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Abstract—This paper proposes a new adaptive estimation
approach to online estimate the model parameters of a piezo-
electric cantilever beam. The beam behavior is firstly modeled
using partial differential equations (PDE) considering the Kelvin-
Voigt damping. To facilitate the estimation of unknown model
parameters, the Galerkin’s method is introduced to extract
desired vibration modes by separating the time and space
variables of the PDE. Then, considering two major vibration
modes, the corresponding system model can be represented by
a fourth-order ordinary differential equation (ODE). Finally, by
using measured input and output information, a novel adaptive
parameter estimation strategy is introduced to estimate the
unknown parameters of the derived ODE model in real time. For
the purpose of driving the parameter updating law, the estimation
error is extracted by using an auxiliary variables and a time-
varying gain. Consequently, the convergence of the parameter
estimation error is rigorously proved based on the Lyapunov
theory. Simulations and experimental results show the validity
and practicability of the proposed estimation method.

Index Terms—Piezoelectric cantilever beam, beam modelling,
partial differential equation (PDE), adaptive parameter estima-
tion.

I. INTRODUCTION

During the past decades, many researchers have been in-
terested in modelling of beam to explore modal dynamics [1]
[2] [3] due to its application in many engineering practice.
The well known Euler–Bernoulli beam [1], Timoshenko beam
[4] and Rayleigh beam [5] were investigated, leading to the
developments of a broad class of beam models [6], [7]. In
[8], a piezoelectric laminate beam model was developed using
piezoelectric actuator and sensor. In [9], the Rayleigh damping
was included into the Euler–Bernoulli beam to represent a
flexible-link robot. However, most of these beam models
are described by using partial differential equations (PDE).
Although the control-oriented adaptive estimation can be theo-
retically achieved [10], a critical issue lies in the PDE models
is that estimating the unknown parameters of PDE is time
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Informàtica Industrial, 08028 Barcelona, Spain (e-mail: bin.wang@upc.edu;
ramon.costa@upc.edu).

Jing Na is with the Faculty of Mechanical and Electrical Engineering,
Kunming University of Science and Technology, Kunming, 650500, China
(e-mail: najing25@kust.edu.cn).

Oscar de la Torre and Xavier Escaler are with Barcelona Fluids and Energy
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consuming and sometimes impossible to complete in practice
[11]. To simplify the PDE models, the Galerkin’s summation
method was proposed and its convergence properties were
studied under different boundary conditions in [12]. In [13],
a specific procedure for implementing the Galerkin’s method
was provided and illustrated with numerical examples. In [14],
a reduced-order model was introduced by using the truncated
set of linear mode shapes, where different vibration modes
of the elastic beams were studied. Another approach named
differential quadrature method that can simplify the PDE
model in an approximate form was proposed in [15]. The effect
of different varying parameters was discussed based on the
simplified form. In [16], the balanced model reduction method
was proposed to simplify the high-order model. However, the
states information is replaced by the new states that have no
physical meanings. Although the modelling of the beam and
the simplification of several PDE models have been studied
in the above-mentioned literatures, a model that is suitable
for online estimating the parameters of the beam by using the
piezoelectric actuator and strain gauge was not developed yet.

For the vibrating systems like the beam, system parameters
may be unknown and varying under different operating con-
ditions [17], [18]. For example, the frequency and damping
of the beam in different liquids are not the same [19]. It
is highly desired to design parameter estimation strategies
to online estimate the unknown varying model parameters,
which in turn contributes to the precise modeling and control
synthesis. For parameter estimation techniques of the PDE
models, many challenging mathematical problems (e.g. the
uniqueness and stability) remain to be addressed. In [20],
a high-gain adaptive regulator was introduced to stabilize
and estimate the unknown parameters of a PDE based beam
model. Although the uniqueness of the classical solution is
justified, the computational load is high for solving the PDE
numerically. Hence, in practice, it is preferable to construct
the ordinary differential equation (ODE) based models, which
can be solved analytically. In [16], an offline identification ap-
proach was adopted to estimate the parameters of the discrete-
time beam model. In [21], an online estimator was proposed
to estimate the frequencies of the two main vibration modes
of a cantilever beam. The work was done in the frequency
domain based on the algebraic derivative approach.

For parameter estimation of ODE-based systems, many
researchers have been working on adaptive parameter esti-
mation techniques [22]. In [12], a two-stage gradient based
method was proposed by means of iterative algorithms for
autoregressive systems. In [23], an online optimization algo-
rithm based on the gradient method together with an extended
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Kalman filter was investigated. Another well-known parameter
estimation technique is the least-squares method or recursive
least-squares method [24], [25]. Although the convergence of
these algorithms can be proved under the persistent excitation
condition, there are still challenging issues accounting for
measurement noises for the beam systems and the verification
of the required excitation condition.

Moreover, for parameter estimation, it is more convenient
to parameterize the system model to separate the lumped
parameters from signals [26]. In this procedure, the use of
differentiation (or system states) is not desirable because of
the amplification of the noises, which would even be worse for
the plants that contain high-frequency modes [24]. To address
this problem, in our previous work [27], a stable filter is
applied to derive a new parameterized formula without using
the derivatives. Then the unknown parameters are estimated
by using the input and output signals only. In addition, the
convergence of parameter estimation error is proved under the
persistent excitation (PE) condition. However, with respect to
the vibration problem in the beam system, there are multiple
oscillation modes with higher frequencies. In such cases, the
estimation algorithm in [27] may not retain its performance
since only a constant gain set by the designer is adopted.

