 
urrent domains of future variables. State s de�nes a subproblemof the original problem, where the domain of ea
h past variable is redu
ed to its assigned value and therelation rel(
i) of ea
h 
onstraint 
i is redu
ed to its valid tuples with respe
t to 
urrent domains. Asymmetry holds at state s if it is a symmetry of the subproblem o

urring at s. A symmetry holding ats is said to be lo
al to s if it does not 
hange the assignments of past variables 1. The set of symmetrieslo
al to s forms a group with the 
omposition operation. A symmetry holding at the initial state s0is 
alled a global symmetry of the problem. Any global symmetry is lo
al to s0, the state where theset of past variables is empty. Symmetries depi
ted in Figures 1 and 2 are global symmetries of the 5-queens problem. An important property of symmetries is that they are solution-preserving, transformingsolutions into solutions.Let s be a sear
h state with symmetry � lo
al to it, and s0 a su

essor state. We say that the assignmento

urring between s and s0 breaks symmetry � if � is not lo
al to s0. Typi
ally, symmetries lo
al to s areglobal symmetries that have not been broken by the assignments o

urring between s0 and s. However,this is not always the 
ase. New symmetries may appear in parti
ular states. For the 5-queens problem,some states with lo
al symmetries appear in Figure 3. State sa keeps as lo
al the three nontrivial globalsymmetries of the problem, sin
e none is broken by the assignment of x3. State sb keeps as lo
al there
e
tion about the verti
al axis only, sin
e the 
entral rotation and the other re
e
tion are broken bythe assignment of x1. In state s
, all nontrivial global symmetries are broken by the assignment of x1but a new symmetry appears: a 
entral rotation of 180 degrees on the 4� 4 subboard involving variablesfrom x2 to x5 and 
olumns from 2 to 5. A broken symmetry 
an be restored by another assignment, as1Noti
e that this de�nition di�ers from the one appearing in [17℄ in that the mapping on past variables is not requiredto be the identity. 5
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xFigure 5: Sear
h tree generated to solve the equation x+y2z2 = 2 under two variable orderings. Symmetri
 statesoriginated by permutable variables are 
onne
ted by shadowed lines, while those arising from inter
hangeablevalues are joined by broken lines. Solutions are marked with squares.it 
an be seen in Figure 4. In state sa the assignment of x1 breaks the 
entral rotation symmetry, whi
his restored after the assignment of x5 in state sb.3 Heuristi
s Based on Symmetries3.1 The Symmetry-Breaking Heuristi
We argue that breaking as many symmetries as possible at ea
h stage is a good strategy to speed up thesear
h. Let us �rst illustrate some points with a simple example. Consider the equation x + y2z2 = 2,where all variables take values in f�1; 0; 1g. There are 5 non trivial symmetries, derived from 
ombiningthe permutability of y and z, with the sign irrelevan
e of both y and z. They 
an be brie
y indi
ated asfollows:1. �(y) = z, �(z) = y;2. �y = �I;3. �z = �I;4. �y = �I, �z = �I;5. �(y) = z, �(z) = y, �y = �I, �z = �I;where I is the identity mapping, and all the entries not spe
i�ed are also the identity.Symmetry 1 is a permutation of variables, symmetries 2-4 inter
hange values, whereas symmetry 5entails 
hanges in both variables and values. Note that variables y and z are involved in 4 non trivialsymmetries ea
h, while variable x is involved in none.Figure 5 displays two sear
h trees for that equation, following the variable orderings x; y; z and y; z; x.In the upper tree, no symmetry is broken after assigning x, and therefore all symmetries a
t inside ea
hsubtree at the �rst level, leading to a low density of distin
t �nal states 
onsidered whatever the valueassigned to x. This 
an be more easily visualized in Fig. 6, where states symmetri
 to a previouslyexpanded one have been removed. There are only 3 distin
t states among the 9 �nal states 
onsideredin ea
h of the three subtrees resulting from assigning a value to x. For the leftmost subtree, these are(x; y; z)=(-1,-1,-1), (-1,-1,0) and (-1,0,0). 6
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t of pruning on the sear
h trees in Fig. 5.Under the se
ond ordering, represented in the lower tree of Fig. 5, symmetries 1, 2, 4 and 5 are brokenafter assigning y, and thus only states repli
ated by symmetry 3 appear inside subtrees at the �rst level.Con
retely, there are 6 distin
t states among the 9 �nal states 
onsidered in ea
h of the three subtreesresulting from assigning a value to y. For the leftmost subtree, these are (y; z; x)=(-1,-1,-1), (-1,-1,0),(-1,-1,1), (-1,0,-1), (-1,0,0) and (-1,0,1). The density of distin
t �nal states in ea
h subtree at the �rst levelis thus mu
h higher here (2/3) that under the �rst ordering (1/3). Again note that this is independentof the value assigned to y. If, in Figure 6, the subtree 
orresponding to y = 0 or y = 1 would have beenexpanded �rst, instead of that for y = �1, then the 
orresponding subtree would equally have six distin
t�nal states.When one has no a priori knowledge on the distribution of solutions a
ross the state spa
e, trying tomaximize the density of distin
t �nal states 
onsidered at ea
h sear
h stage looks like a good strategy.This is the rationale for the following variable sele
tion heuristi
.Symmetry-breaking heuristi
: Sele
t for assignment the variable involved in the greatest number ofsymmetries lo
al to the 
urrent state.The above greedy heuristi
, whi
h tries to break as many symmetries as possible at ea
h new variableassignment, produ
es the following bene�ts,1. Wider distribution of solutions. Symmetri
 solutions will spread out under di�erent subtrees insteadof grouping together under the same subtree. This in
reases the likelihood of �nding a solutionearlier. Take the equation in the example above. It has four solutions, namely (x = 1; y = �1; z =�1), (x = 1; y = �1; z = 1), (x = 1; y = 1; z = �1) and (x = 1; y = 1; z = 1). Under the �rstvariable ordering, they are all grouped below the rightmost subtree, while under the se
ond, theyspread two subtrees.2. Lookahead of better quality. A lookahead algorithm prunes future domains taking into a

ount pastassignments. When symmetries on future variables are present, some of the lookahead e�ort isunprodu
tive. If there is a symmetry � su
h that �(xj) = xk, with xj; xk 2 F , after lookaheadon D(xj), lookahead on D(xk) is obviously redundant be
ause it will produ
e results equivalent(through �) to lookahead on D(xj). If no symmetries are present, no lookahead e�ort will beunprodu
tive. Therefore, the more symmetries are broken, the less unprodu
tive e�ort lookaheadperforms. When the number of symmetries is high, savings in unprodu
tive lookahead e�ort 
anbe substantial. 7



3. More e�e
tive pruning. Several te
hniques to prune symmetri
 states have been proposed in theliterature, su
h as those based on neigbourhood inter
hangeable values [10℄ and on permutablevariables [21℄. The proposed heuristi
 ampli�es the e�e
t of any pruning te
hnique by movingits operation upwards in the sear
h tree. Figure 6 shows the result of applying the two typesof pruning mentioned to the sear
h trees displayed in Fig. 5. The 10 nodes expanded under thevariable ordering x; y; z, are redu
ed to only 6 nodes when the heuristi
 is in use. Moving pruningupwards tends to produ
e smaller bran
hing fa
tors in the higher levels of the sear
h tree, resultingin thinner trees.It is worth noting that points 2 and 3 above apply also to problems without a solution. Empiri
alresults supporting these 
laims are provided in Se
tion 3.3 for the layout problem.3.2 The Variety-Maximization Heuristi
Let us return to the example in Figs. 5 and 6. The variable ordering y; z; x suggested by the symmetry-breaking heuristi
 is the one leading to subtrees with highest density of distin
t �nal states, and, afterpruning, it produ
es the thinnest tree. This is the e�e
t of the heuristi
 on a problem where all domainshave equal sizes. Now 
onsider the same problem but redu
ing the domain of x to only one value f�1g.Then, under the variable ordering x; y; z, only the leftmost bran
h of the upper tree in Fig. 5 would bedeveloped, while under the ordering y; z; x, the whole lower tree in Fig. 5 would be developed, althoughonly for the leaves labelled -1. The e�e
t of pruning 
ould likewise be visualized by looking at Fig. 6. Itis 
lear that, in this 
ase, the best option is the ordering x; y; z sin
e it leads to a thinner tree to startwith (13 nodes against 21 for the other ordering) and also after pruning (6 nodes against 14). Thus, inthis 
ase, the well-known minimum-domain heuristi
 would do better than the symmetry-breaking one.And the question arises: When should one or the other heuristi
 be applied? Even more useful, is therea way of 
ombining both heuristi
s that outperforms the isolated appli
ation of ea
h of them?To try to answer these questions, let us �rst re
all the interpretations provided for the good perfor-man
e of the minimum-domain heuristi
. The most widespread one is that the heuristi
 implements thefail-�rst prin
iple, and thus minimizes the expe
ted depth of ea
h sear
h bran
h [15℄. Smith and Grant[24℄ tested this interpretation experimentally by 
omparing the behaviour of several heuristi
s with in-
reasing fail-�rst 
apabilities and 
on
luded that the su

