An efficient algorithm for searching
implicit AND/OR graphs with cycles

P. Jiménez C. Torras

Institut de Robotica i Informatica Industrial (CSIC - UPC)
Gran Capita 2-4 (Edifici NEXUS), E-08034 Barcelona, Spain

Abstract

We present an efficient AO*-like algorithm that handles cyclic graphs without neither unfolding
the cycles nor looping through them. Its top-down search strategy is based on Mahanti and Bagchi’s
CF [17)], whereas its bottom-up revision process is inspired in Chakrabarti’s REV* [6]. However,
important modifications have been introduced in both algorithms to attain a true integration and
gain efficiency. Proofs of correctness and completeness are included. Up to our knowledge, the
resulting algorithm —called CFCrgv+— is the most efficient one available for this problem.

KEYWORDS: AND/OR graphs, cyclic graphs, heuristic search, assembly/disassembly problems.

1 Introduction

The use of AND/OR graphs for representing problems originated in the sixties within the domain of
Artificial Intelligence. Since then, it has spread to other fields, such as Operations Research, Automation
and Robotics, where AND/OR graphs are nowadays being used to represent cutting problems [1], inter-
ference tests [15], failure dependencies [3], robotic task plans [4], and assembly/disassembly sequences
[8]. In the last three contexts, the need to develop algorithms for dealing with cyclic AND/OR graphs,
possibly generated only as needed, has been explicitly stated [3, 4, 11]. The motivation for the present
work comes from the last such context, namely assembly /disassembly sequencing, as presented in Section
2.

When turning to the literature on algorithms for searching AND/OR graphs, one realises that there
have been two main periods in its historical development. Until the mid eightees, all the proposed
algorithms worked on implicit graphs and made the assumption that the graphs be acyclic [7, 18, 19, 2, 17].
The usual way of approaching cyclic graphs with these AO*-like algorithms was to “unfold” the cycles,
but this can be highly inefficient when cycles have relative low-cost arcs [6] or even prevent algorithms
from terminating.

In the early ninetees, efforts were directed to solving exzplicit cyclic AND/OR graphs. Both bottom-
up algorithms —like BUS [16] and REV* [6]- as well as top-down ones —like Iterative_Revise [6]- were
proposed to find the least-cost solution trees of AND/OR graphs which may have cycles.

What options does one have nowadays for searching an implicit AND/OR graph with cycles? Only
two proposals have appeared in the literature, both consisting of a modification to the cost revision part
within an AO*-like algorithm. The former relies on the observation that the cost revision process amounts
to looking for an optimal solution subgraph within an explicit AND/OR graph. Section 6.1 in [6] gives
some indications on how REV™* and Iterative_Revise could be used within AO*. The second proposal
consists of using cost bounds in the process of estimating the minimal cost of solution subgraphs, so as
to prevent infinite looping [12, 13].

Both proposals permit finding an optimal subgraph within an implicit AND/OR graph with cycles.
Now that correct and complete procedures to solve the problem are available, the next issue to address
is efficiency. In this respect, none of the current options is entirely satisfactory. The complexity of the
revision process proposed in [12, 13] depends not only on the size of the graph, but also on the costs of
the arcs, it being unnecessarily high in the case of low-cost arc cycles. REV™ and Iterative_Revise have
very similar worst-case complexities, the selection of one or the other depending mainly on the nature of
the problem graph [6]. Even if these last two algorithms are efficient for searching explicit graphs, their
direct use in the cost revision process within AO* does not lead to an efficient algorithm for searching
implicit graphs, as discussed in Section 5.

The aim of this paper is to present such an efficient algorithm. Its top-down search strategy is based
on Mahanti and Bagchi’s CF [17], whereas its bottom-up revision process is inspired in Chakrabarti’s
REV* [6]. Thus, in Section 4, both previous algorithms are briefly reviewed and, in Section 5, a first
attempt at their integration is discussed. Section 6 describes the modifications introduced to attain an
efficient integration, leading to the CFCrgv+ algorithm. In Section 7, the correctness and completeness
of CFCRrpy~ are proved. Section 8 discusses its efficiency in relation to previous approaches. Finally,
Section 9 summarizes the conclusions of the present work.

2 Motivating example

The motivation for this work comes from the assembly planning domain [20], where finding optimal
or near-optimal assembly sequences, rather than just feasible sequences, is still an open problem. The
assembly-by-disassembly approach has been widely adopted, both because starting with the final product
leads to a much more constrained search, and also because maintenance and recycling often require partial
disassembly plans. Within this approach, directional blocking graphs have become a standard tool [21].
The nodes in such a graph stand for the parts of an assembly, and, for a given direction of motion, an
edge A — B is included if part A collides with part B when A moves in that direction while B remains
stationary. Often several directions of motion are considered, and then if one combines the different
blocking graphs into a single AND/OR graph, cycles may appear [9].

A simple example where cyclic AND/OR graphs arise is shown in Figure 1(a). It is a 2-directional
key part removal problem. Part K needs to be removed from the 2D assembly by executing at most a
single translation for each part, either to the right or downwards. Thus, each part corresponds to an OR
node, for it can be removed along either direction, and in turn each direction is represented by an AND
node, since all the parts blocking the removal along the corresponding direction need to be taken away
first. Now, observe that part B blocks the downward motion of part C, while part C blocks the motion
of B to the right. This clearly corresponds to a cycle in the graph, as can be seen in Figure 1(b).

O\ X O]

Figure 1: (a) A 2D assembly. (b) The cyclic AND/OR graph to be searched for finding an optimal
disassembly sequence to remove part K. OR and AND nodes are represented by letters and circles,
respectively. Crossed boxes represent dead-ends, while non-crossed ones stand for terminal nodes. The
costs associated to the arcs have been selected to illustrate the behaviour of the proposed algorithms, as
discussed in the text. All the non-specified arc costs are equal to 1.

Each solution subgraph of the AND/OR graph provides a partial ordering of removals, from which at
least one! feasible disassembly sequence can be derived. For many products, there exists an exponentially
large set of feasible sequences, so that obtaining one is not difficult, whereas generating them all to
determine the best one is prohibitely expensive. Even for the simple example of Figure 1, there are as
many as nine feasible sequences?, stemming from three solution subgraphs.

The source of the high computational cost is not only traversing the graph, but especially generating
it, since expanding each AND node entails collision checking of one part against all the others along a
given direction, a particularly expensive operation [14]. Therefore, using an algorithm that, on the basis
of an evaluation function, expands the graph only as needed, i.e., an algorithm that works on implicit
graphs, is mandatory.

Concerning solution optimality, several primitive complexity measures for assembly sequences have
been defined [10]: number of removed parts, number of directions, number of changes of direction, depth
of the assembly sequence if parallelism is allowed, etc., some of which can be readily incorporated into
the AND/OR graph structure, whereas others are more difficult to adapt. For example, the depth of
the assembly corresponds directly to using the maxcost criterion at AND nodes, whereas the number
of removed parts can be implemented through the sumcost criterion only if solution subgraphs have a
tree structure. Nevertheless, these primitive measures are seldom used in isolation, but instead they are
combined into cost functions that balance the different factors.