In this paper, a novel adaptive estimation approach is
introduced to online estimate the unknown parameters of
a cantilever beam modeled with the Euler-Bernoulli theory.
We first derive the motion equation of the cantilever beam
with the help of Hamilton’s principle. The piezoelectric ac-
tuator model is included in the derived PDE model and the
deflection-strain relationship is also presented for the purpose
of experimental validation. To make it more convenient for
parameter estimation, the Galerkin’s method is adopted to
convert the PDE model to an ODE model. The system behavior
is further described as a state-space model. To derive an
adaptive algorithm for estimating the system parameters with
multiple oscillation modes, we select the first and second
modes to seek for a tradeoff between model complexity and
accuracy. The model with two oscillation modes is then written
as a compact parameterized form. Based on the parameterized
model, a new adaptive parameter updating law with a time-
varying gain is proposed which is different to the adaptive law
with a constant gain provided in [27]. The convergence of the
parameter estimation error is proved by using the Lyapunov
theory. Compared to the conventional gradient method and
least-squares method, the proposed estimation approach can
achieve better performance. Simulations and experiments are
carried out to verify the validity of the proposed method.

Main contributions of the paper are summarized as follows:
1) A piezoelectric cantilever beam model is developed con-

sidering the Kelvin-Voigt damping and piezoelectric ac-
tuator. Based on the PDE model, a simplified ODE model
is derived and the parameters can be online estimated.

2) A novel parameter estimation scheme by using the param-
eter estimation error is proposed to online estimate the
unknown beam model parameters to retain convergence.
Specifically, a time-varying gain is designed to handle the
effects of regressor to enhance convergence performance
and simplify the tuning of learning gains.

This paper is organized as follows: Section II describes the
beam dynamics and the problem formulation. The adaptive
parameter estimation method is introduced in Section III.
Comparative simulations and experiments are given in Section
IV. Conclusions are outlined in Section V.

II. BEAM MODELLING AND PROBLEM FORMULATION

In this section, we will derive a PDE based beam model
via the Euler-Bernoulli beam theory. The piezoelectric actuator
model will be included in the beam model. In order to collect
the output information with strain gauge in the experiments,
we will derive the relationship between deflection and strain.
The derived beam model will be then simplified into an
ODE based model and then a parameterized model will be
constructed for parameter estimation.

A. Cantilever beam model

The sketch of the cantilever beam considering the flapwise
deflection is depicted in Fig. 1.
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Fig. 1: Sketch of a cantilever beam

For an inextensible beam (neglecting the strech deforma-
tion), the kinetic energy T can be given as [28], [29]

T =

∫ L

0

1

2
mV 2

y dx =
1

2
ρA

∫ L

0

(
∂w

∂t

)2

dx (1)

where m is the mass of the cantilever beam, Vy is the flapwise
velocity, ρ is the density, A is the cross-sectional area of the
beam (A = b · h, b is the beam width and h is the beam
thickness), w is the flapwise displacement and L is the length
of the beam.

To describe the dynamics associated with the damping,
the Kelvin-Voigt damping model is considered. Based on the
Kelvin-Voigt hypothesis, the conservative moment Mc and the
non-conservative moment Mnc can be given as [30], [31]

Mc = EI
∂2w

∂x2
(2)

Mnc = CI
d

dt

(
∂2w

∂x2

)
(3)

where E is the Young’s modulus, I is the Bending moment
of inertia and C is the damping factor of the beam.
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Considering the flapwise deformation [32], the potential
energy (or strain energy) U of an inextensible beam may be
obtained by using the conservative moment in (2) [31], [33]

U =
1

2

∫ L

0

EI

(
∂2w

∂x2

)2

dx. (4)

Using the non-conservative moment (3), the non-
conservative force Fnc can be written as [31]

Fnc =

∫ L

0

∂2

∂x2
Mncdx =

∫ L

0

CI
∂2

∂x2

[
d

dt

(
∂2w

∂x2

)]
dx.

(5)
By using Hamilton’s principle [29], the governing equation

of motion can be derived along with (1), (4) and (5) as

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
+ CI

∂5w

∂t∂x4
= 0. (6)

The boundary conditions correspond to

w|x=0 = 0;
∂w

∂x

∣∣∣∣
x=0

= 0;
∂2w

∂x2

∣∣∣∣
x=L

= 0;
∂3w

∂x3

∣∣∣∣
x=L

= 0.

(7)
This means that at the fixed end both the deflection and the

slope are zero. At the free end of the cantilever beam, there
are no bending moments or shear forces.

B. Cantilever beam with piezoelectric actuator

It is common to assume that the piezoelectric actuator’s
layer is much thinner than the cantilever beam. The effect of
the bonding material and the layer are negligible. In addition,
the twisting (shear) effect is not considered [34].

The voltage applied to the actuator introduces a strain in
the actuator. Since there is a distance between the actuator and
the neutral surface, the strain introduces counteracting control
moment on the mechanical structure. The control moment can
be described as [34], [35]

Ma = rad31EpUa(x, t) (8)

where ra is the effective moment arm (distance between the
surface of the beam and the mid-plane of the piezoelectric
actuator), d31 is the transverse piezoelectric coefficient [36],
Ep is the Young’s modulus of the piezoelectric patch and
Ua(x, t) is the distributed voltage on the patch.