ess of minimum-domain may not ne
essarily bedue to the fa
t that it implements fail �rst. Often the e�e
t of shallow bran
hes is 
ountera
ted by highbran
hing fa
tors. Thus, another interpretation puts the emphasis on the minimization of the bran
hingfa
tor at the 
urrent node [22℄: sin
e the minimum-domain heuristi
 for
es the sear
h tree to be as nar-row as possible in its upper levels, the expe
ted number of nodes generated is minimized. This holds forproblems both with and without a solution. Further along this line, we may view the minimum-domainheuristi
 as following a least-
ommitment prin
iple, i.e., it 
hooses the variable that partitions the statespa
e in less number of subspa
es, so that ea
h subspa
e is larger (
ontains more states) than if anothervariable would have been sele
ted. The resulting sear
h trees are, again, as narrow as possible in theirupper levels, so the aforementioned node minimization still holds. But now, for problems with a solution,another fa
tor may play a favourable role: in a larger subspa
e it is more likely to �nd a solution. Arelated interpretation was put forth in [11℄ under the rationale of minimizing the 
onstrainedness of thefuture subproblem: under
onstrained problems tend to have many solutions and be easy to solve.In dealing with highly symmetri
 problems, however, the largest subspa
e does not ne
essarily 
ontainmore distin
t �nal states than a smaller one. Thus, the least-
ommitment prin
iple has here to be appliedin terms of distin
t �nal states. What is needed is a strategy that sele
ts the variable leading to 
onsiderthe highest number of distin
t �nal states, but what we have is,� the minimum-domain heuristi
, whi
h sele
ts the variable that maximizes the number of �nal states
onsidered, and� the symmetry-breaking heuristi
, whi
h 
hooses the variable that maximizes the density of distin
t�nal states 
onsidered.In the following, we develop a framework for the 
ombination of both heuristi
s, based on the twobasi
 types of symmetry, namely inter
hangeable values and strongly permutable variables. As mentionedin Se
tion 2.2, both types of symmetry indu
e equivalen
e 
lasses in the domains and set of variables,8



respe
tively. Let x1; : : :xk be the representatives of the equivalen
e 
lasses of future variables at agiven sear
h stage, 
i be the size of the equivalen
e 
lass to whi
h xi belongs, and di be the number ofequivalen
e 
lasses in D(xi). In other words, 
i is the number of original variables strongly permutablewith xi, in
luding itself; and di is the number of non-inter
hangeable values that 
an be assigned to xi.Let us 
al
ulate the number of distin
t �nal states 
onsidered at this sear
h stage, where \distin
tive-ness" is here taken to mean that no two states 
an be made equal by inter
hanging values or permutingvariables. For ea
h equivalen
e 
lass i, we need to assign 
i variables, ea
h of whi
h 
an take di values.If variables were not permutable, the number of joint assignments would be d
ii . However, sin
e thevariables are strongly permutable, two assignments related by a permutation are not distin
t. Therefore,the number of distin
t joint assignments is given by the 
ombinations with repetition of di elements taken
i at a time. Des
ribing this as an o

upan
y problem, we need to pla
e 
i balls into di bu
kets (i.e.,assign 
i variables, ea
h to one of the possible di values). The formula to obtain the number of possiblepla
ements (i.e., distin
t assignments) is [9℄2: � di + 
i � 1
i �.The total number of distin
t �nal states, 
onsidering all the equivalen
e 
lasses of variables, is thusgiven by the produ
t, kYi=1� di + 
i � 1
i � :If the next assigned variable belongs to the equivalen
e 
lass represented by xi0 , then its 
orrespond-ing term de
reases from � di0 + 
i0 � 1
i0 � to � di0 + 
i0 � 2
i0 � 1 �, sin
e the equivalen
e 
lass i0 loses anelement. Thus, the number of distin
t �nal states 
onsidered after variable assignment will be,� di0 + 
i0 � 2
i0 � 1 �� di0 + 
i0 � 1
i0 � kYi=1� di + 
i � 1
i � :We like to �nd the i0 that maximizes this expression, i.e.,maxi � di + 
i � 2
i � 1 �� di + 
i � 1
i � ;whi
h 
an be developed as, maxi (di+
i�2)!(di�1)! (
i�1)!(di+
i�1)!(di�1)! 
i! ;leading to, maxi 
idi + 
i � 1 ;whi
h is the same as, mini di � 1
i :By taking the index i0 that realizes this minimum, and assigning a variable in the equivalen
e 
lass ofxi0 , we attain our purpose of 
onsidering a subspa
e with the maximum number of distin
t �nal states,i.e., states 
ontaining neither inter
hangeable values nor strongly permutable variables. This is what thefollowing variable sele
tion heuristi
 does.2Feller [9, page 38℄ provides an ingenous and elegant proof: Let us represent the balls by stars and indi
ate the di bu
ketsby the di spa
es between di+1 bars. Thus, j � � � j � jjjj � �� �j is used as a symbol for a distribution of 
i = 8 balls in di = 6bu
kets with o

upan
y numbers 3,1,0,0,0,4. Su
h a symbol ne
essarily starts and ends with a bar, but the remaining di�1bars and 
i stars 
an appear in an arbitrary order. In this way it be
omes apparent that the number of distinguishabledistributions equals the number of ways of sele
ting 
i pla
es out of 
i + di � 1, i.e., � di + 
i � 1
i �.9



Variety-maximization heuristi
: Sele
t for assignment a variable belonging to the equivalen
e 
lassfor whi
h the ratio di�1
i is minimum.When all the equivalen
e 
lasses of variables are of the same size, then the synthesized heuristi
redu
es to the minimum-domain one. On the other hand, when all domains have the same number ofnon-inter
hangeable values, then the heuristi
 
hooses a variable from the largest equivalen
e 
lass; thisis exa
tly what the symmetry-breaking heuristi
 would do. To show this, let us quantify the symmetriesbroken by a given assignment. Sin
e all permutations inside ea
h 
lass of strongly permutable variableslead to lo
al symmetries, the total number of su
h symmetries is 
1! 
2! : : : 
k! If we assign a variable fromequivalen
e 
lass i, then the number of remaining symmetries after the assignment will be: 
1! 
2! : : : (
i�1)! : : : 
k! Thus, the ratio of remaining symmetries over the total will be 1=
i. To maximize symmetry-breaking, we have to determine min1�i�k 1
iwhi
h is the same as saying that we have to sele
t a variable from the largest equivalen
e 
lass.In sum, by applying the least-
ommitment prin
iple in terms of maximizing the number of distin
t�nal states 
onsidered at ea
h sear
h stage, we have 
ome up with a 
lean way of 
ombining the minimum-domain and the symmetry-breaking heuristi
s, so as to extra
t the best of both along the sear
h.3.3 An Example: The Layout ProblemTo illustrate variety-maximization and its relation with minimum-domain, let us 
onsider the layoutproblem [13℄ de�ned as follows: given a grid, we want to pla
e a number of pie
es su
h that every pie
eis 
ompletely in
luded in the grid and no overlapping o

urs between pie
es. An example of this problemappears in Figure 7, where three pie
es have to be pla
ed inside the proposed grid. As CSP, ea
h pie
e isrepresented by one variable whose domain is the set of allowed positions in the grid. There is a symmetrybetween variables y and z, whi
h are strongly permutable. No symmetry between values exists.Figure 7 
ontains two sear
h trees developed by the forward 
he
king algorithm following two variableordering heuristi
s. The left tree 
orresponds to the minimum-domain heuristi
, whi
h sele
ts x as �rstvariable (jDxj = 3 while jDyj = jDzj = 4), and y and z as se
ond and third variables in all the bran
hes.The right tree 
orresponds to the variety-maximization heuristi
. Instead of x, variety-maximizationsele
ts y as �rst variable be
ause 4�12 < 3�11 , in agreement with symmetry-breaking. The assignment ofy breaks the problem symmetry, so from this point variety-maximization follows minimum-domain. This
an be seen in the rightmost bran
h after assigning y. Variable z is sele
ted as next variable be
ause afterforward 
he
king lookahead jDzj = 2 while jDxj = 3. This example shows how variety-maximization
ombines both symmetry-breaking and minimum-domain heuristi
s, following at ea
h point the mostadvisable option (depending on the existing symmetries and domain 
ardinalities).To test the bene�ts that symmetry-breaking (embedded in variety-maximization)brings over minimum-domain, as listed at the end of Se
tion 3.1, we have solved a larger instan
e of this problem. In a 6� 6square grid, we want to pla
e 4 pie
es of size 2 � 2, plus 4 pie
es of size 5 � 1. As CSP, ea
h pie
e
orresponds to one variable, with domains of 
ardinalities 25 for 2 � 2 pie
es and 24 for 5 � 1 pie
es.Variables 
orresponding to equal pie
es are strongly permutable. Therefore, there are two equivalen
e
lasses of 4 variables ea
h. The minimum-domain heuristi
 sele
ts two 5 � 1 pie
es as the �rst two vari-ables of the sear
h tree. At the se
ond level, there are 242 = 576 nodes, 24 of whi
h lead to a solution.The variety-maximization heuristi
 sele
ts a 5� 1 pie
e as the �rst variable and a 2� 2 pie
e as se
ondvariable. At the se
ond level there are 24�25 = 600 nodes, 32 of whi
h lead to a solution. The density ofnodes leading to a solution at the se
ond level following minimum-domain is 24576 = 0:0417, and followingvariety-maximization is 32600 = 0:059. Thus, variety-maximization yields a better distribution of solutionsin the sear
h tree than minimum-domain, in
reasing the likelihood of �nding a solution earlier.We have solved this problem instan
e using the standard forward 
he
king algorithm, �nding the �rstsolution and all solutions, in su