The algorithms that follow have been developed for the usual functions employed in the search litera-
ture, namely additive cost functions. This means evaluating the cost of a solution by adding up the costs
associated to all its arcs. Other functions, such as those using the maxcost criterion, or the more general
monotone ones defined in [17], could be readily used as well.

In the example of Figure 1, the best solution in terms of the number of removed parts starts by
moving B downwards, then A and C also downwards in any order, and finally taking away K to the right.
In order to illustrate the features of the developed algorithms —in particular the handling of cycles—, we
assume that moving any part to the right has a cost of 1, while the downward motion has a cost of 10
for all parts, except for B for which it has a cost of 20. All the remaining arcs have a unitary cost. With
this cost function, the best sequence is to move D downwards, then C and B to the right, A downwards,
and finally take away K to the right.

Note, finally, that the assembly problem described is a particular instance of the general problem of
scheduling with AND/OR precedence constraints.

3 Notation

We adhere to the standard notation and definitions stated in [17]. G denotes the implicit graph, i.e. the

entire problem graph, implicitly specified by a start node s and a successor function. We assume that

each node m in G has a finite set of immediate successors S(m) and that every arc (m,n) in G has a cost

c¢(m,n) > 6§ > 0, where § € ®. Moreover, P(m) denotes the set of immediate predecessors of node m.
For any node m in G, a solution graph D(m) with root m is a finite subgraph of G defined as:

—_

m is in D(m);
if n is an OR node in D(m), then exactly one of its immediate successors is in D(m);
if n is an AND node in D(m), then all its immediate successors are in D(m);

every maximal (directed) path in D(m) ends in a terminal node; and

BTl

no node other than m or its successors in G are in D(m).

The portion of G generated up to a given point in the search is called the explicit graph G'. The
notion of solution graph in G has its counterpart in that of a potential solution graph (psg) in G, the
only difference concerning the fourth item: maximal paths end now at leaf nodes of G', called tip nodes,
which might be either terminal or non-terminal.

A cost function h(n,G) on every node n in G is defined in the usual way:

h(n,G) = g.l.b.{h(n,D(n)) | D(n) is a solution graph with root n in G},

where, for a node n in D(m),

IThe sequence is unique if the solution subgraph provides a complete ordering.
2Note that the structure of the graph itself prunes sequences with superfluous removals, otherwise the number of sequences
would grow to twenty.

D(m)) =0, if n is a terminal node,
e h(n,D(m)) =c(n,n') + h(n',D(m)), if n is an OR node and n' its immediate successor in D(m),
D(

m)) = Zle [¢(n,n;)+h(n;, D(m))], if n is an AND node with immediate successorsny, - - - n,
)

If there is no solution graph with root n in G, then h(n,G) = co. It follows immediately that D(n)
is a minimum-cost solution graph if and only if h(n, D(n)) = h(n, G).

Finally, we assume that an heuristic estimate i(n) of h(n, G) is associated to each node n in G. This
estimate will be used to guide the search and reduce the number of expanded nodes.

4 Review of C'F and REV*

The previous algorithms C'F and REV ™ were expressed in quite different formats in their original sources.
In order to describe later the non-trivial modifications required for their efficient integration, we first need
to present them in a common pseudocode format.

4.1 The CF algorithm

Among the several AO*-like algorithms proposed in the literature [7, 18, 19, 2, 17], we have chosen to
extend C'F to the case of cyclic graphs, because it was shown in [17] to have the best performance.

Algorithm CF

CF1: [Initially G' consists only of the start node s.]
f(s) :=0;
if s is a terminal node then label s SOLVED;
CF2: while s is not SOLVED do
begin
/* NODE EXPANSION */
CF2.1: choose any unsolved tip node n of the marked psg below s;

expand n generating all its immediate successors S(n);
for each n’ € S(n) not already in G' do

begin

§() =0

if n’ is a terminal node then label n’ SOLVED;
end;

?

/* COST REVISION */
CF2.2: create a set of nodes Z := {n};
CF2.3: while Z # () do
begin
remove a node m from Z such that no descendant
of m in G’ occurs in Z;
if m is an AND node then
begin
fnew = Zm’es(m) [c(m,m') + max{h(m'), f(m')}];
mark the arc (m,m’) for each m’ € S(m);
if every m’ € S(m) is SOLVED then label m SOLVED;
end;
if m is an OR node then
begin
Jnew = minm’ES(m) [c(m, ml) + maX{h(ml)a f(ml)}])
let this minimum occur for m’ = my [resolve ties
arbitrarily, but always in favour of a SOLVED node];
mark the arc (m,my);
if m{, is SOLVED then label m SOLVED;
end;

?

if (f(m) < fnew) or (m is SOLVED) then add to Z
all immediate predecessors of m along marked arcs;
if fnew > f(m) then f(m) := fnew;
end;
end;
exit with f(s) as output.

The outer loop CF2 implements the top-down growth of G’, while the inner loop CF2.3 carries out
the bottom-up revision of costs. At every moment, below each node in G', exactly one psg is marked,
meaning that all its arcs are marked. Cost estimates f are revised from the expanded node up only along
marked arcs. During this revision, arc-marking changes® may occur at OR nodes in the currently marked
psg, leading to an alternative, more promising, marked psg.

It was proved in [17] that, if A is admissible (i.e., h(n) < h(n,@),¥n € @), then CF terminates by
either finding a minimum-cost solution graph rooted at s or else returning f(s) = co. Moreover, CF was
proven to expand less nodes than other variants of the AO* algorithm, and also to behave better than
them when h is not admissible.

4.2 The REV* algorithm

REV™* and [terative_Revise are both equally suitable to directly replace the cost revision part of the CF
algorithm to allow it to handle cyclic graphs. However, if a true integration is sought in order to maximize
efficiency, then REV™ is the best option. This is mainly due to the bottom-up nature of REV™*, which
permits visiting only nodes whose costs may be affected by the expansion of the tip node. The situation
is even more unfavourable to Iterative_Revise if one takes into account that its worst-case complexity
is quadratic in the number of visited nodes. Another reason is the maintenance of updated marks and
updated costs for all nodes in G', which Iterative_Revise cannot guarantee. On the other hand, the
drawbacks of REV™* in front of Iterative_Revise are not so in this particular setting: G’ will never be
disconnected and the need to consider all leaf nodes, even if they do not contribute to the solution, can
easily be avoided. In sum, REV* can be modified to both exploit and maintain the information (cost
estimates and arc markings) incrementally collected by the C'F algorithm, as will become clear in Section
5, while Iterative_Revise cannot accommodate some of these changes.