The distributed voltage on the piezoelectric actuator can be
given as

Ua(x, t) = Ua(t) [H (x− xa)−H (x− xb)] (9)

where Ua(t) is the voltage imposed on the actuator, xa, xb

represent the two ends of the piezoelectric actuator as shown
in Fig. 1. H(·) is the Heaviside step function which is defined
as

H (x− xi) =

{
0 x < xi

1 x ≥ xi.
(10)

The piezoelectric force can be written as

Fa =

∫ L

0

∂2

∂x2
Madx. (11)

Then, the governing equation (6) can be derived as

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
+ CI

∂5w

∂t∂x4
+

∂2Ma

∂x2
= 0. (12)

The derived PDE beam model (12) describes the dynamics
of a piezoelectric cantilever beam considering Kelvin-Voigt
damping and piezoelectric actuator. The model can better
describe the characteristics of a real beam compared to the
beam model in [8] due to the effect of the damping in practice.
Compared to the proportional (Rayleigh) damping considered
in [9], the Kelvin-Voigt damping included in (12) has its
advantage in representing the behaviour of stress and strain
state [37].

C. Deflection calculation from strain

From the stress-strain relationship in the Kelvin-Voigt
model, the strain can be written as

ε(t) =
σ

E

(
1− e−λt

)
(13)

where σ is the bending stress, ϵ(t) is the strain and λ = E/C.
When we calculate the strain ε(t) from the known bending

stress σ, the strain can be approximately given as

ε(t) =
σ

E
. (14)

The theoretical force Ft for a cantilever beam can be
calculated as [38]

Ft =
3EIw

L3
. (15)

Then the bending stress can be given by

σ =
Mh

2I
=

FtL1h

2I
=

3EwL1h

2L3
(16)

where L1 is the distance from the strain gauge to the theoret-
ical force location.

Consider the stress-strain relationship from (14), we have
the deflection-strain relationship as

w =
2L3ε

3L1h
. (17)

Note that the deflection-strain relationship will only be used
in experiments to transform the strain to displacement and will
not be included in the model. This is because the displacement
and velocity are more straightforward for analysis in practice
compared to the strain.

Remark 1. Compared to the classical formulation of Euler-
Bernoulli beam, herein we include the Kelvin-Voigt damping
and the piezoelectric force in this study to derive a more
precise model. Besides, the deflection-strain relationship is
derived. The derived model (12) together with the deflection-
strain relationship (17) make it possible to represent the prac-
tical beam behavior bonding with the piezoelectric actuator
and the strain gauge. Compared to the beam model introduced
in [8], the proposed model (12) included the damping term,
which can better describe the dynamics of a real beam. The
included Kelvin-Voigt damping in (12) has its advantage in
representing the behaviour of stress and strain state [37] in
contrast to the Rayleigh damping in [9].
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Remark 2. To estimate the unknown parameters of the PDE
model (12), an intuitive way is to use the finite dimensional
approximation approaches (e.g. finite difference method) to
approximate the PDE and then apply the parameter estima-
tion methods. However, these PDE-based methods are time-
consuming and have high computational costs. To make it
more feasible for practical implementation, in the following,
we will transform the PDE model to an ODE model which
is more suitable for online estimation. Hence, the following
developments are essentially different to the existing results
[16], [21].

D. Model transformation with the Galerkin’s method

The Galerkin’s method is adopted to convert the PDE to an
ODE. The Galerkin method is valid for such a transformation
[39]. The displacement of the beam can be written as a
summation of different oscillation modes as

w(x, t) =

n∑
i=1

Wi(x)ηi(t) (18)

where Wi(x) are the mode shape functions and ηi(t) are the
corresponding modal coefficients.

Based on the separation of variables approach, the mode
shape functions are defined as [30]

Wi(x) = cosβix− coshβix

− (cosβiL+ coshβiL) (sinβix− sinhβix)

sinβiL+ sinhβiL

(19)

where the values of βi satisfy the frequency equation

cosβL coshβL+ 1 = 0. (20)

By using Galerkin’s method (see Appendix), we derive the
motion equation of the beam (12) as a matrix-vector form

Mη̈ +Cη̇ +Kη = zu (21)

where

M =

 m11 · · · 0
...

. . .
...

0 · · · mnn

 ,C =

 c11 · · · 0
...

. . .
...

0 · · · cnn

 ,

K =

 k11 · · · 0
...

. . .
...

0 · · · knn

 , z =

 z1
...
zn

 .

Based on the definition of natural frequency and damping
ratio [30], equation (21) together with (18) can be further
written as the following state-space model{

Ẋ = AX +Bu
y = CX

(22)

where the system state vector is chosen as X =
[η1, η2, · · · , ηn−1, ηn, η̇1, η̇2, · · · , η̇n−1, η̇n]

T and

A =

[
0n×n In×n

−Ω2 −2ζΩ

]
, B =

[
0n×1

Bw

]
,

C =
[
Cw 01×n

]
Ω =

 ω1 · · · 0
...

. . .
...

0 · · · ωn

 , ζ =

 ζ1 · · · 0
...

. . .
...

