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Abstract: This paper proposes a coalitional model predictive control method for temperature
regulation in parabolic-trough solar fields. The global optimization problem is divided into a set
of local subproblems that will be solved in parallel by a set of coalitions. However, these local
(smaller) problems remain coupled by a common global resource constraint. In this regard, we
present a population-dynamics-assisted resource allocation approach to fully decouple the local
optimization problems. By doing this, each coalition can address its corresponding optimization
problem without relying on the solutions of the other coalitions. To illustrate the proposed
methodology, we provide simulation results for a 100-loop parabolic-trough solar collector field.
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1. INTRODUCTION

The increasing levels of carbon dioxide and other green-
house gases in the atmosphere have generated a great
interest in the use of renewable energy to mitigate the
severe environmental impact of fossil fuel systems. Solar,
wind, geothermal, and biomass comprise different renew-
able energy sources. Among them, solar energy is the most
abundant and has drawn the attention of the research
community (Şen, 2004). Solar radiation can be used to
produce electricity directly, using photovoltaic panels, or
indirectly, through concentrated solar power systems. The
latter concentrates sunlight to heat a fluid that will pro-
duce steam to drive turbine generators (Peinado Gonzalo
et al., 2019). Within this technology, we will focus on the
control for parabolic-trough collector (PTC) solar plants
(Gálvez-Carrillo et al., 2009).

Unlike other power generation processes where we can
manipulate the main energy source, solar energy acts as a
disturbance from a control view point. In this framework,
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model predictive control (MPC) deals with system dis-
turbances and constraints in a receding-horizon fashion,
which makes it a suitable control strategy for parabolic
trough plants. However, one of the main limitations of
this approach is that it solves an optimization problem
in real-time at each time step, requiring a great compu-
tational effort when solving large-scale optimization prob-
lems. Nowadays, there is a growing interest in developing
alternative MPC strategies that reduce the computational
burden regarding the implementation of a centralized ap-
proach in parabolic-trough plants. For example, Escaño
et al. (2021) formulate a fuzzy MPC to forecast the evolu-
tion of the outlet temperature of the solar plant, reducing
processing times compared to the non-linear model of the
field. Also, Ruiz-Moreno et al. (2021) present an approach
in which artificial neural networks are trained to approxi-
mate the optimal flow value given by an MPC.

As an alternative, coalitional MPC (Maxim and Caruntu,
2022) splits the large-scale system into smaller subsys-
tems governed by local controllers or agents. This type
of distributed control dynamically groups cooperative con-
trollers only when overall performance improves (Barreiro-
Gomez and Zhu, 2022). In particular, the local subprob-
lems in the parabolic-trough fields are coupled by a shared
resource constraint related to the total amount of heat
transfer fluid that circulates through the field; see Masero
et al. (2020). In this regard, a key problem is how to
decouple the shared constraint so that the local problem
of each coalition can be solved independently of the rest of



the system. To this end, this paper proposes a coalitional
MPC approach where the population dynamics framework
(Sandholm, 2010) is used to allocate the available resource
among multiple coalitions, guaranteeing the satisfaction of
the coupled constraint so that local optimization problems
can be solved in a decentralized (parallel) fashion. The
motivation behind such an approach is that population
dynamics have some invariance and asymptotic stability
features that render them suitable for dynamic resource
allocation problems (Quijano et al., 2017). In particular,
the invariance property can be exploited to guarantee the
feasibility of the resource distribution at any point in time,
while the asymptotic stability feature allows us to achieve
an optimal resource distribution over time. Consequently,
based on the above, the main contribution of this paper
is the formulation of a novel coalitional MPC approach
incorporating population-dynamics-assistance for the reg-
ulation of temperature in parabolic-through solar collector
fields. The proposed method ensures the satisfaction of the
shared resource constraint and provides better scalability
to large-scale systems, as it reduces the overall computa-
tional burden. In addition, we evaluate the performance
of the proposed approach through a numerical simulation
of a 100-loop version of the ACUREX solar field of the
Plataforma Solar de Almeŕıa, Spain. This numerical sim-
ulation shows that our proposed method requires signifi-
cantly less computation time and imposes negligible losses
in performance compared to the centralized solution.

