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Abstract— We consider a large population of decision makers
that choose their evolutionary strategies based on simple
pairwise imitation rules. We describe such a dynamic process
by the replicator dynamics. Differently from the available
literature, where the payoffs signals are assumed to be updated
continuously, we consider a more realistic scenario where they
are updated occasionally. Our main technical contribution is
to devise two event-triggered communication schemes with
asymptotic convergence guarantees to a Nash equilibrium.
Finally, we show how our proposed approach is applicable as
an efficient distributed demand response mechanism.

I. INTRODUCTION

Population games provide a framework to model the
strategic behavior of large populations of decision-making
agents [1]. Depending on the protocols that agents use to
update their strategies, several evolutionary dynamics may
arise. We focus on the so-called replicator dynamics (RD)
[2], which comprise a class of imitative strategy-revision
protocols, where agents repeatedly engage in random pair-
wise interactions and copy the strategy of their peers with a
probability proportional to the difference of their perceived
payoffs. Thus, under the RD, the agents are payoff-driven
decision-makers that require bounded rationality levels [3].
As such, the RD have found relevance in large-scale control
systems, with applications in wireless networks [4], road
traffic congestion [5], subsidy design [6], and residential
demand response [7], among others.

Under the considered framework, the payoffs perceived by
the agents in general depend on the aggregate decision of the
entire population. Therefore, to accurately compute/estimate
their corresponding payoffs, the agents typically require ac-
cess to non-local information. To avoid excessive inter-agent
communication, which is costly for large-scale applications,
one might introduce a high level entity, here referred to as the
payoff provider, that observes the strategic distribution of the
population and broadcasts the payoff signals to the agents [8].
Consequently, the payoff provider and the population form
a closed-loop system. For instance, in congestion games,

J. Martinez-Piazuelo gratefully acknowledges the Universitat Politècnica
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los Andes, Bogotá, Colombia. Corresponding author: J. Martinez-Piazuelo
juan.pablo.martinez.piazuelo@upc.edu

the payoff provider would be the entity that provides non-
local traffic information to the agents [5], whereas in demand
response problems, the payoff provider would be the electric
power utility that broadcasts cost signals on the aggregate
demand of the system [7].

To analyze the stability properties of the population, the
available literature models the payoff signal as the output of
a continuous-time system, which can be either a static or a
dynamic map [1], [3], [9]–[11]. However, applying such re-
sults to our framework would imply that the payoff provider
has to continuously broadcast information to the agents,
leading to high communication costs as well as practical
implementation questions, e.g., how frequently should the
information be broadcast so that the stability is not compro-
mised? By exploiting the event-triggered control framework
[12], over the last decade there has been an increasing
interest in event-triggered communication methods for multi-
agent systems [13], [14]. In fact, some recent works, e.g.,
[15]–[17], have considered event-triggered communications
in games as well. The main advantage of event-triggered
approaches is that they explicitly model that communications
take place occasionally over time, and only when a given
event occurs. As such, event-triggered methods can reduce
the communication costs while still guaranteeing desirable
stability properties for the closed-loop system.

Motivated by the previous discussion, in this paper, we
formulate an event-triggered payoff provider that broadcasts
the payoff signals only occasionally over time. Specifically,
we devise two (Zeno-free) event-triggered mechanisms and
we formally prove global asymptotic stability of the unique
Nash equilibrium when the underlying payoff functions are
Lipschitz continuous and strongly contractive. To the best of
our knowledge, this is the first time that an event-triggered
payoff provider has been formally analyzed for population
games under the RD. Hybrid and event-triggered RD have
been previously reported in [18] and [19], respectively.
However, these works study the RD as continuous-time
optimization dynamics for resource allocation, rather than
as an evolutionary model for large populations of imitative
agents. Nonetheless, if applied to our context, the results
in [18] would still imply continuous communication from
the payoff provider, as well as the global synchronization of
the agents on a time-varying (time-scale) parameter, whilst
the approach in [19] would limit the scope of application
to quadratic strictly concave full-potential games with diag-
onal Hessian matrix. Instead, our framework enables non-
continuous communication from the payoff provider, allows
the agents to operate asynchronously, and it is applicable to



more general (not-necessarily potential) population games.
Finally, we implement our proposed approach as a distributed
demand response scheme, improving upon [7]. The numer-
ical results on large-scale test cases show that the proposed
method not only significantly reduces the total number of
broadcast operations, but also speeds up the convergence of
the population game.