0 · · · ζn

 ,

Bw =
[ z1

m11
· · · zn

mnn

]
,

Cw =
[
W1 · · · Wn

]
where ωi and ζi are the natural frequency and damping ratio
of ith(i = 1, 2, . . . , n) oscillation mode.

In the system model (22), the unknown parameters ωi and
ζi are essential for modeling and control synthesis. Hence,
the aim of this study is to introduce a constructive estimation
scheme to derive the values of ωi and ζi by using the input
and output measurement.

Remark 3. System (22) describes the piezoelectric cantilever
beam behavior with multiple oscillation modes. Theoretically,
the system model will be more accurate with more oscillation
modes. However, this will lead to a high order system model,
which is more complicated to implement in practice. As a
result, a trade-off should be made between the accuracy and
the practicability. In this paper, we take two major oscillation
modes into consideration to demonstrate the effectiveness of
the proposed adaptive parameter estimation method.

III. ADAPTIVE PARAMETER ESTIMATION

This section will introduce a real-time parameter estimation
scheme for the above ODE based model (22) with two main
vibration modes. After parameterizing the system model, an
adaptive law with a time-varying gain will be proposed.
Without loss of generality, we assume the input u and output
y are bounded. For the unbounded cases, the normalization
operation [40] can be applied to fulfill this condition.

A. Model Parameterization

Considering the first and second oscillation modes, the
model (22) can be rewritten as{

˙̄X = ĀX̄ + B̄u
y = C̄X̄

(23)

where the system states are chosen as X̄ = [η1, η2, η̇1, η̇2]
T

and

Ā =


0 0 1 0
0 0 0 1
k̄1 0 c̄1 0
0 k̄2 0 c̄2

 , B̄ =


0
0
b̄1
b̄2

 ,

C̄ =
[
−2 2 0 0

] (24)

with k̄1 = −ω2
1 , k̄2 = −ω2

2 , c̄1 = −2ζ1ω1, c̄2 = −2ζ2ω2, b̄1 =
z1/m11 and b̄2 = z2/m22.

As shown in the above model (23), the parameters
k̄1, k̄2, c̄1, c̄2, b̄1, b̄2 involving ωi and ζi are essential for mod-
eling the beam system, which will be estimated in this study.
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However, one difficulty for using model (23) is that the states
X̄ cannot be directly measured. In practice, only the input volt-
age u = Ua(t) and the output displacement y = 2L3ε/(3L1h)
can be measured. Hence, an alternative model that is described
by the input and output is desirable for parameter estimation.
To address this issue, we can obtain the transfer function of
model (23) as

G(s) = C̄(sI − Ā)−1B̄ =
b2s

2 + b1s+ b0
s4 + a3s3 + a2s2 + a1s+ a0

(25)
where 

b2 = 2b̄2 − 2b̄1
b1 = 2b̄1c̄2 − 2b̄2c̄1
b0 = 2b̄1k̄2 − 2b̄2k̄1
a3 = −c̄1 − c̄2
a2 = −k̄1 − k̄2 + c̄1c̄2
a1 = c̄1k̄2 + k̄1c̄2
a0 = k̄1k̄2

(26)

are unknown parameters including ωi and ζi as shown in (24).
To accomplish the parameter estimation in the time-domain,

the model (25) can be further expressed as an ODE as

y(4)+a3y
(3)+a2y

(2)+a1y
(1)+a0y = b2u

(2)+ b1u
(1)+ b0u

(27)
To avoid using derivatives of output y as [27], i.e.

y(4), y(3), y(2), y(1), we filter each side of (27) with a fourth-
order filter 1/Λ(s), where Λ(s) = (s + λ)4 = s4 + k3s

3 +
k2s

2 + k1s+ k0, and then have

s4

Λ(s)
y + a3

s3

Λ(s)
y + a2

s2

Λ(s)
y + a1

s

Λ(s)
y + a0

1

Λ(s)
y

= b2
s2

Λ(s)
u+ b1

s

Λ(s)
u+ b0

1

Λ(s)
u.

(28)

Then, equation (28) can be rewritten as a parameterized
form

y =b2
s2

Λ(s)
u+ b1

s

Λ(s)
u+ b0

1

Λ(s)
u+ (k3 − a3)

s3

Λ(s)
y

+ (k2 − a2)
s2

Λ(s)
y + (k1 − a1)

s

Λ(s)
y + (k0 − a0)

1

Λ(s)
y

=ΘTΨ
(29)

where

Θ = [b2, b1, b0, k3 − a3, k2 − a2, k1 − a1, k0 − a0]
T
,

Ψ =

[
s2

Λ(s)
u,

s

Λ(s)
u,

1

Λ(s)
u,

s3

Λ(s)
y,

s2

Λ(s)
y,

s

Λ(s)
y,

1

Λ(s)
y

]T
.

The values of frequencies ω1, ω2 and damping ratios ζ1, ζ2
to be online estimated are determined by k̄1, k̄2, c̄1, c̄2, which
can be obtained by using (24) and (25). One can obtain the
eigenvalues of Ā in (24) as

p1 = c̄2
2 +

√
c̄22+4k̄2

2

p2 = c̄2
2 −

√
c̄22+4k̄2

2

p3 = c̄1
2 +

√
c̄21+4k̄1

2

p4 = c̄1
2 −

√
c̄21+4k̄1

2

(30)

From (25), one can obtain the eigenvalues p1, p2, p3, p4 by
computing the roots of the characteristic polynomial s4 +
a3s

3+a2s
2+a1s+a0. Substituting p1, p2, p3, p4 into (30), we

can solve (30) and obtain k̄1, k̄2, c̄1, c̄2. Then the frequencies
ω1, ω2 and damping ratios ζ1, ζ2 can be computed.