The remainder of this paper is structured as follows.
Section 2 provides the model of the parabolic-trough
solar collector field and the operational constraints of the
system. Section 3 presents the underlying control goal
and describes the proposed coalitional MPC setting. In
addition, we motivate the use of population dynamics to
allocate the common resource constraint. Finally, results
on 100-loop solar collector fields are presented in Section 4,
and Section 5 concludes the paper.

2. DESCRIPTION OF THE SOLAR FIELD

A parabolic-trough collector field consists of a set of
mirrors curved in a parabolic shape that concentrate solar
irradiance in a receiver tube located in its focal line. A
heat transfer fluid (HTF) heats up as it flows through the
pipe, and therefore carries the thermal energy to produce
steam. Finally, a steam turbine generates electrical energy.
The field can be modeled as a set L = {1, . . . , N} of
N parallel loops, where each loop consists of different
collectors connected in series. In particular, we assume
that we can control the HTF flow of each loop j ∈ L.

2.1 Dynamical Model of the PTC field

In what follows, we consider the concentrated parameter
model of a PTC field (Camacho and Gallego, 2015), which
provides a lumped description of each loop. More precisely,
the dynamics of the outlet temperature of a loop are given
by the variation of the internal energy of the HTF. We can
describe the continuous-time model for each loop j ∈ L as

Cj(t)
dTj(t)

dt
=αjηSI(t)− βjSHj(t)

(
T̄j(t)− T a(t)

)
− Pj(t)qj(t)

(
Tj(t)− T in

j (t)
)
,

(1)

Table 1. Model’s variables and parameters

Symbol Description Units

t Continuous-time variable s

k Discrete-time index -

Tj , T
in
j Outlet and inlet temp. of loop j ºC

T, T in Outlet and inlet temp. of the field ºC
Ta Ambient temperature ºC
T̄ Mean inlet-outlet temperature ºC
qj HTF flow in loop j l/s

qT Total HTF flow l/s

I Direct solar irradiance W/m2

Hj Coef. of thermal losses of loop j W/(m2 ºC)

N Number of loops -

L Length of each loop m

S Reflective surface of each loop m2

af Cross-sectional area of the fluid m2

ρ Density of the HTF kg/m3

c Specific heat capacity of the HTF J/(kg ºC)

αj , βj Cleanliness and loss scale factor of j -

with Cj(t) = ρj (T (t)) cj (T (t)) afL, T̄j(t) = 0.5
(
Tj(t)+

T in
j

)
, and Pj(t) = ρj (T (t)) cj (T (t)).

For clarity, Table 1 summarizes the model variables and
parameters. Here, the density and specific heat capacity
of the HTF are temperature-dependent. Also, the global
coefficient of thermal losses Hj(t) depends on the outlet,
inlet, and ambient temperatures. Mirrors of different col-
lectors might have different cleanliness levels and thermal
losses, consequently, loops may have different dynamics. In
this regard, we consider αj and βj as the scale factors that
characterize the cleanliness of the mirrors and the thermal
losses of each loop, respectively.

2.2 System’s Constraints

The direct normal irradiance (DNI), ambient temperature,
and inlet temperature are considered disturbances that can
be estimated or measured. Moreover, it is assumed that
the inlet temperature of each loop is equal to the inlet
temperature of the HTF to the field, i.e., T in

j = T in, for
all j ∈ L. Also, we can describe the outlet temperature of
the whole field as

T (t) =

∑N
j=1 Tj(t)qj(t)

qT (t)
, (2)

where qT (t) =
∑N

j=1 qj(t) is the total HTF flow.