Algorithm REV*

/* COST INITIALIZATION */
REV*1: create a set of nodes O :={ };
for each n € G do
if n is a terminal node then
begin
found[n] := true;
f(n) = t(n);
add n to O;
end
else
begin
found[n] := false;
f(n) := oo;
end;
/* COST REVISION */
REV*2: while not (found[s]) do
begin
REV*2.1: if O = 0 then exit (“no solution”);
REV*2.2: remove the node m from O with smallest f(m)
[resolve ties for s if it is a candidate];
REV*2.3: found[m] := true;
REV*2.4: if not(found[s]) then
for each p € P(m) and not(found[p]) do
begin

3Marking a successor of an OR node in the pseudocode means also deleting the previous mark.

if and(found[p']) for each p’ € S(p) then
begin
if p is an AND node then
fp) =Y pesplew: p') + F(0)];
if p is an OR node then
f(p) == minyespy)lelp,p’) + F(P)];
if p € O then remove it from O;
m = p;
go to REV*2.3;
end;
if p is an OR node then
begin
cost = c(p,m) + £(m);
if cost < f(p) then

begin
f(p) := cost;
add p to O;
end;
end;

end;
end.

Initially, only the terminal nodes are declared found and assigned a finite cost ¢(n). The found status
and the corresponding costs are propagated upwards to all nodes for which all immediate successors are
declared found. OR nodes not satisfying this condition get their costs updated as well, but their status are
not changed to found. Instead, they are added to a list O of pending nodes. When no further propagation
is possible, the node from O having the lowest f value is extracted from O and declared found. It has
been proved [6] that a node n is declared found only when f(n) equals the minimum cost h(n,G). By
following this bottom-up conservative strategy similar to Dijkstra’s shortest path, it is ensured that the
cost revision process will never loop around a cycle.

This is the way the algorithm is intended to work, as described in [6]. However, the code contains a
bug derived from the “go to” statement: the for loop in REV*2.4 needs to be completed regardless of
whether the “go to” statement is executed or not, because otherwise the found status and costs would
not be properly propagated upwards. But this is not the conventional meaning of a “go to”, a recursive
scheme should be used instead, as presented in the next section.

5 Integrating C'F and REV*

The most direct way to combine CF and REV™* to yield an algorithm that solves cyclic implicit AND/OR
graphs is to replace the cost revision part of CF by REV*. After the cost revision, then, it is necessary
to perform a top-down pass to obtain the currently best psg below s, from which a tip node will be
selected for expansion. Some minor changes need to be introduced even in this case. For instance, the
termination condition of C'F should be changed since now the “solved” status is not propagated upwards
and, more importantly, cyclic graphs may not have a solution —a possibility that didn’t exist for CF. The
new algorithm will terminate when either the currently best psg below s doesn’t contain any tip node or
when REV™* returns “no solution”.

Of course, this is not a very efficient combination of the two algorithms, since the costs of all nodes
in G' are revised at every iteration (even if most of them are not affected by the expansion of the new
node) and an extra top-down pass has to be carried out. One may note that this is due to the fact that
the two key features of C'F, namely incremental cost calculations and arc markings, are not exploited in
this arrangement.

The next degree of integration is thus to make use of arc markings. Only the costs of the ancestors
of the expanded node along marked arcs should be revised. Thus, all such nodes will be placed in the
set Z of “revisable” nodes after node expansion and, within REV™*, only the costs of nodes in Z will be
computed*. Moreover, arc markings will be appropriately changed for these nodes.

A further degree of integration is to exploit incremental cost calculations. The idea is to use the costs
from the preceding iteration as lower bounds on the corresponding costs in the current one. In this way,

47 has been implemented as a “revisable” flag, but it is denoted as a set to simplify the code.

the number of times OR nodes are visited (and their costs are updated) may decrease, because they can
be declared “found” as soon as their lower bound is reached.

These are the main modifications we introduced into CF and REV™*, following the indications in
[6], in our first attempt at an integrated algorithm. Other minor modifications will be discussed after
presenting the pseudocode description of this algorithm, which we call INT. Its overall structure is that
of CF, with a top-down growth of G’ and a bottom-up revision of costs. Moreover, like in C'F, below
each node in G', exactly one psg is marked at every instant. The resulting algorithm has four parts:

1. Node expansion. The same as in C'F.

2. Initialization of revisable nodes. Revisable nodes (i.e., ancestors of the expanded node along
marked arcs) are identified and their cost estimates are set to co after saving their old values.

3. Initialization of open mnodes. All tip nodes, regardless of whether they are terminal or not,
are placed in the list O of nodes from which the cost revision process will proceed upwards. The
“found” status of the remaining nodes is set to false.

4. Definitive cost assignment and arc marking. Nodes are extracted from O in order of increasing
f values and their ancestors are visited recursively. Only the cost estimates of revisable nodes are
updated. A node is declared “found” whenever one of the following three conditions is satisfied: all
its children are “found”, it is removed from O because it has the smallest f value, or its f value
has not changed from the preceding iteration. Arcs markings and “solved” labels are processed as
in the C'F algorithm.

A pseudocode description of the algorithm follows. The modifications with respect to CF and REV*
are enclosed in boxes. The meaning of the doubly framed parts will become clear when we present the
CFCRrgv~ algorithm in the next section.

Algorithm INT

INT1: [Initially G' consists only of the start node s.]
f(s) :=0;
if s is a terminal node then label s SOLVED;
INT2: while (s is not SOLVED) |and (f(s) # oc) | do
begin

/* NODE EXPANSION */
INT2.1: choose any unsolved tip node n of the marked psg below s;
expand n generating all its immediate successors S(n);
for each n’ € S(n) not already in G' do
begin
f(n') :=0;
if n’ is a terminal node then label n’ SOLVED;

| found[n'] := true; |

end;

/* INITTALIZATION OF REVISABLE NODES */
INT2.2: create a set of nodes Z := {n};
build-revisable(n);
for each m € Z do
begin
foa(m) := f(m);
f(m) := o0;

end;

/* INITTALIZATION OF OPEN NODES */
create a set of nodes O := { };
for ecach m € G' do

if mis a then

add m to O

else
found[m] := false;

/* DEFINITIVE COST ASSIGNMENT AND ARC MARKING */

INT2.3: while do

begin
remove the node m from O with smallest f(m);

if m is a non-tip OR node then
begin
let m{ € S(m) be such that f(m) = c(m,mg) + f(my) [resolve
ties arbitrarily, but always in favour of a SOLVED node];
mark the arc (m,my);
if m{, is SOLVED then label m SOLVED;
end;

cost-prop(m);
end;
end;

exit with f(s) as output.

Subroutines

procedure build-revisable(m);
begin
for each p ¢ Z immediate predecessor of m along a marked arc do
begin
add p to Z;
build-revisable(p);
end;
end.

procedure cost-prop(m);
begin
found[m] := true;
for each p € P(m) and not(found[p]) do

if and(found[p']) for each p' € S(p) then
begin
if p is an AND node then
begin
f(p) =3 esplep, p') + max{h(p'), f(p')}];
mark the arc (p,p’) for each p’ € S(p);
if every p’ € S(p) is SOLVED then label p SOLVED;
end;
if p is an OR node then
begin
f(p) = minp’eS(p) [c(papl) + max{h(p’), f(pl)}]§
let this minimum occur for p’ = pj [resolve ties arbitrarily,
but always in favour of a SOLVED node];
mark the arc (p,pp);
if pj is SOLVED then label p SOLVED;
end;
if p € O then remove it from O;

cost-prop(p);
end

else
if p is an OR node then
begin
cost = c(p,m) + max{h(m), f(m)};
if cost < f(p) then
begin
f(p) := cost;
if fy1q(p) < f(p) then
add p to O
else
begin
if p € O then remove it from O;
mark the arc (p,m);
if m is SOLVED then label p SOLVED;

cost-prop(p);

end;

end;

end;

else
cost-prop(p);

end.