For the other two parameters b̄1 and b̄2 in (24), one can
obtain the values with the help of (26). We can rewrite the
first three equations of (26) as −2 2

2c̄2 −2c̄1
2k̄2 −2k̄1

[
b̄1
b̄2

]
=

 b2
b1
b0

 . (31)

Since (31) is over-constrained, we can obtain the approxi-
mate solution of (31) by introducing Moore–Penrose inverse.
Then b̄1 and b̄2 can be obtained as[

b̄1
b̄2

]
=

 −2 2
2c̄2 −2c̄1
2k̄2 −2k̄1

+  b2
b1
b0

 (32)

where [·]+ is the Moore–Penrose inverse. Another way to
compute b̄1 and b̄2 is to use only two equations of (31). The
computational burden will be less and the differences will be
only in transient.

Clearly, the system parameters k̄1, k̄2, c̄1, c̄2, b̄1, b̄2 in (24)
can be obtained as long as the parameters ai, i = 0, 1, 2, 3 and
bj , j = 0, 1, 2 in (26) are estimated online. Hence, the problem
now is to online estimate the unknown model parameters Θ
based on the measured input u and output y.

To ensure the convergence of parameter estimation, the
following definition of regressor should be used:

Definition 1. [22] A vector Ψ is persistently excited if there
exist T1 > 0, ς > 0, such that

∫ t+T1

t
Ψ(r)ΨT (r)dr ≥ ςI, ∀t ≥

0 is true.

The above condition implies that sufficiently rich infor-
mation should be involved in the regressor, which has been
recognized as a mandatory condition for parameter estimation
[22]. This condition can usually be fulfilled in the beam
system. However, the verification of this condition is not a
trivial task. This will be studied in the following subsection.

B. Adaptive Parameter Estimation
Although the classical gradient algorithm has been applied

for system (29), the tuning of learning gain that affects the
performance is generally difficult, since it is also sensitive
to measurement noise. In this subsection, we introduce an
alternative adaptive parameter estimation algorithm to estimate
the unknown parameter Θ of parameterized model (29), and
allow verifying the required excitation condition.

To eliminate the influence of noise, we first define the
auxiliary regressor matrix P and vector Q as{

Ṗ = −lP +ΨΨT , P (0) = 0

Q̇ = −lQ+Ψy,Q(0) = 0
(33)

where l > 0 is a forgetting factor set as a small constant.
One can obtain the solution of (33) as{

P =
∫ t

0
e−l(t−r)Ψ(r)ΨT (r)dr

Q =
∫ t

0
e−l(t−r)Ψ(r)y(r)dr

(34)
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which are bounded for any bounded Ψ and y.
To obtain the estimation error Θ̃ = Θ − Θ̂ to design an

adaptive law, we define another auxiliary vector W as

W = P Θ̂−Q (35)

where Θ̂ is the estimated parameter.
Combining (34) and (35), the vector W can be further

reformulated as
W = −P Θ̃. (36)

Hence, the parameter estimation error Θ̃ can be explicitly
calculated online based on the measured input u and output y,
which can be used to design the adaptive laws [26] to obtain
better performance than the classical gradient algorithm. More-
over, the purpose of introducing the above filtered matrix P is
to provide a feasible approach to verify the required excitation
condition, which can be summarized as the following lemma:

Lemma 1. If the regressor Ψ defined in (29) is persistently
excited, the matrix P is positively definite (i.e., λmin(P (t)) >
σ > 0 for a positive constant σ), and vice versa.

We refer to [27] for a similar proof of the above lemma.
The value of this lemma lies in that one can calculate the
minimum eigenvalue of matrix P to evaluate if the required
excitation condition of regressor Ψ is fulfilled.

Since W is a function of parameter estimation error Θ̃, one
can use it to design the adaptive laws as shown in [27], where
the adopted constant learning gain should be carefully set by
the designers. However, from (33) and (36), we can see that the
regressor Ψ is involved in the vector W , which may influence
the convergence response of the estimated parameters [41].
Hence, we will introduce a new adaptive law with a time-
varying gain to handle effects of regressor so as to simplify
the tuning of learning gains. Taking the effect of the regressor
Ψ into consideration, we define a time-varying gain H as

Ḣ = γH −HΨΨTH (37)

where γ > 0 is a design constant and H(0) = H0 > 0 is the
initial condition.

Using the matrix identity

d

dt
HH−1 = ḢH−1 +H

d

dt
H−1 = 0 (38)

we have its solution

H(t) =

[
e−γtH−1

0 +

∫ t

0

e−γ(t−r)Ψ(r)ΨT (r)dr

]−1

. (39)

Now, the boundedness of matrix H is shown as [41]:

Lemma 2. If the regressor Ψ is persistently excited, the matrix
H−1 defined in (39) is bounded by

βI ≤ H−1(t) ≤ αI (40)

where β = e−γT1ς and α = λmin(H
−1
0 ) +ϖ2, ϖ ≥ ∥Ψ∥.