In addition, we must restrict the operation region of the
outlet temperature of each loop, as well as the values of the
HTF flow of each loop j ∈ L and the entire field. Namely,

Tmin ≤ Tj(t) ≤ Tmax, ∀j ∈ L (3a)

qmin ≤ qj(t) ≤ qmax, ∀j ∈ L (3b)

qT (t) ≤ qT,max. (3c)

2.3 Linear Discrete-Time Model

For the control strategy described in this work, we propose
a linearization of the concentrated parameter model in (1),
with the goal to operate each loop j ∈ L close to its desired



operating point
(
T ◦
j , q

◦
j

)
. To this end, we can define the

temperature and flow of each loop j as the sum of its value
at the operating point plus a small increment represented
by the deviation variables (xj , uj). That is,

Tj(t) = T ◦
j + xj(t), qj(t) = q◦j + uj(t). (4)

Based on (1) and (4), and approximating the time deriva-
tives using the forward Euler method, we can express the
discrete-time lumped model for each loop j ∈ L as

xj [k + 1] = Ajxj [k] +Bjuj [k] + wj [k]. (5)

Consequently, we can express the model of the field as

x[k + 1] = Ax[k] +Bu[k] + w[k], (6)

with

x[k] = col (x1[k], x2[k], . . . , xN [k]) ∈ RN ,

u[k] = col (u1[k], u2[k], . . . , uN [k]) ∈ RN ,

w[k] = col (w1[k], w2[k], . . . , wN [k]) ∈ RN ,

A = diag (A1, A2, . . . , AN ) ∈ RN×N ,

B = diag (B1, B2, . . . , BN ) ∈ RN×N .

Here, col(·) and diag(·) denote the construction of a
column vector and a block diagonal matrix, respectively.
Besides, the constraints in (3) can be written in terms of
deviation variables (4) as

Tmin − T ◦
j ≤ xj [k] ≤ Tmax − T ◦

j , ∀j ∈ L (7a)

qmin − q◦j ≤ uj [k] ≤ qmax − q◦j , ∀j ∈ L (7b)∑
j∈L

uj [k] ≤ qT,max −
∑
j∈L

q◦j . (7c)

3. CONTROL PROBLEM AND PROPOSED METHOD

As mentioned above, the overall control objective is to
regulate the deviation variables (4) so that the global
system (6) remains close to the desired operating point
(T ◦

j , q
◦
j ), for all j ∈ L, while satisfying the constraints given

in (7). This overall objective is formalized as follows.

Definition 1. (Control Objective) The model predictive
control problem to be solved at time k is given by

min
u[k]

Np∑
n=1

x[k+n]⊤Qx[k+n]+

Np−1∑
n=0

u[k+n]⊤Ru[k+n], (8)

subject to the constraints (6) and (7), where the prediction
horizon is denoted as Np ∈ Z≥1. Here, the weighting
matrices Q,R ∈ RN×N are symmetric positive definite,
and the vector u[k] provides the sequence of inputs u[·]
from the time instants n = k to k + Np − 1, that is,
u[k] = col (u[k], u[k + 1], . . . , u[k +Np − 1]).

Assumption 1. The set of solutions to the problem in
Definition 1 is not empty. Also, Nqmin ≤ qT,max ≤ Nqmax.

If the solar field is sufficiently large, then the application
of centralized methods to solve the problem in Definition 1
may be unfeasible for real-time control. To overcome this
issue, we propose a coalitional control approach in which
the centralized controller is replaced by a set of local
controllers that will solve their optimization problems
independently, leading to a lower computational cost.

3.1 Coalitional Control Approach

We consider the graph G = (L, E), where L is the
set of loops and E ⊆ L × L is the set of bidirectional
communication links that allow the controllers of the
different loops to exchange data.

Assumption 2. At any time, the graph G is partitioned
into a set ofM disjoint complete subgraphs G1,G2, . . . ,GM .
For every i ∈ {1, 2, . . . ,M} we have Gi = (Li, Ei), with
Li ⊆ L and Ei = Li × Li. Also, Li ∩ Lℓ = ∅ holds for all
i ̸= ℓ, and L1 ∪ L2 ∪ · · · ∪ LM = L.
Definition 2. (Coalition) Under the partition provided by
Assumption 2, a coalition Ci = Li is a subset of loops
whose controllers are connected through a set of links Ei
according to the (complete) subgraph Gi. Thus, agents
within the same coalition operate as a single entity, and
the size of a coalition can range from a singleton Ci = j,
i.e., |Ci| = 1, to the grand coalition Ci = L, i.e., |Ci| = N ,
where |Ci| denotes the cardinality of Ci. Throughout, we
let P = {C1, C2, . . . , CM} be the set of coalitions, so that
P characterizes the partition of the system.