The key idea beneath the algorithm is to update only the cost estimates of revisable nodes, by ex-
ploiting arc markings. To this end, the cost initialization of REV™ has been replaced by the initialization
of both revisable nodes and open nodes in the integrated algorithm. Moreover, the cost revision of REV™*
has been transformed into the cost-prop subroutine above.

Another important modification is to use the cost estimates from the preceding iteration f;q as
effective lower bounds, so as to stop the cost revision at OR nodes whenever the bound is reached.

Besides these two, many other minor modifications have been introduced for the algorithm to perform
appropriately. Thus, in order to have the cost estimates of all nodes in G' updated after each iteration,
the condition in the main loop REV*2 has been changed to INT2.3, otherwise nodes in G' with a cost
higher than f(s) wouldn’t get updated. Moreover, the “go to” in REV™ has been converted into a
recursive call to procedure cost-prop. Besides improving the algorithm structure, this change permits
overcoming the possible malfunctioning of REV* mentioned at the end of the preceding section. The
termination condition of the main loop CF2 has been changed to INT2, since cyclic graphs may not have
a solution and then the algorithm will return f(s) = co. Note that, not just s, but all nodes not having
a psg below them will have an infinite cost estimate at termination of the algorithm, this being one of
the purposes of the initialization INT2.2. Finally, the propagation of “solved” labels, the use of h values
and the updating of arc markings have been adapted, maintaining the same roles they play in C'F'.

Figures 2 and 3 show how the algorithm INT works for the problem in Figure 1, and may help
illustrate its main features:

e An arc closing a marked path will never be marked, ensuring that G' will always be free of marked
cycles. In iteration 13, the expansion of the left successor of node B generates a cyclein G'. However,
at step INT2.3, the cost-prop routine reaches C before the expanded node and, therefore, an arc
marking change occurs at C before the arc stemming from the expanded node is marked.

e The set of revisable nodes Z is a subset (sometimes small) of G'. In iteration 13, G' contains
13 non-leaf nodes, only 8 of which are revised. The savings are not large in this case due to the
nature of the example chosen: a small highly interconnected graph. In general, the current potential
solution graph (psg) will be a small fraction of the entire explicit graph, and Z is always a subset
of the current psg.

e Some cost updates at OR nodes may be saved by using the cost estimates from the preceding iteration
(fo1d) as lower bounds. In iteration 14, all OR nodes (D, C, B, A and K) are declared found before
all their children are found, because the cost estimates they inherit from their respective first
children found equal their costs in the preceding iteration.

K 29 [oc] K [42]
Before iteration 13 /\ INT 2.2 INT 2.3 /\

Figure 2: Ezxecution of algorithm INT on the graph displayed in Figure 1. The heuristic estimates h have
been set to 0 and 1, for terminal and non-terminal nodes, respectively. Tip nodes from the marked psg
are selected for expansion from left to right and from top to bottom. The behaviour of cost estimates f(n)
at the two last iterations of loop INT2 is shown. In particular, the f values before initiating the iteration,
those modified by the execution of INT2.2, and those calculated at INT2.3 are displayed between brackets.
The entire G' is displayed each time, with revisable nodes filled in black.

10

K [42]

Figure 3: The solution found for the graph in Figure 1 is displayed. Note that an arc which initially
closed a cycle, is now part of the solution subgraph. Moreover, not all nodes in the graph have been
expanded, highlighting the interest of working with implicit graphs. Although, in this example, only the
right successor of B has not been expanded, a whole tree could be hanging from this node.

6 The CFCgrpy- algorithm

In the algorithm presented in the preceding section, many cost updates are saved by exploiting arc
markings and incremental cost calculations. However, it is still unsatisfactory in that the cost revision
has to start at all leaf nodes every time to ensure that nodes within a cycle are revised in the appropriate
order. Moreover, the cost propagation proceeds upwards even if cost estimates remain the same as those
in the preceding iteration.

The ideal goal is to visit only nodes whose costs, arc markings or “solved” status change as a result
of the expansion of a new node. In other words, the cost propagation should not only be confined
to revisable nodes (avoiding to start at all leaf nodes), but also stopped wherever no change from the
preceding iteration is performed.

The algorithm CFCgrpyv-° does exactly this, through a deeper exploitation of arc markings and in-
cremental cost calculations. Two visual metaphors may help illustrate its workings. The initialization
metaphor is that of “collapsing” G’ onto the set of revisable nodes Z, so that nodes that have a psg
outside Z play the role of leaves. This is attained through an appropriate local cost revision process
carried out within Z. The closing metaphor is that of extinguishing the propagation fronts where no
changes occur. This affects both the local cost revision and the definitive cost assignment processes.

The CFCRrpy+ algorithm has the same structure and number of parts as INT, but the third part is
entirely different, and the second and fourth parts have changed slightly:

1. Node expansion. The same as in INT.

2. Initialization of revisable nodes. The same as in INT, except that the cost estimates f of
revisable nodes are not set to oo. This is to avoid that they remain oo if the propagation is stopped
before reaching them. Now, instead of saving the old cost estimates in f,}q and updating f directly,
the new tentative values will be recorded in fnew (in the third part of the algorithm) and f will
only be updated, if needed, in the definitive cost assignment step. Moreover, while in INT the
“found” propagation process sweeps all G', here it is confined within Z and, therefore, only the
“found” status of nodes in Z are initialized to false.

5The second C stands for cyclic.

11

3. Local cost revision to initialize open nodes. Revisable nodes having a psg below them disjoint
with Z are assigned the minimum cost estimate coming from their children and placed in O. This
process starts at the expanded node and propagates upwards along Z (which can be thought of as
an acyclic graph rooted at the expanded node), stopping propagation in all those branches where
no cost changes occur. The nodes traversed that are not placed in O are assigned an infinite new
cost estimate.

4. Definitive cost assignment and arc marking. All the updatings (of cost estimates, arc mark-
ings and SOLVED status) are carried out within this step. The main difference with respect to INT
is the pruning of revisable nodes whose cost estimates cannot change. This is achieved by means of
the procedure prune-revisable. Since the SOLVED status of these nodes may change, the procedure
SOLVED-propagation takes care of propagating these changes. Through this mechanism, many
cost updates are saved. Three minor modifications are the assignment of infinite costs to nodes
that remain “unfound” after emptying O, the marking of descendants of an AND node only if it is
the expanded node (since, in the other cases, they are already marked), and the need of removing
from O nodes that have been pruned from Z.

A pseudocode description of the algorithm follows. The additions with respect to INT are enclosed
in boxes, while the removals from INT appeared doubly framed in the code of that algorithm.