The proof of the above claims can be inspired by [41], which
is not presented here due to the page limit.

As shown in (34) and (39), the matrix H converges to
the inverse of auxiliary matrix P . Hence, it can be used to

compensate the effect of regressor in the variable W . We
can use W and H together to design the following adaptive
parameter updating law

˙̂
Θ = −ΓHW (41)

where Γ > 0 is a positive constant.
The main results of this paper can be given as the following

Theorem:

Theorem 1. Consider system (27) with the parameter updat-
ing law (41), if the regressor Ψ is persistently excited, the
estimation error Θ̃ exponentially converges to zero.

Proof. We choose the Lyapunov candidate function as

V =
1

2Γ
Θ̃TH−1Θ̃. (42)

One can obtain the time derivative of V along with (41) as

V̇ =
1

2Γ

(
˙̃ΘTH−1Θ̃ + Θ̃T Ḣ−1Θ̃ + Θ̃TH−1 ˙̃Θ

)
=

1

Γ
Θ̃TH−1 ˙̃Θ +

1

2Γ
Θ̃T Ḣ−1Θ̃

= −Θ̃TP Θ̃ +
1

2Γ
Θ̃T Ḣ−1Θ̃.

(43)

From (39), we have

Ḣ−1 = −γH−1 +ΨΨT . (44)

Then, equation (43) can be further written as

V̇ = −Θ̃TP Θ̃ +
1

2Γ
Θ̃T

(
−γH−1 +ΨΨT

)
Θ̃

≤ −σ

α
Θ̃TH−1Θ̃− γ

2Γ
Θ̃TH−1Θ̃ +

ϖ2

2Γβ
Θ̃TH−1Θ̃

≤ −
(
2Γσ

α
+ γ − ϖ2

β

)
1

2Γ
Θ̃TH−1Θ̃

≤ −µV

(45)

where µ = 2Γσ/α+γ−ϖ2/β is a positive constant for large
gains Γ, γ. Based on the Lyapunov’s Theorem, the estimation
error Θ̃ exponentially converges to zero.

Remark 4. One can find that the adaptive law (41) is con-
structed based on the derived variable W , which is driven by
the parameter estimation error Θ̃ as shown in (36). Therefore,
the convergence of this algorithm can be rigorously proved.
Clearly, the proposed adaptive estimation method avoids using
any predictor/observer, which is different from the gradient
algorithms and least-squares methods driven by the observer
error (as shown in [24]). Besides, a time-varying gain H is
adopted to compensate the effect of regressor Ψ in the adaptive
law to enhance the convergence over that given in [27]. In
this line, as shown in the proof of Theorem 1, the learning
gain Γ can be trivially selected compared with the gradient
counterparts. Moreover, online validation of the persistent
excitation can be achieved by testing the positive definiteness
of P according to Lemma 1.
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Piezoelectric actuator

Strain gauge

Amplifier

Strain measurement

module (NI 9235)

Signal generation

module (NI 9262)

Signal monitor

module (NI 9223)

Cantilever beam

Fig. 2: Configuration of the experimental setup.

IV. SIMULATIONS AND EXPERIMENTS

To illustrate the effectiveness and practicality of the pro-
posed estimation algorithm, simulations and experiments are
conducted based on a steel cantilever beam as shown in Fig.
2. In the simulation, the nominal model values were computed
from the empirical material data of the steel beam and piezo-
electric actuator. The geometric and material properties of the
steel beam and the piezoelectric actuator [36] are described in
Table I and Table II, respectively.

TABLE I: Material data of the steel beam
Variables Values

Density of the beam (ρ) 7723.13 kg/m3

Cross sectional area (A) 0.00008 m2

Young’s modulus of elasticity (E) 1.93 · 1011N/m2

Bending moment of inertia (I) 6.67 · 10−12m4

Damping factor (C) 9.8 · 107N/(m/s)
Length of the beam (L) 0.36 m

TABLE II: Material data of the piezoelectric ceramics
Variables Values

Young’s modulus of elasticity (Ep) 7.06 · 1010N/m2

Piezoelectric coefficient (d31) −1.8 · 10−10C/N
Effective moment arm (ra) 0.001 m

A. Simulations

In the simulations, the beam system model (27) can be
written as

y(4) + 65.42y(3) + 6.18 · 104y(2) + 1.95 · 105y(1)

+ 9.23 · 107y = 13.02u(2) − 1.18 · 103u(1) − 1.11 · 106u
(46)

where a3 = 65.42, a2 = 6.18 ·104, a1 = 1.95 ·105, a0 = 9.23 ·
107, b2 = 13.02, b1 = −1.18 · 103, b0 = −1.11 · 106 are the
model parameters to be estimated. These nominal values are
computed from the material properties given in Table I. The in-
put signal is a square wave with amplitude 0.1 and frequency 7
Hz to ensure the required excitation condition given in Lemma
1. The polynomial used to derive the parameterized form is

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-0.1

-0.05

0

0.05

0.1

Input signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-0.02

-0.01

0

0.01

0.02

Output signal

Fig. 3: Input and output signals (simulation results)

chosen as Λ(s) = (s+100)4. The other parameters of the pro-
posed adaptive law are Γ = 80 ·diag(1, 1, 1, 1, 1, 1, 1), H(0) =
1 · 1022 · diag(1, 1, 10, 10, 10, 10, 10) and l = 0.01, γ = 0.1.