essive experiments. Values are sele
ted randomly. Table 1 shows theresults averaged over 100 runs, ea
h with a di�erent random seed. We observe that, both in �ndingone and all solutions, variety-maximization visits less nodes and requires less CPU time than minimum-domain. In addition, Blength re
ords the average length of bran
hes not leading to a solution. We see thatvariety-maximization generates shorter bran
hes than minimum-domain. Given that the bran
hing fa
torof both trees is similar, shorter bran
hes suggest a lookahead of better quality. This is also supported10



x,    Dx = {     ,       ,        }

y,    Dy = {     ,      ,       ,          }

z,    Dz = {      ,      ,       ,         }

Figure 7: The layout problem and two sear
h trees developed by forward 
he
king with minimum-domain (left)and variety-maximization (right) heuristi
s.by the redu
tion in visited nodes 
aused by variety-maximization when �nding all solutions. We haverepeated both experiments in
luding value pruning between strongly permutable variables [21℄ in theforward 
he
king algorithm. Table 2 shows these results averaged over 100 runs, ea
h with a di�erentrandom seed. The in
lusion of value pruning between strongly permutable variables improves largelythe performan
e of both heuristi
s. This improvement is higher for variety-maximization when �ndingone solution. Finding all solutions, the performan
e of minimum-domain approa
hes that of variety-maximization. This is be
ause, no matter whi
h variable is sele
ted, all are strongly permutable so theyget the bene�ts of value pruning. One solution All solutionsheuristi
 Nodes Blength Time Nodes Blength Timemin-dom 8,906 5.08 0.296 140,656 5.09 4.49var-max 5,613 4.61 0.239 102,078 4.69 4.29Table 1: Results of standard forward 
he
king on the layout problem.One solution All solutionsheuristi
 Nodes Blength Time Nodes Blength Timemin-dom 1,343 4.52 0.057 14,546 4.69 0.589var-max 791 3.97 0.045 12,218 4.44 0.489Table 2: Results of forward 
he
king with value pruning of strongly permutable variables on the layout problem.11



4 Value Pruning Based on SymmetriesFor problems without a solution, variable sele
tion heuristi
s 
an do nothing to avoid revisiting symmetri
states along the sear
h. To 
ope with this short
oming, we have developed several value pruning strategies,whi
h allow one to redu
e the domain of the 
urrent and future variables. These strategies removesymmetri
 values without removing non-symmetri
 solutions. In the following, we present these strategiesand how they are 
ombined, in order to get the maximum pro�t from symmetri
 value pruning.4.1 Domain Redu
tionIn the parti
ular 
ase that a symmetry � lo
al to the 
urrent state maps the 
urrent variable xk to itself,we 
an use � to redu
e a priori the 
urrent variable domain. Before instantiating xk, equivalen
e 
lassesof symmetri
 values in D(xk) by � 
an be 
omputed, produ
ing Q1; Q2; : : : ; Qek equivalen
e 
lasses. Anew domain, D0(xk) is de�ned as, D0(xk) = fw1; w2; : : : ; wekgsu
h that ea
h wi is a representative for the 
lass Qi. Now, the 
urrent variable xk takes values fromD0(xk) in the following form. If xk takes value wi and generates solution S, there is no reason to testother values of Qi, be
ause they will generate symmetri
 solutions to S by �. On the other hand, if valuewi fails, there is no point in testing other values of Qi be
ause they will fail as well. In this 
ase, all valuesof Qi are marked as tested. On
e the 
urrent variable has been sele
ted, this strategy allows to redu
e itsdomain to non-symmetri
 values, provided the adequate symmetry � exists. When ba
ktra
king jumpsover xk, equivalen
e 
lasses are forgotten and the previous D(xk) is taken as the domain for xk.An example of this domain redu
tion arises in the pigeon-hole problem: lo
ating n pigeons in n � 1holes su
h that ea
h pigeon is in a di�erent hole. This problem is formulated as a CSP by asso
iatinga variable xi to ea
h pigeon, all sharing the domain f1; : : : ; n � 1g, under the 
onstraints xi 6= xj,1 � i; j � n, i 6= j. Among others, this problem has a 
olle
tion of symmetries in the domains,8i; 8a; a0 2 D(xi) a 6= a0; 9�; � = I; �i(a) = a0; �i(a0) = awhere I is the identity mapping. If variables and values are 
onsidered lexi
ographi
ally, before assigningx1 all values in D(x1) form a single equivalen
e 
lass. Then, D0(x1) = f1g. Performing sear
h byforward 
he
king, value 1 is removed from all future domains. Considering x2, all its values form a singleequivalen
e 
lass, D0(x2) = f2g. Again, lookahead removes value 2 from all future domains. Consideringx3, all its remaining values form a single equivalen
e 
lass, D0(x3) = f3g, et
. This pro
ess goes on untilassigning (xn�1; n�1), when lookahead �nds an empty domain in D(xn), so ba
ktra
king starts. At thatpoint, all domains of past and 
urrent variables have been redu
ed to a single value, whi
h is 
urrentlyassigned. Ba
ktra
king does not �nd any other alternative value to test in any previous variable, so itends with failure when x1 is rea
hed. Only the leftmost bran
h of the sear
h tree is generated, and therest of the tree is pruned.4.2 Value Pruning Through Nogood Re
ordingA nogood is an assignment of values to a subset of variables whi
h does not belong to any solution. Beforesear
h, a set of nogoods is determined by the 
onstraints as the set of forbidden value tuples. Duringsear
h, new nogoods are dis
overed by the resolution of nogoods responsible of dead-ends. For example,in Fig. 8, the forward 
he
king algorithm �nds a dead-end in the 5-queens problem (D(x4) = ;). By theresolution of the nogoods asso
iated with every pruned value of D(x4), we get the new nogood,(x1; 1)(x2; 5)(x3; 2)whi
h means that variables x1, x2 and x3 
annot simultaneously take the values 1, 5 and 2, respe
tively.Often nogoods are written in oriented form as,(x1 = 1) ^ (x2 = 5)) (x3 6= 2)12



x1 qx2 - - qx3 - q - - -x4 - - - - -x5 - - - - (x1 = 1) ) (x4 6= 1)(x1 = 1) ) (x4 6= 4)(x2 = 5) ) (x4 6= 3)(x2 = 5) ) (x4 6= 5)(x3 = 2) ) (x4 6= 2) 9>>>=>>>; (x1 = 1) ^ (x2 = 5)) (x3 6= 2)Figure 8: Nogood resolution in a dead-end for the 5-queens problem.x1 q x1 qx2 - - q x2 q - -x3 - q - - - x3 - - - q -x4 - - - - - x4 - - - - -x5 - - - - x5 - - - -(x1 = 1) ^ (x2 = 5)) (x3 6= 2) (x1 = 5) ^ (x2 = 1)) (x3 6= 4)x1 - - - - x1 - - - -x2 - - - - - x2 - - - - -x3 - q - - - x3 - - - q -x4 - - q x4 q - -x5 q x5 q(x5 = 1) ^ (x4 = 5)) (x3 6= 2) (x5 = 5) ^ (x4 = 1)) (x3 6= 4)Figure 9: Symmetri
 nogoods in the 5-queens problem. Left-right symmetry: re
e
tion about the verti
al axis.Up-down symmetry: re
e
tion about the horizontal axis.where the variable at the right-hand side is the last variable among the variables of the nogood that hasbeen instantiated. This variable will be the one 
hanged �rst when performing ba
ktra
king, whi
h isneeded to guarantee 
ompleteness of tree-sear
h algorithms (see [2℄ for a detailed explanation of nogoodresolution).4.2.1 Value Pruning due to Symmetri
 NogoodsLet p = (x1; v1)(x2; v2) : : : (xk; vk) be a nogood found during sear
h and � a global symmetry of the 
onsid-ered problem. It is easy to see that the tuple �(p), de�ned as (�(x1); �1(v1))(�(x2); �2(v2)) : : : (�(xk); �k(vk)),is also a nogood. Let us suppose that �(p) is not a nogood, that is, it belongs to a solution S. Giventhat ��1 is also a problem symmetry and problem solutions are invariant through symmetries, ��1(S)is also a solution. But ��1(S) 
ontains p, in 
ontradi
tion with the �rst assumption that p is a nogood.Therefore, �(p) is a nogood. Intuitively, �(p) is the nogood that we would obtain following a sear
htraje
tory symmetri
 by � to the 
urrent traje
tory. An example of this appears in Fig. 9.Given that we 
an generate nogoods using previously found nogoods and global symmetries of theproblem, we propose to learn nogoods during sear
h in the following form,1. We store the new nogoods found during sear
h.13