Algorithm CFCrpy+

CFC1: [Initially G' consists only of the start node s.]
f(s) = 0;
if s is a terminal node then label s SOLVED;
CFC2: while (s is not SOLVED) and (f(s) # oo) do
begin
/* NODE EXPANSION */
CFC2.1: choose any unsolved tip node n of the marked psg below s;

expand n generating all its immediate successors S(n);
for each n’ € S(n) not already in G’ do

begin
f(n') :=0;
fnew(n') = 0;
if n' is a terminal node then label n’ SOLVED;
found[n'] := true;
end;

/* INITTALIZATION OF POTENTIALLY REVISABLE NODES */
CF(C2.2: create a set of nodes Z := {n};

build-revisable(n);

for each m € Z do

|found[m] := false; |

/¥ LOCAL COST REVISION TO INITIALIZE OPEN NODES */
create a set of nodes O :={ };

init-open(n);

/* DEFINITIVE COST ASSIGNMENT AND ARC MARKING */
CF(C2.3: while O # () do
begin
remove the node m from O with smallest fnew(m);
if m is an OR node then
begin
let m{, € S(m) be such that fnew(m) = c¢(m, m{)+
max{h(m}), fnew(m})} [resolve ties arbitrarily,
but always in favour of a SOLVED node];
mark the arc (m,myg);
if mg is SOLVED then label m SOLVED;
end;

12

if fnew(m) > f(m) then
lf(m) = fnew(m)
begin

prune-revisable(m);
end;

if m is SOLVED then SOLVED-propagation(m);

cost-propagation(m);
end;
for each m € Z and not(found[m]) do

f(m) = oc;

end;

?

exit with f(s) as output.

Subroutines

procedure init-open(m);
begin
if (m is an AND node) and (S(m) N Z = () then
begin .
Frewe () = 3 csm[e(m,m’) + max{h(m'), £(m")}):
mark the arc (m,m') for each m' € S(m);
if every m' € S(m) is SOLVED then label m SOLVED;
add m to O; .
if fnew(m) > max{h(m), f(m)} then
for each p ¢ O immediate predecessor of m along a marked arc do
init-open(p);
end
else
if (m is an OR node) and (S(m) \ Z # 0) then
begin .
fnew(m) := min,, cgm)\ z[c(m, m') + max{h(m'), f(m')}];
add m to O;
if fnew(m) > f(m) then
for each p ¢ O immediate predecessor of m along a marked arc do
init-open(p);
end
else
begin
fnew(m) := oc;
for each p ¢ O immediate predecessor of m along a marked arc do
init-open(p);
end;
end.

procedure SOLVED-propagation(m);
begin

begin
label p SOLVED;
SOLVED-propagation(p);
end;
end.

for each p immediate predecessor of m along a marked arc such that p is not SOLVED do
if ((p is an AND node) and (every p’ € S(p) is SOLVED)) or (p is an OR node) then

13

procedure prune-revisable(m);
begin
remove m from Z;
for each p € Z immediate predecessor of m along a marked arc do
if (p is an AND node) and (S(p)NZ = 0) or (p is an OR node) then
begin
fnew(p) == f(p);
prune-revisable(p);
end;
end.

procedure cost-propagation(m);
begin
found[m] := true;
for each p € P(m) and not(found[p]) do
if p € Z then
if and(found[p']) for each p' € S(p) then
begin
if p is an AND node then
begin
fnew (p) == 2 cs(plelp, p') + max{h(p’), f(p')}];

mark the arc (p,p') for each p’ € S(p);
if every p’ € S(p) is SOLVED then label p SOLVED;

end;
if p is an OR node then
begin
fnew (p) := miny es(p)[c(p, p') + max{h(p'), f(p')}];
let this minimum occur for p’ = pj [resolve ties arbitrarily,
but always in favour of a SOLVED node];
mark the arc (p,pp);
if p, is SOLVED then label p SOLVED;
end;
if p € O then remove it from O;

if fnew(p) > f(p) then
f(p) :== fnew(p)

else
begin
if p is SOLVED then SOLVED-propagation(p);
prune-revisable(p);

end;

cost-propagation(p);
end
else /* at least one successor of p is unfound */
if p is an OR node then
begin
cost = c(p,m) + max{h(m), f(m)};
if cost < fnew(p) then
begin
fnew (p) := cost;
if fnew(p) > f(p) then
add p to O
else
begin
if p € O then remove it from O;
mark the arc (p,m);

if m is SOLVED then | SOLVED-propagation(m,) |;

14

prune-revisable(p); |
cost-propagation(p);
end;
end;
end;
else /*p¢ Z */
begin

| if p € O then remove it from O;

cost-propagation(p);
end;
end.

To ease the comparison with INT, the same two iterations recorded for that algorithm in Figure 2 are
now worked out for CFCggy+ in Figure 4. The main improvements are as follows:

e The set of open nodes O is now a subset of Z (thus, the propagation has no longer to start at all
leaf nodes). In iteration 13, the set O contains the nodes B and C, which play the role of leaves
from which cost estimates are propagated upwards.

e Only nodes having a psg disjoint with Z may be included in O; therefore, the only AND node
susceptible of getting into O is the expanded node. Moreover, not all OR nodes having a psg
disjoint with Z are included in O. By using the cost estimates from the preceding iteration, the
local cost revision stops at nodes whose estimates do not change. In iteration 14, the local cost
revision stops at the right successor of D, since its cost estimate equals its h value. Only this node
is included in O.

e The nodes effectively revised constitute a subset (sometimes small) of those potentially revisable Z,
which, as shown before, is a subset (sometimes small) of G'. In iteration 14, Z contains 11 nodes,
but only the costs of 2 of them (D and its right successor) are effectively revised by CFCrpy«. The
cost estimate of D is updated in CFC2.3, while that of its right successor is computed in CFC2.2.

e When a node becomes SOLVED maintaining its previous cost estimate, then only the SOLVED
status is propagated upwards. This is illustrated in iteration 14, where D maintains its previous cost
estimate.

e FEven when the cost estimate of a given revisable node does not change, so that it and its marked
predecessors are pruned from Z, the “found”-status propagation needs to continue upwards to ap-
propriately update non-marked predecessors. In particular, this is the way in which an expanded
node initially generating a cycle gets updated, as illustrated in iteration 13.

Figure 5 illustrates how the algorithm handles cases where some nodes must be assigned infinite cost
estimates, because they are within a cycle and do not have a psg below them. Note that CFCgrgy+
assigns infinite cost estimates to the nodes that remain “unfound” after having propagated costs from all
open nodes.

7 Validity of INT and CFCRrgy-

The correctness and completeness of INT follow directly from those of CF and REV™*. The only substan-
tial modifications introduced, namely using the preceding cost estimates as lower bounds and restraining
updates to revisable nodes, do not affect these properties, since they just prune steps that would leave
the state of the graph unchanged. Moreover, changes in arc markings and SOLVED status are performed
only when minimum cost estimates have been reached for the corresponding nodes, thus ruling out the
possibility of having marked cycles.