Remark 1. Loops can be grouped using different criteria
such as geographical proximity, solar irradiance, or HTF
flow requirements (Masero et al., 2020). In this paper, we
do not focus on a specific partitioning method, instead, we
assume that the partition is given by an arbitrary criterion.

Based on the partition P, we let qmax
Ci

be the maximum
HTF flow allowed for coalition Ci ∈ P, and these maximum

coalition-level flows are set to guarantee
∑M

i=1 q
max
Ci

=

qT,max −
∑

j∈L q◦j (the details on how to compute qmax
Ci

for each coalition are given in Section 3.2). Expressed in
the deviation variables, it is then required that∑

j∈Ci

uj [k] ≤ qmax
Ci

, ∀Ci ∈ P. (9)

Clearly, if the constraint in (9) holds for all coalitions, then
the overall field-level constraint in (7c) holds as well.

Definition 3. (Local Control Objective) The model pre-
dictive control problem to be solved at time k by coalition
Ci ∈ P is given by

min
uCi

[k]

Np∑
n=1

∑
j∈Ci

x2
j [k + n]Qj +

Np−1∑
n=0

∑
j∈Ci

u2
j [k + n]Rj , (10)

subject to (5), (7a), and (7b), for all j ∈ Ci, and (9).
Here, the (local) weighting scalars Qj , Rj ∈ R≥0 are set
according to the global weighting matrices in (8), for all
j ∈ Ci; the vector uCi

[k] describes the sequence of inputs
within a coalition Ci from instants n = k to k + Np − 1;

and the vector uCi [·] = col
(
{uj [·]}j∈Ci

)
is comprised of

the inputs of the loops belonging to coalition Ci.

We highlight that once the qmax
Ci

term is computed for each
coalition, the local control problems in Definition 3 are
decoupled over the multiple coalitions. In this way, each
coalition’s local controller can solve the problem in (10) in
a decentralized manner.

3.2 Resource Allocation via Population Dynamics

In this section, we formulate the proposed population
dynamics-assisted resource allocation method that is used



to determine qmax
Ci

for each coalition Ci ∈ P. To this end, we
consider a model predictive control problem with unitary
control horizon as defined next.

Definition 4. (Control Objective under Unitary Control
Horizon) The unitary control horizon model predictive
control problem to be solved at time k is given by

v[k] = argmin
u[k]

Np∑
n=1

x[k+ n]⊤Qx[k+ n] +

Np−1∑
n=0

u[k]⊤Ru[k],

(11)
subject to the constraints in (6), (7b), and the coupled
constraint

∑
j∈L uj [k] = qT,max −

∑
j∈L q◦j . Here, the

weighting matrices for state and input, namely Q and R,
are the same ones considered in Definition 1.

The solution of the problem in Definition 4 gives an
estimate of the average flow of HTF required by each loop
over Np, and thus provides information to determine qmax

Ci

for each coalition Ci ∈ P. Compared to the problem in
Definition 1, the one in Definition 4 regards the constraint
in (7c) with strict equality, and disregards the constraints
in (7a) (nevertheless, recall that the constraints in (7a)
are still considered at each coalition’s local controller). We
enforce (7c) with strict equality to allocate the totality
of the available resource over the multiple coalitions, so

that
∑M

i=1 q
max
Ci

= qT,max −
∑

j∈L q◦j . On the other hand,

we remove the constraints in (7a) to guarantee the non-
emptiness of the set of solutions under the unitary control
horizon constraint.