2. At ea
h node, we test if the 
urrent assignment satis�es some symmetri
 nogood, obtained byapplying a global symmetry to a stored nogood. If it does, the value of the 
urrent variable isunfeasible so it 
an be pruned. Values removed in this way are restored when ba
ktra
king jumpsabove their 
orresponding variables.Nogood re
ording in sear
h presents two main issues: storage size and overhead [8℄. Regarding thestorage spa
e required, it may be of exponential size whi
h 
ould render the strategy inappli
able inpra
ti
e. The usual way to over
ome this drawba
k is to store not all but a subset of the nogoods found,following di�erent strategies: storing nogoods of size lower than some limit, �xing in advan
e the storage
apa
ity and using some poli
y for nogood repla
ement, et
. However, this important drawba
k hasbeen shown to be surmountable in pra
ti
e due to the following fa
t: a new nogood is never symmetri
to an already stored nogood. Otherwise, the assignment leading to this new nogood would have beenfound unfeasible, be
ause of the existen
e of a symmetri
 nogood, and it would have been pruned beforeprodu
ing the new nogood. If the number of global symmetries is high enough, this may 
ause a verysigni�
ant de
rement in the number of stored nogoods.Regarding the overhead 
aused by nogood re
ording, it has two main parts: nogood re
ording andtesting against symmetri
 nogoods. Nogood re
ording is a simple pro
ess performed on a subset of thevisited nodes, 
ausing little overhead. However, testing ea
h node against symmetri
 nogoods 
ouldmean 
he
king an exponential number of nogoods per node, whi
h would severely degrade performan
e,eliminating any possible savings 
aused by value removal. To prevent this situation, we restri
t thenumber of symmetri
 nogoods against whi
h the 
urrent node is tested, following two 
riteria,1. A subset of all global symmetries are used for symmetri
 nogood generation. The 
omposition ofthis subset is problem dependent (see Se
tion 5 for further details).2. A subset of stored nogoods is 
onsidered for symmetri
 nogood generation. If xi is the 
urrentvariable and � is a global symmetry, only nogoods 
ontaining �(xi) in its rigth-hand side are
onsidered.Nevertheless, there are some parti
ular 
ases where we 
an prune values without 
he
king storednogoods, as explained in the following subse
tion.4.2.2 Symmetri
 Nogoods at the Current Bran
hLet s be a state de�ned by the assignment of past variables f(xi; vi)gi2P , � a symmetry lo
al to s, andxk the 
urrent variable. If after the assignment of xk the nogood p is found,p = ^j2P 0 ;P 0�P(xj ; vj)) (xk 6= vk)it is easy to see that �(p) is also a nogood. If p is a nogood, it means that it violates a 
onstraint 
. Bythe de�nition of symmetry, �(p) violates the symmetri
 
onstraint 
�. Therefore, �(p) is also a nogood.The interesting point is that �(p) also holds at the 
urrent state. E�e
tively,�(p) = ^j2P 0;P 0�P (�(xj); �j(vj))) (�k(xk) 6= �k(vk)) = ^j2P 00;P 00�P(xj ; vj)) (�k(xk) 6= �k(vk))sin
e all variables in the left-hand side of p are past variables, so they are mapped to other past variablesand their assignments are not 
hanged by �. Therefore, at this point we 
an remove �k(vk) (the valuesymmetri
 to vk) fromD(�(xk)), be
ause it 
annot belong to any solution in
luding the 
urrent assignmentof past variables. If all values of xk are tried without su

ess and the algorithm ba
ktra
ks, all valuesremoved in this way should be restored. If xk is involved in several symmetries, this reasoning holds forea
h of them separately. Thus, this strategy 
an be applied to any variable symmetri
 to xk.This strategy of value removal after failure provides further support to the symmetry-breaking heuris-ti
 of Se
tion 3.1. The more lo
al symmetries a variable is involved in, the more opportunities it o�ersfor symmetri
 value removal in other domains if a failure o

urs. This extra pruning is more e�e
tive ifit is done at early levels of the sear
h tree, sin
e ea
h pruned value represents removing a subtree on thelevel 
orresponding to the variable symmetri
 to the 
urrent one.14



x1 q x1 qx2 - - x x2 - - xx3 - - x3 - -x4 - - x4 - -x5 - - x5 - x -(x1 = 1)) (x2 6= 5) (x1 = 1)) (x2 6= 5)(x1 = 1)) (x5 6= 2)Figure 10: Symmetri
 nogoods by 
entral rotation of 180 degrees in the subboard in
luding variables x2 to x5and 
olumns 2 to 5.An example of this pruning 
apa
ity appears in Figure 10: further resolution of the nogoods of x3in Figure 8 produ
es the nogood (x1 = 1) ) (x2 6= 5). The rotation of 180 degrees of the subboardin
luding variables x2 to x5 and 
olumns 2 to 5, is a symmetry lo
al to the state after the assignment(x1; 1). Therefore, applying this symmetry to the nogood, a new nogood is obtained,(x1 = 1)) (x5 6= 2)whi
h is a justi�
ation to prune value 2 from D(x5).4.3 Combination of Pruning StrategiesThe three pruning strategies mentioned, namely (i) domain redu
tion, (ii) value pruning due to symmetri
nogoods, and (iii) value pruning due to symmetri
 nogoods at the 
urrent bran
h, 
an be 
ombined toobtain the maximum pro�t in future domain redu
tion. The domain of the 
urrent variable is redu
ed(assuming that the adequate symmetry exists). If, for some reason (lookahead or symmetri
 nogoodexisten
e), its 
urrent value is dis
arded, all values of the same equivalen
e 
lass are also dis
arded. If the
urrent variable is symmetri
 with other future variables, the symmetri
 images of the dis
arded valuesof the 
urrent variable 
an be removed from the domains of the symmetri
 future variables. This 
as
adeof value removal and symmetry 
haining has been shown very e�e
tive in the problems ta
kled (refer toSe
tion 5). In this pro
ess, any removed value is labeled with the justi�
ation of its removal, 
omputedby applying the 
orresponding symmetry operators to the nogood whi
h started the pruning sequen
e. Inthe following, these strategies are generi
ally named symmetri
 value pruning, and they are implementedby a single pro
edure 
alled svp.5 Experimental Results5.1 The Ramsey ProblemAside from the pigeonhole and the n-queens problems, it is hard to �nd a highly symmetri
 problem thathas been ta
kled by several resear
hers following di�erent approa
hes. The Ramsey problem is one ofthe rare ex
eptions. Puget [20℄ reported results on several instan
es of this problem obtained by addingad ho
 ordering 
onstraints to its formulation, so as to break symmetries. Gent and Smith [12℄ followedthe alternative approa
h of pruning symmetri
 states from the sear
h tree after failure, and 
omparedtheir results with Puget's. Thus, we think this is a good problem on whi
h to test the eÆ
ien
y of oursymmetry-breaking heuristi
 and its further enhan
ements des
ribed in the pre
eding se
tion.15