For comparison, the gradient-based method and least-
squares method [24] are used to estimate the unknown system
parameters under the same operation condition. The gradient-
based adaptive law is designed as [24]

˙̂
Θ = Γ1eΨ, e = y − Θ̂TΨ (47)

and the least-squares algorithm as [24]

˙̂
Θ = Γ2eΨ, e = y − Θ̂TΨ, Γ̇2 = −Γ2ΨΨTΓ2. (48)

The learning gain of the gradient-based method in (47) is
Γ1 = 1 · diag(2 · 1011, 2 · 1015, 6 · 1019, 3 · 1012, 2 · 1017, 7 ·
1018, 4 · 1023). The initial value of the covariance matrix
Z in the least-squares method (48) is Γ2(0) = 1 · 1023 ·
diag(1, 1, 1, 10, 10, 10, 10).

Clearly, the tuning of these gains for the gradient-based
method and least-squares method should consider the effect of
regressor Ψ (e.g. the amplitude of each component), and thus it
is a time-consuming phase, requiring preliminary information
of the plant. In contrast, for the proposed estimation algorithm,
since the effect of regressor Ψ on the convergence is handled
by introducing the time-varying gain H , such that the tuning
of the learning constant Γ is more straightforward, i.e. all
components in the gain Γ can be set as a constant.

Simulation results are depicted in Fig. 3-Fig. 5. Fig. 3
shows the profile of the input and output signal of the system
(46). Fig. 4 provides the estimation of the parameters ai, bj .
We can see that the proposed adaptive estimation method
has a smoother and faster response compared with the gra-
dient method and least-squares method. Hence, the proposed
adaptive method can accurately estimate the unknown model
parameters. This is because the adaptive law (41) is designed
by using the extracted parameter estimation error instead
of the predictor/observer error in the conventional methods.
The gradient method achieves larger overshoots and slower
convergence performance. Moreover, the least-squares method
suffers from a windup problem in the gain Γ2 given in
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Fig. 4: Comparative convergence performance of gradient method,
least-squares method and the proposed adaptive method (simulation
results)

(48). To implement the parameter estimation algorithms in
real-time, the algorithms are discretized using a 4th order
Runge-Kutta method. To estimate the required computation
burden, the different algorithms have been implemented using
MATLAB/Simulink and executed in a computer with Intel(R)
Core(TM) i7-8700K CPU @ 3.70 GHz processor and 16.0 GB
of memory running a 64-bit windows OS. The computational
time of each time step with the proposed adaptive method
is 0.039ms while the gradient method is 0.025ms and Least-
squares method is 0.032ms. Although the computational cost
of the proposed method is slightly larger than the gradient
method and Least-squares method, the computational time
of each time step is still much less than the sampling time
(0.1ms), which indicates the feasibility for real-time estimation
of the proposed adaptive method. To illustrate the accuracy of
the proposed approach, we further reconstruct and compare
the outputs of the model using the estimated parameters with
these three different methods. The system output and model
output with the estimated parameters are shown in Fig. 5. We
can see that the output profile can be accurately reconstructed
by using the proposed adaptive method while the gradient
method and least-squares method can not achieve such a good
performance.

According to (23) and (25), we can obtain the first mode
frequency ω1, the second mode frequency ω2, the first mode
damping ratio ζ1 and the second mode damping ratio ζ2.

TABLE III: Frequency and damping ratio
ω1(rad/s) ω2(rad/s) ζ1 ζ2

True value 39.1533 245.3711 0.0207 0.13
Gradient 38.8304 245.0479 0.0216 0.1374

least-squares 39.1339 231.6241 0.02 0.1205
Adaptive 39.1682 245.3184 0.0207 0.13
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Fig. 5: Reconstructed model output with gradient method, least-
squares method and the proposed adaptive method (simulation re-
sults)

Comparative values are shown in Table III. It is shown that
the proposed adaptive method has better estimation results than
the other two methods.

B. Practical Experiments

In the experiments, we use a piezoelectric actuator (type
number: P-876.A12) from PI Ceramic GmbH to excite the
beam. The voltage applied on the actuator is an amplified
signal (ranges: ±100V) from the voltage amplifier and the
original voltage signal (ranges: ±10V) is generated from NI
9262 module which is a simultaneously updating analog output
module from National Instruments. The NI 9223 module is
used to monitor the amplified signal. To configure the sensor
subsystem, we use a strain gauge (type number: WFLA-6-11-
3LDBTB) from Tokyo Measuring Instruments Laboratory to
measure the strain of the beam. The NI 9235 quarter-bridge
strain measurement module is used to collect the signal of the
strain gauge. A bridge offset nulling calibration is introduced
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Fig. 6: Input and output signals (experiment results)

to eliminate the offset of the strain gauge. The programs are
run on a PC with Intel(R) Core(TM) i7-8700K CPU @ 3.70
GHz, 16.0 GB memory, 64-bit OS. Please refer to Fig.2 for
the detailed configuration of the experimental setup.