In order to prove the correctness and completeness of CFCrpy+, let us first introduce some notation.

Instant j is the moment at which step CFC2 (or, in its case, INT2) is initiated for the j-th time.

Gopo(d) (resp. Ghnp(4)) is the state of the explicit graph —topology, costs, arc markings and SOLVED
status— at instant j of the execution of CFCggy+ (resp. INT). Reference to the algorithm is dropped
when both sets coincide.

15

K [29] (00) K [42]
Beforeiteration 13 /\ CFC22 CFC23 /\

K [42] K SOLVED

Before iteration 14 /\ CFC22 CFC23 /\

Figure 4: Ezxecution of CFCgrgy+ on the graph displayed in Figure 1. The same instants as those shown
in Figure 2 are displayed to favour the comparison with INT. The fnew values are shown in parentheses,
maintaining the brackets for the f values. Two shadings are used for the revisable nodes in step CFC2.2,
the darker one signaling those nodes whose costs are actually revised during this step (their fnew values

are either set to infinity or assigned a finite value and, in the latter case, the corresponding nodes are
placed in O).

16

Final state of the graph

Figure 5: (a) Example taken from [6]. € denotes an infinitesimally small value. (b) Behaviour of the
CFCRrpv+ algorithm during one iteration of loop CFC2. The cost and arc marking changes performed
at steps CFC2.2 and CFC2.3 are displayed. Only two cost calculations are performed, that of node no at
step CFC2.2 and that of node s at step CFC2.3.

17

Z(j) is the contents of Z after the execution of step CFC2.2 (or, in its case, INT2.2) following instant
j- It consists of the expanded node as well as all its ancestors along marked arcs. Reference to the
algorithm is not included in this case because it is not needed in the proofs below.

Zgn(j) is the contents of Z when leaving the while loop of step CFC2.3 following instant j.

ferc(m,j) (vesp. frnr(m,j)) denotes the value of f(m) at instant j in the execution of CFCrpy«
(resp. INT).

In what follows we assume that the selection of a tip node for expansion obeys the same criterion in
the two algorithms.

The following lemma guarantees that the cost updating performed at each iteration of CFCrpy+ is
the same as that produced by the corresponding iteration of INT.

Lemma 5.1. If Gi.p(j) = Giyr(d), then forc(m,j+ 1) = finr(m,j +1),Ym € G'(j).

Proof. It m € G'(j) \ Z(j), then neither CFCgrpv+ nor INT update f(m), and the result follows.

We next prove that the result holds for nodes m € Z(j) that are declared “found” by CFCggv+. Let
my be the first such node. Necessarily m; is the first node extracted from O and, thus, it has a solution
subgraph disjoint with Z(j) of minimum cost among all those rooted at nodes from Z(j). Therefore,
f(m1) holds the minimum cost estimate of m; within G'(j), i-e., fin7(m1,7+ 1) (note that this estimate
may differ or not from that in the preceding iteration).

Suppose, as induction hypothesis, that the result holds for all nodes “found” up to a given point.
There are four places within C FCgrgy+ where the next node m; may be declared “found”:

1. First self-call within the cost-propagation procedure: m; has all its children “found” and the result
is obvious.

2. Second self-call within the same procedure: m; is an OR node with a “found” child that grants to
it the same cost estimate as in the preceding iteration, thus the result follows trivially.

3. Third self-call within the same procedure: m; € Z(j) \ Zg,, (j) and, therefore, m; has been removed
from Z by the procedure prune-revisable, meaning that along each maximal path in the marked psg
below m;, there exists a node that maintains its cost estimate from the preceding iteration. Thus,
frinT(mg, 7 + 1) will necessarily be equal to frnr(m;,7), which in turn is equal to forc(mg, j+ 1),
since the cost estimate of m; is not updated by CFCgrgy+.

4. Call within step CFC2.3: m; is an OR node removed from O at the start of an iteration of the
while loop CFC2.3, due to its having the smallest fnew value. Since O is initialized with and
continuously maintains all “unfound” nodes having a psg disjoint with Z(5), this implies that m;
has a solution subgraph disjoint with Z(j) of minimum cost among all those rooted at nodes from
Z(j) that remain still “unfound”. Therefore, at that time, f(m;) holds the minimum cost estimate
of m; within G'(j), i.e., finr(m;,j + 1).

To complete the proof, we have to consider the nodes m that remain “unfound” when leaving the
while loop CFC2.3. These nodes do not have a psg below them disjoint with Z(j) and, therefore, they
are not declared “found” by INT either. Thus, it is clear that fopc(m,j+ 1) = finr(m,j+1) = co. O

Theorem 5.2. If G is finite and h is admissible, then the algorithm CFCrpy - terminates by either
finding a minimal-cost graph rooted at s or else returning f(s) = co.

Proof. By induction on the number of iterations of the while loop CFC2, it is proved that Gf g (7)
contains a marked psg below s at every instant j, provided f(s) # oco. This is true at instant 1. If we
assume it to be true at instant j, then Lemma 5.1 together with the fact that the changes in arc markings
and SOLVED status are only performed for nodes that have reached their minimum cost estimates,
guarantee the result at instant j + 1. (It is worth noting that G, g () may differ from Gy (j), due
to the different impact that the use of the preceding cost estimates as lower bounds may have on both
algorithms). This proves the correctness of the algorithm.

The completeness of CFCgrgy+ follows from that of CF. O

8 Efficiency of CFCrpy-

First we present evidence supporting the claim that CFCrgy+ is the most efficient algorithm for searching
implicit AND/OR graphs with cycles, among those described in literature until now. For this, we compare

18

its performance with that of INT, the algorithm devised following the indications in [6], which constitutes
the most satisfactory available option for the reasons adduced in Section 1. In this way we verify that
the modifications we have introduced to the algorithm sketched by Chakrabarti are truly improvements.

Algorithms for searching implicit graphs were originally devised to deal with problems for which the
generation of the entire graph is very costly, because of either the large number of nodes involved or the
expensive process of generating the successors of a node. However, we have found that, even in cases
where the entire graph is available, it is often advantageous to use CFCrgy « instead of an algorithm for
searching explicit graphs, such as REV™*. Evidence for this is provided in Section 8.2.

8.1 Implicit graphs: comparing CFCgrgy- and INT

It is not difficult to see that CFCgpv+ and INT have an O(n®) worst-case complexity (n being the
number of nodes in the graph), the same complexity as AO* and CF. This is because, for each node
expansion, the number of cost calculations is proportional to the number of edges in the explicit graph
[6]. Of course, the complexity can be much lower for particular graph topologies and heuristic functions.

We next show that CFCrpy - is more efficient than INT in that it visits less nodes and performs less
cost computations than INT. Between instants j and j+ 1, INT visits all nodes in G'(j), while CFCrgy
visits only nodes in Z(j). But the important savings lie in the cost calculations: while INT computes the
costs of all nodes in Z(j), CFCgrgv- computes only the costs of nodes in Zg, (j) U O(j), where O(j) is
the set of nodes that are included in O between the two instants. The larger the difference between the
respective sets, the larger the savings. This was illustrated in Figure 4, iteration 14.