5.1.1 Problem FormulationGiven a 
omplete graph3 with n nodes, the problem is to 
olour its edges with 
 
olours, withoutgetting any mono
hromati
 triangle. In other words, for any three nodes n1; n2; n3, the three edges(n1; n2); (n1; n3); (n2; n3) must not have all three the same 
olour. In the 
ase of 3 
olours, it is wellknown that there are many solutions for n = 16, but none for n = 17.This problem 
an be formulated as a CSP as follows. The variables xij; 1 � i; j � n; i < j; are theedges of the 
omplete graph, the domains are all equal to the set of three 
olours f
1; 
2; 
3g, and the
onstraints 
an be expressed as follows:(xij 6= xik) or (xij 6= xjk); 8i; j; k; i < j < k:All 
olour permutations and all node permutations are global symmetries of the problem. To breakthem in the problem formulation, Puget [20℄ added three ordering 
onstraints, one based on values andthe remaining two based on 
ardinalities, as detailed in [12℄. Later, Gent and Smith [12℄ repla
ed the
onstraint on values by their pro
edure of value pruning after failure. A 
omparison of their results withours 
an be found in the next subse
tion.Our heuristi
 does not make use of global symmetries, instead it exploits symmetries lo
al to ea
hsear
h state. The latter are determined by the automorphisms of the 
oloured graph developed so far.Sin
e automorphisms derived from 
omposing 
olour permutations and general node permutations arevery expensive to dete
t, and we need a simple test that 
an be applied repeatedly at node expansion, we
on
entrate on a parti
ular type of node permutation that leaves un
hanged the 
oloured graph developedso far, as des
ribed below.When 
an two nodes i and j be inter
hanged without altering the 
olour graph developed so far? Thene
essary and suÆ
ient 
ondition is that4 xik = xjk; 8k, whi
h 
an be easily assessed by 
he
king theequality of rows i and j of the adja
en
y matrix for the graph. Note that this 
ondition requires thatxik and xjk are both either past variables or future variables and, in the former 
ase, they must have thesame 
olour assigned.Every pair of node inter
hanges (transpositions) of the type mentioned above de�nes a symmetry.For instan
e, if we 
an inter
hange nodes i and j, and also nodes k and l, then we have the followingsymmetry lo
al to the 
urrent state,�(xij) = xij; �(xkl) = xkl;�(xik) = xjl; �(xjl) = xik; �(xil) = xjk; �(xjk) = xil;�(xir) = xjr; �(xjr) = xir; �(xkr) = xlr ; �(xlr) = xkr; 8r r 6= i r 6= j r 6= k r 6= l;�(xqr) = xqr; 8q; r q; r 6= i q; r 6= j q; r 6= k q; r 6= l;�qr = I; 8q; r:We restri
t our analysis and experimentation to symmetries resulting from the 
ombination of su
hnode inter
hanges. They are easy to dete
t and 
onstitute an important subset of all automorphismsof the 
oloured graph developed so far. Of 
ourse, 
onditions for progressively more 
omplex subgraphinter
hangeability, su
h as those sket
hed in [21℄, 
ould be developed for the Ramsey problem, but it isnot 
lear that the e�ort required to dete
t more 
omplex symmetries would pay o� in terms of sear
heÆ
ien
y.Let us 
al
ulate the number of lo
al symmetries of the type mentioned. First note that inter
hange-ability of nodes is an equivalen
e relation leading to a partition of the set of nodes into equivalen
e 
lasses.Suppose e1; e2; : : : ek are the sizes of su
h 
lasses at the 
urrent state. Then, sin
e all permutations insideea
h 
lass lead to lo
al symmetries, the total number of su
h symmetries is e1! e2! : : : ek!.If we assign a variable xij, with i and j belonging to the same equivalen
e 
lass, say p, then the numberof remaining symmetries after the assignment will be: e1! e2! : : : 2 (ep � 2)! : : : ek!, be
ause i and j willnow belong to a new 
lass. If, on the 
ontrary, i belongs to 
lass p, and j belongs to 
lass q, p 6= q, thenthe number of remaining symmetries after assigning xij will be: e1! e2! : : : (ep � 1)! : : : (eq � 1)! : : : ek!Thus, the ratio of remaining symmetries over the total will be 2=(ep(ep � 1)) in the former 
ase, and1=(epeq) in the latter one.3A graph in whi
h ea
h node is 
onne
ted to every other node.4For ea
h pair of nodes (i; j); i 6= j, there is only one variable, either xij or xji, depending on whether i < j or j < i.To ease the notation, in what follows, we will not distinguish between the two 
ases, and thus both xij and xji will referto the same, unique variable. 16



To maximize symmetry-breaking, we have to determinemin1�p;q�k;p 6=q � 2ep(ep � 1) ; 1epeq�Now, note that the equivalen
e relation over nodes indu
es an equivalen
e relation over edges, whi
hare the variables of our problem. Two variables xik and xjl are symmetri
 if and only if either (i � jand k � l) or (i � l and k � j), where � denotes node inter
hangeability. The size 
ij of the equivalen
e
lass to whi
h xij belongs is,
ij = � ep(ep � 1)=2; if i and j belong to the same node 
lass pepeq; if i belongs to 
lass p; and j belongs to 
lass q:Therefore, to maximize symmetry-breaking we have to sele
t a variable xij from the largest equivalen
e
lass, in perfe
t agreement with the 
ase in whi
h we had strongly permutable variables.5.1.2 Results and Dis
ussionWe aimed at solving the Ramsey problem with 3 
olours using the same algorithm and heuristi
s forsolvable and unsolvable 
ases. As referen
e algorithm, we take forward 
he
king with 
on
i
t-dire
tedba
kjumping (F
-
bj) [19℄, adapted to deal with ternary 
onstraints.Regarding variable sele
tion heuristi
s, we tried the following ones (
riteria ordering indi
ates priority),� dg: minimum domain, maximum degree5, breaking ties randomly.� dgs: minimum domain, maximum degree, largest equivalen
e 
lass, breaking ties randomly.� vm': we tried the variety-maximization heuristi
 (vm), whi
h 
ombines minimum-domain andsymmetry-breaking. Sin
e vm does not in
lude the degree, whi
h has proved to be quite importantfor variable sele
tion in this problem, we 
ombined them both in the following way:{ if the variable sele
ted by vm has a two-valued domain (i.e., minimum-domain dominatessymmetry-breaking), use the dg heuristi
;{ if the variable sele
ted by vm has a three-valued domain (i.e., symmetry-breaking dominatesminimum-domain), use the following heuristi
: maximum degree, largest equivalen
e 
lass,breaking ties randomly.Noti
e that lo
al symmetries indu
ed by node inter
hanges do not generate equivalen
e 
lasses ofstrongly permutable variables, so the justi�
ation for the vm heuristi
 does not stri
tly hold in this
ase. Nevertheless, we take vm as an approximation for the 
ombination of minimum-domain andsymmetry-breaking heuristi
s.The value sele
tion heuristi
 is as follows: for variable xij, sele
t the 
olour with less o

urren
es inall triangles in
luding xij with only one 
oloured edge, breaking ties randomly.The F
-
bj algorithm was unable to �nd that no solution exists for n = 17 within 1 CPU hour, forany of the 
onsidered heuristi
s. Then, we added the symmetri
 value pruning pro
edure svp6, obtainingthe F
-
bj-svp algorithm, whi
h has been able to solve the Ramsey problem for n from 14 to 17 withthe proposed heuristi
s. Given that several de
isions are taken randomly, we repeated the exe
ution forea
h dimension 100 times, ea
h with a di�erent random seed. Exe
ution of a single instan
e was abortedif the algorithm visited more than 100,000 nodes.Experimental results appear in Table 3, where for ea
h n and heuristi
, we give the number of solvedinstan
es within the node limit, and for those instan
es, the average number of visited nodes, the averagenumber of fails and the average CPU time.5In this problem, we take as degree of variable xij (edge from node i to node j) the number of triangles in
luding xijwith only one edge 
oloured.6If xij is the 
urrent variable, the subset of symmetriesused for symmetri
nogood generation is formed by the symmetriesex
hanging one node (node i or node j) while the other (node j or node i) is kept �xed.17



F
-
bj-svpdg dgs vm'n Sol Nodes Fails Time Sol Nodes Fails Time Sol Nodes Fails Time14 99 4494 1009 3.03 100 2167 384 0.69 100 201 15 0.2015 59 20673 6627 19.46 100 20706 6168 19.50 100 1732 237 0.5716 100 17172 5290 13.01 100 17027 5247 13.01 100 906 114 0.3517 100 7418 3232 1.41 100 7485 3175 1.86 100 2952 1132 0.75Table 3: Performan
e results for the Ramsey problem.Gent and Smith Pugetn Fails Time Fails Time16 2030 1.61 2437 1.4017 161 0.26 636 0.27Table 4: Performan
e results of previous approa
hes on the Ramsey problem (from [12℄).We 
ompare the three variable sele
tion heuristi
s dg, dgs and vm', within the F
-
bj-svp algorithm.Of the 400 runs, F
-
bj-svp with dg solved 358 instan
es within the node limit, while it was able tosolve all instan
es with dgs or vm'. Considering instan
es solved within the node limit, there is littledi�eren
e between dg and dgs, ex
ept for n = 14 where dgs improves signi�
antly over dg. A mainimprovement in performan
e o