Now, according to the dynamics in (6), the state x[k + n]
under a constant u[k] applied during times k, k+1, . . . , k+
n−1 is given by x[k+n] = Anx[k]+Gnu[k]+d[k+n−1],

where Gn =
∑n−1

ℓ=0 AℓB and d[k+n− 1] =
∑n−1

ℓ=0 Aℓw[k+
n− 1− ℓ]. Consequently, the cost function in (11) can be
equivalently written as

J (u[k]) =

Np∑
n=1

(
x[k]⊤An⊤QAnx[k] + 2x[k]⊤An⊤QGnu[k]

+ 2x[k]⊤An⊤Qd[k + n− 1] + u[k]⊤G⊤
nQGnu[k]

+ 2u[k]⊤G⊤
nQd[k + n− 1]

+ d[k + n− 1]⊤Qd[k + n− 1]

)
+Npu[k]

⊤Ru[k].

Besides, the gradient of J(·) with respect to u[k] is

given by g (u[k]) =
∑Np

n=1

(
2G⊤

nQAnx[k]+2G⊤
nQGnu[k]+

2G⊤
nQd[k + n− 1]

)
+ 2NpRu[k]. Based on these formula-

tions, to solve the problem in Definition 4 we consider the
iterative dynamics given by

ϑj [κ] = max
(
qmax − qmin − v̄j [κ], 0

)
(12a)

ϱij [κ] = min (max (gi (v̄[κ])− gj (v̄[κ]) , 0) , γ) (12b)

µj [κ] =
∑
i∈L

(v̄i[κ]ϑj [κ]ϱij [κ]− v̄j [κ]ϑi[κ]ϱji[κ]) (12c)

v̄j [κ+ 1] = v̄j [κ] + ϵµj [κ] (12d)

vj [κ] = v̄j [κ] + qmin − q◦j , (12e)

for all i, j ∈ L, where γ, ϵ ∈ R>0 are strictly positive
constants whose values are defined in Theorem 1, and the
initial condition v̄[0] = col (v̄1[0], v̄2[0], . . . , v̄N [0]) satisfies

v̄[0] ∈
{
v̄ ∈ RN

≥0 :

∑
j∈L v̄j = qT,max −Nqmin

v̄j ≤ qmax − qmin, ∀j ∈ L

}
. (13)

Note that the updates in (12) occur at discrete-time
instants κ, which are not necessarily equal to the time
instants k of the discrete-time model in (6). Based on
the dynamics in (12) and the partition P, the resource
allocation at time κ is computed as

qmax
Ci

[κ] =
∑
j∈Ci

vj [κ], ∀Ci ∈ P. (14)

The iterative dynamics in (12) correspond to a discretiza-
tion of the so-called Smith population dynamics with car-
rying capacities (Barreiro-Gomez and Tembine, 2018). As
mentioned above, our interest on the dynamics in (12) is
due to their invariance and asymptotic stability properties,
which are formalized in Theorem 1.

Theorem 1. Consider the iterative dynamics in (12) with

γ = 2
(
qT,max −Nqmin

)
λmax

(∑Np

n=1 G
⊤
nQGn +NpR

)
and

0 < ϵ <
(
γ
(
qmax − qmin

)
(N − 1)

)−1
(here, λmax (·) de-

notes the maximum eigenvalue of the corresponding ma-
trix). Moreover, let v̄[0] satisfy the condition in (13). Then,
the following facts hold.

(1) For all κ ≥ 0, the vector v[κ] satisfies the constraints
of the problem in Definition 4.

(2) The set of solutions of the problem in Definition 4 is
asymptotically stable under the considered dynamics.

(3) For all κ ≥ 0, if v[κ] is not a solution of the problem
in Definition 4, then J (v[κ+ 1]) < J (v[κ]).

Proof 1. See Martinez-Piazuelo et al. (2022).