Notation: We use standard font for scalars, bold font for
vectors and matrices, and calligraphic font for sets. Besides,
all vectors are taken as columns by default. The set of
real (integer) numbers is denoted by R (Z). The set of
non-negative (strictly positive) real numbers is denoted by
R≥0 (R>0). A similar notation holds for integers, and Z�1

denotes the integers much greater than 1. We denote the
Euclidean norm by ‖ · ‖2, and the Cartesian product by

∏
.

The operators col(·) and diag(·) create a column vector and a
(block) diagonal matrix of the arguments, respectively. Given
a vector z ∈ Rm, we let zi denote its i-th element, and
supp (z) = {i ∈ {1, 2, . . . ,m} : zi > 0} denote its support.
Given a domain D ⊆ Rm and an operator T : D → D,
fix (T ) := {z ∈ D : z = T (z)} is the fixed point set of T .

II. POPULATION GAMES WITH REPLICATOR DYNAMICS

A. Mathematical formulation

Let us consider a society with P ∈ Z≥1 populations of
decision-making agents. Throughout, let P = {1, 2, . . . , P}
be the set indexing the populations and, for each population
k ∈ P , let Nk ∈ Z�1 be the total number of agents
that belong to population k (where we assume that Nk is
large and constant over time). Let Sk = {1, 2, . . . , nk}, with
nk ∈ Z≥2, be the set of decision strategies available to the
agents of population k and, for each i ∈ Sk, let xki ∈ [0, 1]
denote the proportion of agents of population k choosing
strategy i, i.e., Nkxki yields the total number of agents
playing i in population k. Then, the strategic distribution
of population k is given by xk = col

((
xki
)
i∈Sk

)
∈ ∆k :={

y ∈ Rnk

≥0 : 1>nky = 1
}

, whilst the strategic distribution of

the entire society is given by x = col
((

xk
)
k∈P

)
∈ ∆ :=∏

k∈P ∆k = ∆1 ×∆2 × · · · ×∆P .
Furthermore, we assume that each strategy i ∈ Sk

is characterized by a fitness function fki : ∆ → R.
Namely, the value fki (x) is the payoff to be given to the
agents of population k ∈ P playing strategy i ∈ Sk
at the society’s strategic distribution x ∈ ∆. Thus, the
fitness functions determine the strategic environment for
the society of decision-makers. Throughout, let fk(·) =
col
(
fk1 (·), fk2 (·), . . . , fknk(·)

)
be the fitness vector of pop-

ulation k, and let f(·) = col
(
f1(·), f2(·), . . . , fP (·)

)
be

the overall fitness vector of the entire society. As such, a
population game can be defined in normal form as the tuple
G = (P,∆, f(·)), which captures the set of populations P ,
the set of strategic distributions ∆, and the overall fitness
vector f(·). Besides, we impose the following smoothness
and monotonicity conditions on f(·), which are also consid-
ered in [15]–[17] outside of the context of population games.

Standing Assumption 1: The overall fitness vector f(·)
is θ-Lipschitz continuous and µ-strongly contractive, i.e.,
there exist some θ, µ ∈ R>0 such that, for ev-
ery x,y ∈ ∆, ‖f(x)− f(y)‖2 ≤ θ ‖x− y‖2 and
(x− y)

>
(f(x)− f(y)) ≤ −µ ‖x− y‖22, respectively.

Similar to asynchronous gossip algorithms [20], in this
paper we assume that agents communicate in a random
pairwise fashion and at random instants of time. Moreover,
as is often assumed in the replicator dynamics (RD) models
reported in the literature, e.g., [1, Section 5.4], we consider
the case where each agent can communicate with any other
agent of its same population, i.e., there is an all-to-all inter-
action connectivity among agents of the same population.
Nonetheless, inter-agent communications only occur in a
pairwise fashion and at random sporadic instants of time. For
the sake of clarity, we now proceed to formally describe the
microscopic decision-making process followed by the agents.

Microscopic decision-making process: Let each agent be
equipped with a Poisson alarm clock which provides (inde-
pendent and identically distributed) strategy-revision oppor-
tunities according to an exponential distribution with rate
R ∈ R>0. Suppose that, at time t ∈ R≥0, an agent of
population k ∈ P receives a revision opportunity. Then,
this agent randomly and uniformly chooses a second agent
from its population k. Without loss of generality, let the
revising agent be playing an arbitrary strategy i ∈ Sk, and
let the second agent be playing an arbitrary strategy j ∈ Sk.
Throughout, we assume that agents employ an imitative
revision protocol [1, Section 4.3.1], where the revising agent
imitates the strategy of the second agent with probability

%kij (x(t)) =
max

{
fkj (x(t))− fki (x(t)) , 0

}
R

, (1)

assuming that

R ≥ max
x∈∆,k∈P,i,j∈Sk

max
{
fkj (x)− fki (x) , 0

}
. (2)