urs when passing from dgs to vm'. For solvable 
ases, we observe ade
rement of one order of magnitude in visited nodes and number of fails, and of almost two orders ofmagnitude in CPU time. For n = 17, the improvement is not so strong but it is still important.These results show 
learly the importan
e of exploiting symmetries in the solving pro
ess. The svppro
edure allowed us to a
hieve an eÆ
ient solution for n = 17. The symmetry-breaking heuristi
permitted to solve all instan
es within the node limit, preventing the sear
h pro
ess from getting lostin large subspa
es without solution. vm' uses the same information as dgs but in a more suitableway, leading to a very substantial improvement for solvable dimensions. Thus, results substantiatethe dominan
e of vm' over dgs, providing experimental support to the theoreti
ally-developed variety-maximization heuristi
.We 
ompare these results with those of Puget [20℄ and Gent and Smith [12℄, whi
h are given inTable 4. For n = 16, the number of fails for the dgs is higher than Puget's, and Gent and Smith'snumbers, while the number of fails for the vm' heuristi
 is one order of magnitude lower than Puget's,and Gent and Smith's numbers. For dimension 17, results from dgs and vm' are worse than previousapproa
hes. This is not surprising, be
ause our variable sele
tion heuristi
s have been devised for solvableproblems. CPU time 
annot be 
ompared be
ause these results 
ome from di�erent ma
hines. From this
omparison, we 
an aÆrm that our approa
h, based on a new variable ordering and a pruning pro
edure,remains 
ompetitive with more sophisti
ated approa
hes based on a 
areful problem formulation [20℄ plusthe in
lusion of new 
onstraints during sear
h [12℄, and it is even able to outperform them for solvabledimensions.5.2 BIBD GenerationBlo
k designs are 
ombinatorial obje
ts satisfying a set of integer 
onstraints [14, 5℄. Introdu
ed in thethirties by statisti
ians working on experiment planning, nowadays they are used in many other �elds,su
h as 
oding theory, network reliability, and 
ryptography. The most widely used designs are theBalan
ed In
omplete Blo
k Designs (BIBDs). Although up to our knowledge, BIBD generation has notbeen ta
kled from the CSP viewpoint, it appears to be a wonderful instan
e of highly symmetri
 CSP,thus o�ering the possibility to assess the bene�ts of di�erent sear
h strategies on su
h problems.5.2.1 Problem FormulationFormally, a (v; b; r; k; �)-BIBD is a family of b sets (
alled blo
ks) of size k, whose elements are from a setof 
ardinality v, k < v, su
h that every element belongs exa
tly to r blo
ks and every pair of elementso

urs exa
tly in � blo
ks. v; b; r; k, and � are 
alled the parameters of the design. Computationally,18



0 1 1 0 0 1 01 0 1 0 1 0 00 0 1 1 0 0 11 1 0 0 0 0 10 0 0 0 1 1 11 0 0 1 0 1 00 1 0 1 1 0 0Figure 11: An instan
e of (7,7,3,3,1)-BIBD.designs 
an be represented by a v� b binary matrix, with exa
tly r ones per row, k ones per 
olumn, andthe s
alar produ
t of every pair of rows is equal to �. An example of BIBD appears in Fig. 11.There are three ne
essary 
onditions for the existen
e of a BIBD:1. rv = bk,2. �(v � 1) = r(k � 1), and3. b � v.However, these are not suÆ
ient 
onditions. The situation is summarized in [16℄, that lists all param-eter sets obeying these 
onditions, with r � 41 and 3 � k � v=2 (
ases with k � 2 are trivial, while 
aseswith k > v=2 are represented by their 
orresponding 
omplementaries, whi
h are also blo
k designs).For some parameter sets satisfying the above 
onditions, it has been established that the 
orrespondingdesign does not exist; for others, the 
urrently known bound on the number of non-isomorphi
 solutions isprovided; and �nally, some listed 
ases remain unsettled. The smallest su
h 
ase is that with parameters(22,33,12,8,4), to whose solution many e�orts have been devoted [25, Chapter 11℄.Some (in�nite) families of blo
k designs (designs whose parameters satisfy parti
ular properties) 
anbe 
onstru
ted analyti
ally, by dire
t or re
ursive methods [14, Chapter 15℄, and the state of the art in
omputational methods for design generation is des
ribed in [5, 25℄. The aforementioned unsettled 
ase,with vb = 726 binary entries, shows that exhaustive sear
h is still intra
table for designs of this size. Inthe general 
ase, the algorithmi
 generation of blo
k designs is an NP problem [6℄.Computational methods for BIBD generation, either based on systemati
 or randomized sear
h pro-
edures, su�er from 
ombinatorial explosion whi
h is partially due to the large number of isomorphi

on�gurations present in the sear
h spa
e. The use of group a
tions goes pre
isely in the dire
tion ofredu
ing this isomorphism [25, Chapter 3℄. Thus, BIBD generation 
an be viewed as a large family ofhighly symmetri
 CSPs and, as su
h, 
onstitutes a good testbed on whi
h to test strategies to exploitsymmetries within 
onstraint satisfa
tion sear
h.The problem of generating a (v; b; r; k; �)-BIBD admits several CSP formulations. The most dire
tone would be representing ea
h matrix entry by a binary variable. Then, there would be three types of
onstraints: (i) v b-ary 
onstraints ensuring that the number of ones per row is exa
tly r, (ii) b v-ary
onstraints ensuring that the number of ones per 
olumn is exa
tly k, and (iii) v(v�1)=2 2b-ary 
onstraintsensuring that the s
alar produ
t of ea
h pair of rows is exa
tly �. All are high-arity 
onstraints, butespe
ially the last type is very 
ostly to deal with, be
ause of its highest arity and its large number ofinstan
es.We have opted for an alternative formulation that avoids 
onstraints of type (iii), as follows. Tworows i and j of the BIBD should have exa
tly � ones in the same 
olumns. We represent this by �variables xijp; 1 � p � �, where xijp 
ontains the 
olumn of the pth one 
ommon to rows i and j. Thereare v(v�1)=2 row pairs, so there are �v(v�1)=2 variables, all sharing the domain f1; : : : ; bg. From thesevariables, the BIBD v � b binary matrix T is 
omputed as follows:T [i; 
℄ = � 1, if 9j; p s.t. xijp = 
 or xjip = 
,0, otherwise.Constraints are expressed in the following terms,xijp 6= xijp0 ; bX
=1 T [i; 
℄ = r; vXi=1 T [i; 
℄ = k19



where 1 � p; p0 � �, 1 � i; j � v, 1 � 
 � b. Note that the last two types of 
onstraints are exa
tlythe same as the former two in the previous formulation, while we have repla
ed the 
ostly type (iii)
onstraints by binary inequality 
onstraints. This redu
es 
onsiderably the pruning e�ort.Turning to symmetries, all row and 
olumn permutations are global symmetries of the problem,whi
h are retained in both formulations above. Note, however, that ea
h of these symmetries involvesinter
hanging many variables at on
e, i.e., they do not yield strongly permutable variables in neither ofthe two formulations. Moreover, as variables are assigned, many of these global symmetries disappear,be
ause they involve 
hanging past variables. Sin
e we are interested in lo
al symmetries that 
an beeasily dete
ted, we 
onsider the following ones relating future variables,1. Variable mapping ex
hanges xijp and xijp0 , domainmappings are the identity; this symmetry o

ursamong variables of the same row pair.2. Variable mapping is the identity, one domain mapping ex
hanges values 
1 and 
2; this symmetryo

urs when T [l; 
1℄ = T [l; 
2℄ for l = 1; : : : ; v.3. Variable mapping ex
hanges xijp and xi0j0p0 , domain mappings are the identity; this symmetryo

urs when T [i; 
℄ = T [i0; 
℄ and T [j; 
℄ = T [j0; 
℄ for 
 = 1; : : : ; b.4. Variable mapping ex
hanges xij1p and xij2p0 , the domain mappings 
orresponding to these variablesex
hange values 
1 and 
2; this symmetry o

urs when,T [j1; 
1℄ = T [j2; 
2℄ = 1; T [j1; 
2℄ = T [j2; 
1℄ = 0;T [j1; 
℄ = T [j2; 
℄; 
 = 1; : : : ; b; 
 6= 
1; 
 6= 
2;T [j; 
1℄ = T [j; 
2℄; j = 1; : : : ; v; j 6= j1; j 6= j2.5. Variable mapping ex
hanges xij1p and xij2p0 , the domain mappings 
orresponding to these variablesex
hange values 
1 and 
2, and 
3 and 
4; this symmetry o

urs when,T [j1; 
1℄ = T [j2; 
2℄ = 1; T [j1; 
2℄ = T [j2; 
1℄ = 0;T [j1; 
3℄ = T [j2; 
4℄ = 1; T [j1; 
4℄ = T [j2; 
3℄ = 0;T [j1; 
℄ = T [j2; 
℄; 
 = 1; : : : ; b; 
 6= 
1; 
 6= 
2; 
 6= 
3; 
 6= 
4;T [j; 
1℄ = T [j; 
2℄; j = 1; : : : ; v; j 6= j1; j 6= j2,T [j; 
3℄ = T [j; 
4℄; j = 1; : : : ; v; j 6= j1; j 6= j2.These symmetries have a 
lear interpretation. Symmetry (1) is inherent to the formulation. Symmetry(2) is the lo
al version of 
olumn permutability: assigned values must be equal in 
olumns 
1 and 
2, forthe values 
1 and 
2 of a variable to be inter
hangeable. Symmetry (3) is the lo
al version of two pairs ofsimultaneous row permutations: rows i and i0 (respe
tively, rows j and j0) must have the same assignedvalues for variables xijp and xi0j0p0 to be permutable. The next two symmetries are generalizations of thepre
eding one. Symmetry (4) relates variables sharing row i, and rows j1 and j2 that are equal but fortwo 
olumns 
1 and 
2. These 
olumns are also equal but for rows j1 and j2. Ex
hanging rows j1 andj2, and 
olumns 
1 and 
2, matrix T remains invariant. Symmetry (5) develops the same idea in the 
asewhere i is not shared, and thus two rows i1 and i2 need to be 
onsidered. It o