Following the analysis given in the simulations, the param-
eters of the adaptive law (41) used in the experiments are Γ =
10 · diag(1, 1, 1, 1, 1, 1, 1), H(0) = 1 · diag(1 · 1023, 1 · 1015, 1 ·
1024, 1 ·1021, 1 ·1022, 1 ·1024, 1 ·1025), l = 0.01, γ = 0.1. The
learning gain of the gradient-based method in (47) is Γ1 =
1·diag(1·1011, 1·1010, 1·1019, 1·1016, 1·1017, 1·1019, 1·1021).
The initial value of the covariance matrix Γ2 in the least-
squares method (48) is Γ2(0) = 1 · diag(1 · 1010, 1 · 1016, 1 ·
1017, 1 · 1021, 1 · 1024, 1 · 1023, 1 · 1027). Clearly, since a time-
varying gain H is used to handle the effect of regressor, the
tuning of learning gain for the proposed algorithm is easier
than the gradient algorithm.

Experimental results are given in Fig.6-Fig.8. Fig.6 de-
scribes the profile of the input and output signal collected
from the test bench. The input signal is a square wave with
amplitude 50 V and frequency 7 Hz. To alleviate the effect
of the high-frequency electrical noises, a low-pass filter is
applied before feeding into the estimation algorithm. The
parameter estimation results of gradient method, least-squares
method and the proposed adaptive method are shown in Fig.7.
We can see that the proposed adaptive method (41) has an
overall better performance compared to the gradient-based
method (47) and the least-squares method (48). In particular,
smaller oscillations of the parameters can be achieved with the
proposed adaptive method. However, the gradient algorithm
has a slow convergence rate and more oscillations or even
steady-state errors in the estimated parameters. To illustrate
the accuracy of the proposed approach, we further reconstruct
and compare the output of the model using the estimated
parameters with these three different methods. The measured
output and model output with the estimated parameters are
shown in Fig. 8, from which we can see that the proposed
method can accurately estimate the unknown model param-
eters and thus approximate the output dynamics of the real
beam system. In contrast, the gradient method and the least-

Fig. 7: Comparative convergence performance of gradient method,
least-squares method and the proposed adaptive method (experiment
results)
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Fig. 8: Reconstructed model output with gradient method, least-
squares method and the proposed adaptive method (experiment re-
sults)
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squares method can not achieve such a good performance. The
gradient algorithm leads to steady-state errors in the model
output, implying unprecise parameter estimation, while the
least-squares method has a transient error during the first 3 sec,
indicating a sluggish convergence for parameter estimation.
These experimental results showcase the advantages of the
proposed learning algorithm with the introduced time-varying
gains.

V. CONCLUSION

This paper developed a constructive model for a cantilever
beam established by using the Euler-Bernoulli theory and then
presented an alternative adaptive parameter estimation scheme
to determine the model parameters. A PDE based model is
first provided including the beam motion equation and the
piezoelectric actuator dynamics. The Kelvin-Voigt damping
is also considered in the modelling procedure. By using the
Galerkin’s method, the system model is reconstructed to a
new form described by an ODE. Taking into consideration
of the first mode and second mode dynamics, the beam
model is finally reduced to a fourth-order ODE based model,
which is suitable for online parameter estimation. Then, an
adaptive parameter estimation method is proposed to estimate
the unknown model parameters, where the online estimation
can be achieved using the input and output only, and the
system states are not required. Specifically, a time-varying gain
is suggested in the learning law to eliminate the influence
of regressor and retain the convergence of estimation error.
Simulation and experiment results validate the effectiveness
and improved performance of the proposed method.

APPENDIX

In order to obtain the matrix-vector form of the beam
equation, we use Galerkin’s method to rewrite the PDE model
(12).

By substituting (18) into (12), the residual can be obtained
as

Ru =ρA

n∑
i=1

Wi(x)
d2ηi(t)

dt2
+ EI

n∑
i=1

d4Wi(x)

dx4
ηi(t)

+ CI

n∑
i=1

d4Wi(x)

dx4

dηi(t)

dt
+

d2Ma

dx2
.

(49)

The Galerkin’s method gives∫ L

0

RuWj(x)dx = 0. (50)

Then, we have∫ L

0

ρA

n∑
i=1

Wi(x)
d2ηi(t)

dt2
Wj(x)dx

+

∫ L

0

EI

n∑
i=1

d4Wi(x)

dx4
ηi(t)Wj(x)dx

+

∫ L

0

CI

n∑
i=1

d4Wi(x)

dx4

dηi(t)

dt
Wj(x)dx

+

∫ L

0

d2Ma

dx2
Wj(x)dx = 0.

(51)

Using the orthogonality principle of the modes shapes [30]∫ L

0

Wi(x)Wj(x)dx = 0, i ̸= j, (52)

we can rewrite equation (51) as
n∑

i=1

{
mij

d2ηi(t)

dt2
+ cij

dηi(t)

dt
+ kijηi(t) + ziu(t)

}
= 0,

j = 1, 2, . . . , n
(53)

where

mij =

∫ L

0

ρAWi(x)Wj(x)dx, (54)

cij =

∫ L

0

CI
d4Wi(x)

dx4
Wj(x)dx, (55)

kij =

∫ L

0

EI
d4Wi(x)

dx4
Wj(x)dx, (56)

zi = rad31Ep

[
d

dx
Wi (x1)−

d

dx
Wi (x2)

]
= rad31Ep

∫ L

0

Wj(x)
d2

dx2
[H (x− x1)−H (x− x2)] dx,

(57)
u(t) = Ua(t). (58)

Then, we can obtain the matrix-vector form of the beam as
given in (21).
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