According to Theorem 1, if the constraint in (13) is sat-
isfied, then the feasible set of the problem in Definition
4 is forward-time invariant under the dynamics in (12),
implying that the resource allocation in (14) always sat-

isfies
∑M

i=1 q
max
Ci

= qT,max −
∑

j∈L q◦j , as desired. Further-

more, the cost function in (11) strictly decreases under the
trajectories of the dynamics in (12), and its minimizer is
achieved asymptotically. These facts show that, regardless
of the number of update iterations applied to the dynamics
in (12), the corresponding resource allocation is always
better than the initial one (in the sense of the problem in
Definition 4). Clearly, such a property is attractive when
the updates in (12) can only be executed a limited amount
of times due to real-time constraints, as is our case.

In summary, the overall proposed coalitional approach
is composed of two layers. At the top layer, the field
partition P is computed, and the population-dynamics-
assisted resource allocation method is employed to allocate
the resource qmax

Ci
to each coalition Ci ∈ P. At the bottom

layer, on the other hand, the controller of each coalition
Ci ∈ P solves the local model predictive control problem
of Definition 3 subject to the resource allocation provided
by the top layer.

4. NUMERICAL SIMULATIONS

Here, we provide simulation results on a 100-loop parabolic-
trough solar plant. The control objective is to operate
the plant around a desired temperature of 250◦C, while
satisfying the operational constraints. In this regard, the



Fig. 1. Representation of the effective DNI profile of the
100-loop collector field at t = 45min.

values of the parameters in (3) are set as Tmin = 220◦C,
Tmax = 300◦C, qmin = 0.2 l/s, qmax = 1.5 l/s, and
qT,max = 53.88 l/s. We highlight that the maximum flow
value corresponds to the total HTF flow at the desired
operating point of the system.

The results obtained with the proposed coalitional ap-
proach are compared with those obtained with the central-
ized MPC that solves the optimization problem in Defini-
tion 1, and we also compare the proposed approach with
an alternative coalitional scheme in which the maximum
flow of a coalition is calculated as the sum of the flow
values at the operating point of the different loops within
the coalition, that is,

qmax
Ci

=
∑
j∈Ci

q◦j , ∀Ci ∈ P, (15)

Let us define P =
∑Tsim

k=1 ∥T [k]−T ◦∥Q̂+∥qT [k]−qT,◦∥R̂ as
the index that measures the performance of a given control
algorithm throughout the simulation, where the simulation
length is set to Tsim = 90min, and Q̂ and R̂ are positive
weighting scalars. Moreover, to compare the required com-
putational load of different control strategies, we measure
the average computation time in the simulation, as well as
the standard deviation of the sample.

Case of study: ACUREX Solar Plant

Here, we study the ACUREX parabolic-trough solar col-
lector field located in Plataforma Solar de Almeŕıa (PSA),
Spain. For this plant, Therminol 55 is used as the HTF,
whose density (ρ) and specific heat capacity (c) are given
by (Camacho et al., 1997): ρ (Tf (t)) = 903−0.672Tf (t) and
c (Tf (t)) = 1820+3.478Tf (t), where Tf (t) is the tempera-
ture of the HTF at time instant t. While the original field is
modeled as a set of N = 10 parallel loops of 174m length,
in what follows we consider a 100-loop extension of this
plant, and we distinguish the active part that receives solar
irradiance (142m length) from the passive one where solar
radiation does not reach (30m length). For our simulations,
the values of the parameters of the system (1) are defined
as L = 174 m, S = 267.4 m2, af = 7.55·10−4 m2, η = 0.64,
αj ∈ [0.6, 1] and βj ∈ [1, 1.25].

We provide two results of our proposed approach using
different criteria to calculate the partition of the field.
In this regard, we will calculate P associating sets of

Fig. 2. Outlet temperature and HTF flow for 10 random
loops when using the population dynamics-assisted
coalitional approach calculating P in terms of DNI.

loops that receive more DNI with those that are dirty
or shaded, and grouping unbalanced loops regarding their
flow requirements, as in Masero et al. (2020). Without loss
of generality, we consider M = 10 coalitions of |Ci| = 10
loops for all Ci ∈ P. Moreover, we study a DNI profile
with three moving clouds: a large cloud moves through the
plant between t = 3 min and t = 52 min, another appears
between t = 15 min and t = 75 min, and the last one
crosses between t = 40 min and t = 71 min. As illustration,
Fig. 1 shows the three clouds over the plant at t = 45 min.
We also consider that some loop collectors might be cleaner
than others and thus receive more radiation.