urs when ex
hangingrows i1 and i2, and 
olumns 
1 and 
2, and 
3 and 
4, matrix T remains invariant. It is worth notingthat these symmetries keep invariant matrix T be
ause they are lo
al to the 
urrent state, that is, theydo not 
hange past variables.Con
erning the way symmetries a
t on variables, symmetry (1) is the only one de�ning stronglypermutable variables. Symmetries (3), (4) and (5) are indu
ed by ex
hanging rows and 
olumns withinthe BIBD matrix, leading to equivalen
e relations of the same type as in the Ramsey problem. Takentogether, the symmetries of the latter three types form a subgroup, leading to equivalen
e 
lasses inwhi
h the variables are related by one symmetry type only. In other words, if two variables within a 
lassare related by a given symmetry, all other variables in the 
lass are related by symmetries of the sametype. Let us 
onsider a variable xijp whi
h is strongly permutable with 
r � 1 other variables throughsymmetry (1), and whi
h belongs to a 
lass of size 
0s when the subgroup formed by symmetries (3), (4)and (5) is 
onsidered. Then, xijp belongs to a 
lass of size 
r
0s when the four variable symmetries are
onsidered together. Now, by 
ombining the reasonings in Se
tions 3.2 and 5.1.1, we 
an dedu
e that,after assigning xijp, the ratio of remaining symmetries over those before the assignment would be:minr;s 1
r
0s :20



Therefore, in the 
ase of BIBDs, in order to maximize symmetry-breaking, we also have to sele
t avariable belonging to the largest equivalen
e 
lass.5.2.2 Results and Dis
ussionBIBD generation is a non-binary CSP. We use a forward 
he
king algorithm with 
on
i
t-dire
ted ba
k-jumping (F
-
bj [19℄) adapted to deal with non-binary 
onstraints as referen
e algorithm.Regarding variable sele
tion heuristi
s, we tried the following ones (
riteria ordering indi
ates priority),� dg: minimum-domain, maximum-degree7, breaking ties randomly.� sdg: symmetry-breaking, minimum-domain, maximum-degree, breaking ties randomly.� vm: variety-maximization heuristi
, maximum-degree, breaking ties randomly.Equivalen
e 
lasses for variables are 
omputed using symmetries 1, 3, 4 and 5, de�ned in the pre
edingsubse
tion. Only symmetry 1 generates strongly permutable variables, so justi�
ation for the vm heuristi
does not stri
tly hold in this 
ase. Nevertheless, we take vm as an approximation for the 
ombination ofminimum-domain and symmetry-breaking heuristi
s. Equivalen
e 
lasses for values are 
omputed usingsymmetry 2. Values are sele
ted as follows,� if � = 1, a value within the largest equivalen
e 
lass;� if � > 1, randomly.We 
ompare the performan
e of these heuristi
s generating all BIBDs with vb < 1400 and k = 3, allhaving solution. Sin
e the performan
e of the proposed algorithm depends on random 
hoi
es, we haverepeated the generation of ea
h BIBD 50 times, ea
h with a di�erent random seed. Exe
ution of a singleinstan
e was aborted if the algorithm visited more than 50,000 nodes.Empiri
al results appear in Table 5, where for ea
h heuristi
 and BIBD, we give the number of solvedinstan
es within the node limit, the average number of visited nodes of solved instan
es, and the averageCPU time in se
onds for the 50 instan
es. Of the 2400 instan
es exe
uted, F
-
bj with dg solves 940,with sdg solves 2393 and with vm solves 2394. F
-
bj with dg does not solve any instan
e for 5 spe
i�
BIBDs, while F
-
bj with both sdg and vm provide solution for all BIBDs tested. Regarding CPUtime, sdg dominates dg in 45 
lasses, and vm dominates sdg in 46 
lasses, out of the 48 BIBD 
lasses
onsidered. These results show 
learly that the in
lusion of the symmetry-breaking heuristi
 is a verysigni�
ative improvement for BIBD generation, allowing the solution of almost the whole ben
hmark,while the dg heuristi
 solved slightly more than one third of it. The vm heuristi
 means a re�nement ofsdg: it 
an solve one more instan
e, and CPU time de
reases for most of the 
lasses tested.Adding the symmetri
 value pruning pro
edure8 to F
-
bj, we get the F
-
bj-svp algorithm, onwhi
h we have tested the heuristi
s sdg and vm. Empiri
al results appear in Table 6. F
-
bj-svpwith sdg 
an solve 4 more instan
es than in the previous 
ase, while F
-
bj-svp with vm in
reases in3 the number of solved instan
es. In terms of CPU time, the dominan
e of vm over sdg remains in42 
ases. From this assessment, we 
on
lude that symmetri
 value pruning does not play an importantrole in this problem: it produ
es 
ertain bene�ts but the main advantadge is provided by the in
lusionof symmetries in variable sele
tion, either in the form of symmetry-breaking or in the more elaboratedvariety-maximization heuristi
.6 Con
lusionsIn this paper we have analysed how to take symmetry into a

ount to redu
e sear
h e�ort. Two variablesele
tion heuristi
s and a value pruning pro
edure have been devised to exploit symmetries inside adepth-�rst sear
h s
heme. We have shown how our symmetry-breaking heuristi
 
an be 
ombined with7The degree of variable xijp is the number of future variables xklp0 su
h that i = k and j = l, or i 6= k and j 6= l.8Given that F
-
bj with sdg or vm solved most of the problem instan
es, we in
luded a svp pro
edure allowing a singleform of symmetri
 value pruning: the one due to symmetri
 nogoods at the 
urrent bran
h. Therefore, nogoods are notexpli
itly re
orded in this 
ase. 21



the minimum-domain one to yield a new variable sele
tion heuristi
 that outperforms them both. Thisis 
alled variety-maximization heuristi
 be
ause it sele
ts for assignment the variable leading to a sear
hsubspa
e with the greatest number of distin
t �nal states. Moreover, our value pruning pro
edure basedon nogood re
ording has proven e�e
tive in both solvable and unsolvable problem instan
es.These strategies have been tested on two highly symmetri
 
ombinatorial problems, namely the Ram-sey problem and the generation of BIBDs. For the former, we have 
ompared our results with thoseobtained in previous works. In the 
ase of solvable instan
es, i.e., for n � 16, our general-purposestrategies have been able to outperform the alternative approa
h of reformulating the original problemby adding new 
onstraints to break problem symmetries. For n = 17, our strategies 
an still 
ompete,although it must be noted that the variable sele
tion heuristi
s are oriented towards �nding solutions norto prove their inexisten
e.BIBD generation is an NP problem that has triggered a 
onsiderable amount of resear
h on analyti
and 
omputational pro
edures. Its wide variability in size and diÆ
ulty makes it a very appropriateben
hmark for algorithms aimed at exploiting symmetries in CSPs. We believe that systemati
 sear
hpro
edures are more likely to shed light on the solution of diÆ
ult instan
es of the problem, althoughrandomized algorithms may be qui
ker at �nding solutions in easier 
ases. The present work has notbeen aimed at solving a parti
ular su
h instan
e, but instead at proposing and evaluating tools to dealwith symmetries. In this respe
t, the proposed strategies have been shown to be e�e
tive in redu
ingsear
h e�ort.It is worth mentioning that there is always a trade-o� between the e�ort spent in looking for andexploiting symmetries, and the savings attained. Thus, instead of 
onsidering all possible symmetries, itis advisable to establish a hierar
hy of them and try to dete
t the simplest �rst, as we have done.Con
erning future work, we would like to study whether other variable sele
tion heuristi
s (su
h asdegree-maximization) 
an also be integrated with symmetry-breaking and minimum-domain, under asingle de
ision 
riterion. Along the same line, we would like to extend the variety-maximization heuristi
to other variable relations, beyond strong permutability. Moreover, we will try to identify 
riteria forvalue sele
tion whi
h 
omplement our heuristi
s for variable sele
tion. Finally, it would be interesting toassess up to what extent our approa
h depends on the type and number of symmetries o