Note that the savings necessarily include the cost computations for all AND nodes belonging to
Z(j) \ Zgy, (4), and are likely to include those for most OR nodes in that set as well. The ideal would be
that the algorithm revised only nodes whose costs or arc markings change as a result of the expansion
of the new node. However, when a node expansion generates a cycle in the marked psg, one cannot
determine the least costly arc-marking change to open the loop without actually computing the costs of
the different alternatives (procedure init-open). Therefore, the aforementioned ideal seems unreachable,
and CFCRrpy+ looks as the closest approximation to it.

Both algorithms have been tested on the same set of arbitrary graphs, those depicted in Figure 6 as
well as the examples shown in the present article, in order to compare execution times (see Table 1).
It can be observed that even for graphs with a low number of nodes, CFCgrgy+- performs consistently
better. The power of the pruning strategies built into CFCrpv+ becomes evident in graphs like k, k’,
s, and s’. In all cases where we have concatenated graphs, the percentage of savings has grown with
the concatenation, giving support to the intuitive idea that, for similar graph structures, the CFCgrpy «
algorithm should become proportionally more advantageous as the size of the graph grows.

It is worth noting that this collection of graphs was designed well before the development of the
CFCRrpy~ algorithm, thus ruling out any bias to favor the particular features of this algorithm. Actually,
it was devised to test the correct behaviour of search algorithms on cyclic graphs, not really to compare
performances. In principle, graphs with high branching factors together with well-informed heuristics
should constitute the most favorable setting for CFCgrgy+, a situation quite distant from the graphs in
the collection.

8.2 Explicit graphs: comparing CFCgrgy~ and REV*

We have performed two sets of experiments. The former corresponds to extreme conditions where
CFCRrgv~+ attains savings of up to two orders of magnitude with respect to REV™, while the latter
is aimed at characterizing the frontier between the most advantageous use of one or the other algorithm.

The graphs for the first experiments are based on a disjunctive binary tree with 10 levels, i.e., having
2047 nodes. With a given probability, the nodes in the tree are replaced by AND nodes having three
successors: the two regular ones, plus the node’s grandfather. In this way, cyclic graphs of a very
particular type are generated. Table 2 shows the results. When no AND nodes are included, REV*
performs better than CFCgrgy+. As the percentage of AND nodes increases from 10 to 70, the speed
factor of CFCrpy« with respect to REV™ passes from 1 to 250, approximately. Note that this is not
surprising, since REV™ traverses always the entire graph, whilst CFCgrpy+ avoids visiting subgraphs
that can only be reached by passing through a loop and, in this experiment, every AND node generates
a loop.

The results of the second experiment are more important, since they establish the degree of cyclicity
and size of the graph, above which it is advantageous to use CFCrgyv~ instead of REV*. The graphs
in this case are generated following the rules of disassembly sequencing problems: OR nodes have only

19

Figure 6: A set of arbitrary graphs used as testbed of algorithms INT and CFCgrgy+. All arc costs are
equal to 1, unless otherwise stated, and all heuristic estimates h are equal to 0, except for those nodes
where another value is indicated in parentheses. The first four graphs are unsolvable. In graph k, the
four central nodes are completely interconnected through AND nodes (depicted in this case with smaller
circles). The cost of the outgoing arc of each one of these AND nodes is equal to 5.

20

| graph I INT| CFCgrgy+

| graph I INT | CFCRrEvy~

a 0.18 0.16 k’ 17.85 11.70
b 0.35 0.28 1 0.85 0.73
¢ 0.39 0.33 m 0.83 0.64
d 0.59 0.58 m’ 1.72 0.90
e 0.68 0.45 n 1.06 0.82
f 0.36 0.28 0 1.12 0.92
g 0.88 0.76 p 1.30 1.05
g’ 245 1.90 q 1.13 0.98
h 0.94 0.77 q’ 3.73 2.52
i 1.60 1.42 r 1.25 0.96
J 0.98 0.79 s 4.35 3.10
k 4.30 2.70 s’ 6.60 4.90

Table 1: Ezecution times of algorithms INT and CFCgrpy~, in milliseconds, on a SUN Ultra 2 2200
(SPEC int95 7.81, SPEC fp95 12.9). Graphs g’, k’, m’, and q’ result from duplicating g, k, m, and q,
respectively, and attaching each duplicate to the corresponding terminal node marked with an asterisk (see
Fig. 6). Graph r corresponds to Figure 5, while s is the motivating example used throughout the paper,
and s’ is the same graph repeated twice, by joining the root of the second to the leftmost leaf of the first.

Percentage of AND nodes I REV* | CFCRrgv-

0 2076.65 4794.02
10 1451.34 1429.14
30 950.67 96.35
30 671.01 10.15
70 584.38 2.23

Table 2: Ezecution times of algorithms REV™ and CFCgrgy+ for graphs with increasing percentages of
AND nodes which, in this particular experiment, correspond to dead-ends. The figures, in milliseconds,
are averages over 20 execution runs.

21

AND successors and vice versa, and only OR nodes can have more than one parent (see Section 2 and
Figure 1(b)). On an underlying binary tree with alternating OR and AND levels, cyclicity is introduced
by randomly assigning as successor of an AND node any OR node three levels above it in the tree. Table
3 shows the results of applying REV* and CFCgrpy+ to graphs of increasing sizes and with different
degrees of cyclicity. Observe that the higher the degree of cyclicity, the lower the size of the graph above
which it is advantageous to use CFCrpyv~. When the probability of generating a backward successor is
set to 0.2, CFCgrpy+ is quicker for graphs with more than 5000 nodes, while for a probability of 0.3,
it is advantageous above 300 nodes, approximately. It is worth noting that the cost of generating the
graphs (which would penalize REV™*, as well as any other algorithm for searching explicit graphs) is not
included.

Probability of backward arc
Depth 010 | 0.20 | 0.25 | 0.30 Algorithm
1.17 1.30 1.38 1.26 CFCRrgv+
4 0.43 0.38 0.34 0.39 REV*
[23,2] [22,4] [22,7] [21.6]
2.37 2.12 2.74 2.24 CFCRrgv+
5 0.92 0.83 0.81 0.84 REV*
[46,7] [45,11] [44,14] [45,16]
4.59 3.93 4.63 3.64 CFCRrpy-
6 2.62 2.00 2.02 1.34 REV*
[101,13] [93,27] [93,28] [86,38]
11.65 6.57 8.16 5.53 CFCRrEy~
7 4.65 4.11 4.07 3.59 REV*
[189,21] | [181,48] [182,61] [174,77]
26.25 13.32 10.31 6.77 CFCRrgv~
8 12.37 9.87 8.34 7.44 REV*
[376,47] [368,100] [361,125] [355,151]
62.86 24.32 17.44 16.15 CFCRrgv~
9 22.47 20.07 19.74 17.22 REV*
[757,98] [731,206) [723,249] [705,312)
203.43 52.65 40.85 21.73 CFCRrEy~
10 99.61 48.81 42.61 37.04 REV*
[1523,200] | [1471,410] | [1445515] | [1443,605]
461.10 113.70 90.04 64.71 CFCRrgv~
11 111.36 101.32 97.55 91.10 REV*
[3011,408] | [2927,808] | [2881,1022] | [2841,1217]
1519.69 236.91 108.20 65.18 CFCRrEy~
12 320.42 256.66 229.85 196.70 REV*
[6085,808] | [5871,1635] | [5771,2054] | [5657,2459]

Table 3: Execution times of algorithms REV* and CFCrgy+« for graphs representing disassembly se-
quencing problems with increasing degrees of cyclicity. Columns are labelled by the probability that an arc
stemming from an AND node goes three levels above it in the underlying binary tree structure. Rows,
representing increasing graph sizes, are labelled by the depth of the underlying tree structure. The main
figures, in milliseconds, are averages over 20 execution runs, while the average size of the graph and its
average number of backward arcs are included as pairs between brackets.