The consequences of passing clouds are shown in Fig. 2,
which depicts the temporal evolution of the outlet tem-
perature Tj(t) and the HTF flow qj(t) of ten random
loops. Loops that are more efficient, i.e., have less thermal
losses or are cleaner, and thus receive more solar radiation,
would stabilize at a higher flow value in their local oper-
ating point. For example, loops #93 (gray line) or #79
(purple line) reach a higher flow value than loops #32
(yellow line) or #82 (green line), which are less efficient.
When loops are shaded, they tend to decrease their HTF
flow to maintain their outlet temperature at their desired
value. Consequently, less efficient loops would experience
a greater drop in their outlet temperature when shaded.
This issue happens because said loops stabilize at a lower
flow value q◦j (t), and therefore cannot decrease their flow

as much as they would like, as they saturate at qmin.

Figure 3 presents a comparison in the evolution of the
outlet temperature and the total HTF flow of the 100-loop
field when applying our proposed population-dynamics-
assisted coalitional MPC approach (blue-solid lines DNI
clustering, and light-purple dotted-dashed lines flow clus-
tering), a centralized controller (red-dashed lines) and an
alternative coalitional approach (green-dotted lines) where
the maximum flow within a coalition qmax

Ci
is set according

to (15), and the partition P is calculated by asociating
unbalanced loops in terms of solar irradiance. We can
observe that the outlet temperature is slightly below the
desired value of 250°C for more than half of the simulation,
which matches the instants when the first cloud shades a
larger part of the field. Although the outlet temperature
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Fig. 3. Outlet temperature T (t) and total HTF flow qT (t)
of the 100-loop collector field. The coupled constraint
qT,max is represented with a black dotted line.

of the entire field suffers a small deviation regarding its
desired value, the total flow of the field suffers a signifi-
cant decrease. However, our proposed coalitional algorithm
(resource allocation according to (14)) manages to closely
follow the centralized evolution of T (t) and qT (t) with a
small loss in overall performance P of a 3.18% for the DNI
clustering, and a 3.26% decrease for the flow requirement
clustering. Moreover, the evolution with the alternative
coalitional algorithm is further away from centralized be-
havior, especially at the beginning of the simulation. This
results in a performance loss of 15.21% in the index P in
relation to the centralized solution. Therefore, with the
population-dynamics assistance in the allocation of the
common resource, we achieve five times less performance
loss than if we allocate the resource according to the
operating points of the loops within a coalition (15).

Regarding the computational time, in our simulation the
centralized MPC takes an average of 2.6258± 0.2327 s to
achieve a solution. In contrast, both population-dynamics-
assisted coalitional MPC require an average of 0.2623 ±
0.0087 s, and the alternative coalitional approach takes
an average of 0.2614 ± 0.0152 s to obtain a solution.
In this way, the coalitional control approach achieves
better overall computation times, as it distributes the
global problem among the set of parallel local controllers
given by the partition P (recall that we are splitting the
overall problem into M = 10 subproblems that are solved
in parallel by independent local controllers). Hence, the
benefits of applying a coalitional control schemes are more
notable as the system becomes larger.

5. CONCLUDING REMARKS

In this paper, we propose a coalitional model predictive
control approach for parabolic-trough plants that allows
us to split the global large-scale optimization problem into
smaller local subproblems. These local optimization prob-
lems remain coupled to each other through a shared re-
source constraint. To overcome such an issue, a population-
dynamics-based resource allocation method is formulated.
The proposed approach allows us to satisfy the coupled
constraint while reducing the computational burden and
obtaining a negligible performance loss with respect to the

conventional centralized MPC approach. Further research
should focus on applying this idea to larger solar plants
and adapting the method to work with more complex non-
linear models.
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