urring in aparti
ular problem.A
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F
-
bjBIBD dg sdg vm(v; b; r; k; �) Sol Nodes Time Sol Nodes Time Sol Nodes Time7,7,3,3,1 50 21 1.4e-3 50 22 1.4e-3 50 21 2.6e-36,10,5,3,2 50 60 3.6e-3 50 31 6.6e-3 50 30 4.6e-37,14,6,3,2 50 2152 1.3e-1 50 60 1.9e-2 50 43 1.1e-29,12,4,3,1 50 40 1.8e-3 50 80 2.0e-2 50 48 1.0e-26,20,10,3,4 18 435 3.7e+0 50 77 5.7e-2 50 61 3.3e-27,21,9,3,3 16 2877 4.3e+0 50 65 6.7e-2 50 75 4.5e-26,30,15,3,6 6 196 9.9e+0 50 117 2.4e-1 50 95 1.4e-17,28,12,3,4 11 195 7.6e+0 50 146 2.2e-1 50 86 1.2e-19,24,8,3,2 44 763 1.2e+0 50 75 1.2e-1 50 77 8.2e-26,40,20,3,8 3 156 1.7e+1 50 124 6.5e-1 50 128 3.9e-17,35,15,3,5 6 230 1.5e+1 50 111 4.3e-1 50 109 2.7e-17,42,18,3,6 6 141 1.9e+1 50 131 8.0e-1 50 139 4.8e-110,30,9,3,2 38 181 3.4e+0 50 100 2.7e-1 50 120 2.0e-16,50,25,3,10 1 1057 3.1e+1 50 467 1.8e+0 50 155 8.1e-19,36,12,3,3 29 478 6.8e+0 48 116 2.5e+0 50 202 3.8e-113,26,6,3,1 50 1076 3.5e-1 50 151 2.2e-1 50 151 1.7e-17,49,21,3,7 2 151 3.3e+1 50 651 2.0e+0 50 164 8.0e-16,60,30,3,12 2 139 4.6e+1 50 184 2.7e+0 50 189 1.5e+07,56,24,3,8 1 36401 4.6e+1 50 258 2.3e+0 50 179 1.2e+06,70,35,3,14 0 0 5.4e+1 50 216 4.9e+0 50 215 2.3e+09,48,16,3,4 19 685 1.6e+1 50 151 1.2e+0 50 153 7.3e-17,63,27,3,9 0 0 6.0e+1 50 240 3.4e+0 50 196 1.7e+08,56,21,3,6 5 285 3.7e+1 49 188 3.9e+0 50 498 1.7e+06,80,40,3,6 0 0 7.2e+1 50 243 8.6e+0 50 245 3.6e+07,70,30,3,10 1 235 6.7e+1 50 215 5.1e+0 50 215 2.4e+015,35,7,3,1 48 395 9.8e-1 50 219 5.3e-1 50 219 4.2e-112,44,11,3,2 41 591 5.1e+0 50 166 9.6e-1 50 191 6.5e-17,77,33,3,11 0 0 9.3e+1 50 243 7.7e+0 50 246 3.2e+09,60,20,3,5 12 386 2.9e+1 49 188 4.8e+0 50 256 1.7e+07,84,36,3,12 1 1027 9.2e+1 50 316 1.1e+1 50 254 4.2e+010,60,18,3,4 12 613 2.6e+1 50 244 2.8e+0 50 189 1.5e+011,55,15,3,3 33 680 1.2e+1 50 180 2.0e+0 50 234 1.2e+07,91,39,3,13 0 0 1.3e+2 50 274 1.5e+1 50 280 5.4e+09,72,24,3,6 8 671 4.2e+1 49 221 8.4e+0 50 252 2.7e+013,52,12,3,2 43 298 4.6e+0 50 583 2.4e+0 49 218 2.9e+09,84,28,3,7 8 2054 5.4e+1 50 662 1.5e+1 50 257 4.2e+09,96,32,3,8 9 3997 6.6e+1 50 558 2.0e+1 50 296 6.3e+010,90,27,3,6 8 3131 5.6e+1 50 279 1.4e+1 50 289 5.3e+09,108,36,3,9 3 1193 9.6e+1 50 335 3.0e+1 49 365 1.4e+113,78,18,3,3 37 1392 1.6e+1 50 274 7.7e+0 50 282 3.5e+015,70,14,3,2 36 1647 2.3e+1 50 615 6.1e+0 49 383 5.5e+012,88,22,3,4 33 1271 2.8e+1 50 292 1.3e+1 50 296 5.1e+09,120,40,3,10 6 10429 1.1e+2 50 386 4.8e+1 50 268 1.4e+119,57,9,3,1 46 778 4.8e+0 48 802 9.1e+0 48 802 8.2e+010,120,36,3,8 4 9927 1.1e+2 50 422 5.1e+1 50 377 1.3e+111,110,30,3,6 24 2491 4.9e+1 50 353 3.6e+1 49 366 1.6e+116,80,15,3,2 40 2275 2.3e+1 50 795 1.1e+1 50 485 4.7e+013,104,24,3,4 30 1076 4.9e+1 50 402 2.7e+1 50 344 8.7e+0Table 5: Performan
e results of BIBD generation using F
-
bj with three di�erent variable sele
tion heuristi
s,on a Sun Ultra 60, 360MHz. 24



F
-
bj-svpBIBD sdg vm(v; b; r; k; �) Sol Nodes Time Sol Nodes Time7,7,3,3,1 50 22 3.0e-3 50 21 4.2e-36,10,5,3,2 50 31 7.2e-3 50 30 5.6e-37,14,6,3,2 50 53 1.9e-2 50 44 1.2e-29,12,4,3,1 50 78 1.9e-2 50 48 1.0e-26,20,10,3,4 50 62 5.4e-2 50 62 3.5e-27,21,9,3,3 50 65 6.8e-2 50 69 4.4e-26,30,15,3,6 50 103 2.4e-1 50 95 1.4e-17,28,12,3,4 50 111 2.1e-1 50 86 1.2e-19,24,8,3,2 50 75 1.2e-1 50 77 8.4e-26,40,20,3,8 50 123 6.6e-1 50 126 3.9e-17,35,15,3,5 50 111 4.3e-1 50 109 2.7e-17,42,18,3,6 50 130 7.9e-1 50 133 4.8e-110,30,9,3,2 50 99 2.7e-1 50 123 2.0e-16,50,25,3,10 50 239 1.7e+0 50 156 8.3e-19,36,12,3,3 50 1896 1.0e+1 50 173 3.8e-113,26,6,3,1 50 145 2.1e-1 50 145 1.7e-17,49,21,3,7 50 321 1.8e+0 50 163 7.9e-16,60,30,3,12 50 184 2.7e+0 50 185 1.5e+07,56,24,3,8 50 219 2.2e+0 50 173 1.2e+06,70,35,3,14 50 213 4.9e+0 50 217 2.3e+09,48,16,3,4 50 152 1.2e+0 50 152 7.3e-17,63,27,3,9 50 220 3.3e+0 50 193 1.7e+08,56,21,3,6 49 179 1.3e+1 50 323 2.0e+06,80,40,3,6 50 242 8.5e+0 50 246 3.6e+07,70,30,3,10 50 213 5.0e+0 50 216 2.4e+015,35,7,3,1 50 193 5.0e-1 50 193 3.9e-112,44,11,3,2 50 166 9.5e-1 50 204 6.7e-17,77,33,3,11 50 242 7.6e+0 50 240 3.3e+09,60,20,3,5 49 188 1.3e+1 50 238 1.6e+07,84,36,3,12 50 270 1.1e+1 50 254 4.2e+010,60,18,3,4 50 232 2.8e+0 50 188 1.5e+011,55,15,3,3 50 180 2.0e+0 50 229 1.3e+07,91,39,3,13 50 274 1.5e+1 50 277 5.4e+09,72,24,3,6 50 979 1.4e+1 50 309 3.0e+013,52,12,3,2 50 541 2.5e+0 50 1008 3.4e+09,84,28,3,7 50 440 1.2e+1 50 257 4.2e+09,96,32,3,8 50 418 2.0e+1 50 295 6.4e+010,90,27,3,6 50 279 1.4e+1 50 286 5.3e+09,108,36,3,9 50 335 3.0e+1 49 341 4.0e+113,78,18,3,3 50 273 7.7e+0 50 280 3.5e+015,70,14,3,2 50 573 6.1e+0 50 1058 5.7e+012,88,22,3,4 50 290 1.3e+1 50 296 5.0e+09,120,40,3,10 50 381 4.8e+1 50 461 1.4e+119,57,9,3,1 49 745 7.7e+0 49 745 6.9e+010,120,36,3,8 50 417 5.1e+1 50 377 1.3e+111,110,30,3,6 50 352 3.5e+1 49 366 3.6e+116,80,15,3,2 50 643 1.0e+1 50 490 4.7e+013,104,24,3,4 50 397 2.8e+1 50 344 8.5e+0Table 6: Performan
e results of BIBD generation using F
-
bj-svpwith two di�erent variable sele
tion heuristi
s,on a Sun Ultra 60, 360MHz. 25