9 Conclusions

Two approaches had previously been proposed to find the optimal solution of implicit AND/OR, graphs
containing cycles [6, 13], but none of them was designed having efficiency in mind. The computational
cost of the algorithm in [13] depends not only on the size of the graph, but also on the costs of the arcs,
it being unnecessarily high in the case of low-cost arc cycles. In [6], only some indications on how to use
REV* within an AO* algorithm were provided.

We have followed these indications to come up with the INT algorithm presented in Section 5. Then,
we have introduced some modifications into this algorithm in order to save as many node visits and cost

22

computations as possible. This has resulted in the CFCgrpy« algorithm, which has been shown to be
more efficient than INT and, for high degrees of cyclicity, more efficient than REV™* too.

The executable C-code for the algorithm is available, together with a brief user’s manual, at the address
http://www-iri.upc.es/people/jimenez/ CANDOR.html. The input to be supplied is a description of the
implicit graph, whereas the output provided by the algorithm consists of a description of the solution
subgraph, together with the optimal costs associated to its nodes. Up to our knowledge, this is the first
available implementation of an algorithm for solving implicit AND/OR graphs with cycles.

Concerning future work, we will use the algorithm to plan disassembly sequences. Some assembly
complexity measures can be directly casted in our sumcost formulation, as sketched in Section 2, while
others will require an extension of that formulation to other more general (monotone) cost functions.
Likewise, the admissibility assumption may prove to be too restrictive for some of the above measures,
and then the generalization to the case of cycles of the results in [17, 5] concerning solution quality and
efficiency when heuristics overestimate will have to be undertaken.

Acknowledgements

This work has been partially supported by the Spanish Science and Technology Commission (CI-
CYT) under contracts TIC96-0721-C02-01 (project “Analysis of spatial constraints and its application
to mechanical design and robotic task simulation”) and TAP99-1086-C03-01 (project “Constraint-based
computation in robotics and resource allocation”). The authors would like to thank F. Thomas and P.
Meseguer for their very helpful comments on a previous version of this paper. Moreover, the influence of
two anonymous referees on the way this work has finally developed is gladly acknowledged.

References

[1] ARENALES, M., AND MORABITO, R. An and/or-graph approach to the solution of two-dimensional
non-guillotine cutting problems. European Journal of Operational Research 84 (1995), 599-617.

[2] BAgcHI, A., AND MAHANTI, A. Admissible heuristic search in and/or graphs. Theoret. Comput.
Sei., 24 (1983), 207-219.

[3] BARNETT, J. A., AND VERMA, T. Intelligent reliability analysis. In Proc. Tenth IEEE Conf. on
Artificial Intelligence for Applications (San Antonio (TX), 1994), pp. 428-433.

[4] Cao, T., AND SANDERSON, A. C. And/or net representation for robotic task sequence planning.
IEEF Trans. on Systems, Man, and Cybernetics—Part C: Applications and Reviews 28, 2 (May 1998),
204-218.

[5] CHAKRABARTI, P., GHOSE, S., AND DESARKAR, S. Admissibility of ao* when heuristics overesti-
mate. Artificial Intelligence 34 (1988), 97-113.

[6] CHAKRABARTI, P. P. Algorithms for searching explicit and/or graphs and their applications to
problem reduction search. Artificial Intelligence 65, 2 (1994), 329-345.

[7] CuaNg, C. L., AND SLAGLE, J. R. An admissible and optimal algorithm for searching and/or
graphs. Artificial Intelligence 2 (1971), 117-128.

[8] DEMELLO, L. S. H., AND SANDERSON, A. C. A correct and complete algorithm for the generation
of mechanical assembly sequences. IEEE Trans. of Robotics and Automation 7, 2 (Apr. 1991),
228-240.

[9] GOLDWASSER, M. Complezity measures for assembly sequences. PhD thesis, Stanford University,
1997.

[10] GOLDWASSER, M., LATOMBE, J.-C., AND MOTWANI, R. Complexity measures for assembly se-
quences. In Proc. IEEE Int. Conf. on Robotics and Automation (Minneapolis (MN), Apr. 1996),
vol. 2, pp. 1851-1857.

23

[11]

[18]

[19]
[20]

GOLDWASSER, M., AND MOTWANI, R. Intractability of assembly sequencing: unit disks in the
plane. In Proc. of the Workshop on Algorithms and Data Structures, LNCS (Springer Verlag)
(1997), vol. 1272, pp. 307-320.

Hvavrica, D. On the cost of potential solution subgraphs. In Proc. of the 3rd Symp. on Operations
Research in Slovenia (1995), pp. 81-88.

Hvavrica, D. Best first search algorithm in and/or graphs with cycles. Journal of Algorithms 21
(1996), 102-110.

JIMENEZ, P., THnomas, F., AND Torras, C. Collision detection algorithms for motion planning.
In Robot Motion Planning and Control, Jean-Paul Laumond ed., LNCS (Springer Verlag) (1998),
vol. 229, pp. 305-343.

JIMENEZ, P., AND ToRRAS, C. Speeding up interference detection between polyhedra. In Proc.
IEEFE Int. Conf. on Robotics and Automation (Minneapolis (MN), Apr. 1996), vol. 2, pp. 1485-1492.

KUMAR, V. A general heuristic bottom-up procedure for searching and/or graphs. Inform. Sci. 56
(1991), 39-57.

MAHANTI, A., AND BaccHi, A. And/or graph heuristic search methods. J. Assoc. Comput. Mach.
32,1 (1985), 28-51.

MARTELLI, A., AND MONTANARI, U. Optimizing decision trees through heuristically guided search.
Comm. ACM 21, 12 (1978), 1025-1039.

NiLssoN, N. J. Principles of Artificial Intelligence. Tioga, 1980.

TuoMmas, F., AND TorraAs, C. Inferring feasible assemblies from spatial constraints. IEEE Trans.
on Robotics and Automation 8, 2 (Apr. 1992), 228-239.

WILSON, R., AND LATOMBE, J.-C. Geometric reasoning about mechanical assembly. Artificial
Intelligence 71, 2 (1994), 371-396.

24