Here, to compute %kij(x(t)), it is assumed that the revising
agent knows R and fki (x(t)), and that the second agent
communicates fkj (x(t)) to the revising agent. Since the
probability of randomly choosing a second agent playing j is
xkj (t), the overall probability for the revising agent to switch
its strategy from i to j is given by xkj (t)%kij (x(t)), while
the probability for the revising agent to keep playing i is
1 −

∑
j∈Sk\{i} x

k
j (t)%kij (x(t)). Under this framework, the

(expected) instantaneous change in the proportion xki is thus
given by [1, Section 4.2]

ẋki (t) = xki (t)
(
fki (x(t))−

∑
j∈Sk

xkj (t)fkj (x(t))
)
, (3)

for all i ∈ Sk and all k ∈ P . The dynamics in (3) are
often referred to as the (mean) RD and if Nk is sufficiently
large for all k ∈ P , then (3) provides an arbitrarily accurate
approximation of the temporal evolution of x(t) over any
finite-time horizon [1, Chapter 10].

In this paper, we focus on studying the convergence of
the society to a Nash equilibrium (NE) of the underlying



population game, i.e., a strategic distribution where no agent
can increase its fitness by unilaterally changing its strategy.

Definition 1 (Nash equilibria): Given a population game
G, characterized by a fitness vector f(·), the set of Nash equi-
libria of G is defined as NE(f) = fix

(
arg maxx∈∆ x>f(·)

)
,

or equivalently as NE(f) = {x∗ ∈ ∆ : xk∗i > 0⇒ fki (x∗) =
maxj∈Sk fkj (x∗),∀i ∈ Sk, ∀k ∈ P}.

Remark 1: [1, Thm. 5.4.13] Every x∗ ∈ NE(f) is an
equilibrium of the RD in (3), i.e., x(t) = x∗ ⇒ ẋ(t) = 0n.

From Definition 1, it follows that the set NE(f) coin-
cides with the set of solutions of the variational inequality
VI (∆,−f(·)). Thus, by Standing Assumption 1 it holds
that there exists a unique x∗ ∈ NE(f) [21, Thm. 2.3.3],
and the fitness vector satisfies (x∗ − x)

>
f(x) > 0, for all

x ∈ ∆ \ {x∗}. Hence, x∗ is asymptotically stable under the
RD in (3) [1, Thm. 7.2.4]. On the other hand, we remark
that NE(f) is invariant under positive scales of the fitness
vector, i.e., NE(f) = NE(αf), ∀α ∈ R>0. Consequently,
by appropriately designing the fitness vector one can always
guarantee the condition in (2) for any given R, without
changing the set of Nash equilibria. Finally, we impose the
following technical condition for our stability analyses.

Standing Assumption 2: For every k ∈ P it holds that
fk (x∗) ∈ span(1nk), where x∗ ∈ NE(f).

Standing Assumption 2 means that at the NE all the
strategies within each population yield the same fitness value.
A sufficient yet not necessary condition to satisfy Standing
Assumption 2 is for the NE to belong to the relative interior
of ∆, i.e., x∗ ∈ ∆ ∩ Rn

>0. Given that the RD suffers from
extinction, i.e., xki (t̃) = 0 ⇒ xki (t) = 0,∀t ≥ t̃, in many
applications one might enforce the presence of an interior
NE to ensure that no strategy goes extinct in the long term.

B. Problem statement

According to the microscopic decision-making process
described in Section II-A, to evaluate %kij (x(t)) in (1) for a
strategy-revision executed at time t, both the revising agent
and the randomly chosen agent must know the fitness value
of their selected strategies at time t. However, as fitness
functions may depend on the strategic distribution of the
entire society, letting agents compute their own fitness values
would require for every agent to repeatedly have full-decision
information regarding the strategic selections of all the∑

k∈P N
k society members. To avoid excessive information-

exchange among agents, we assume the existence of a
payoff provider [7], [8] that operates as follows. Every time
an agent updates its strategy, it informs its new selected
strategy to the payoff provider, and the payoff provider then
broadcasts the updated fitness values to the society. Namely,
the following three steps are repeated in order: i) the payoff
provider broadcasts the fitness values to the society; ii) an
agent receives a revision opportunity and compares their
fitness values with a second randomly selected agent; iii) the
revising agent imitates the strategy of the second agent with
probability %kij (x(t)) and then informs the payoff provider
about its strategy-update. Nonetheless, although the proposed

framework reduces the information-exchange among agents,
it still requires for the payoff provider to broadcast the
fitness values every time that an agent updates its strategy.
Since on average the society receives

∑
k∈P N

kRdt revision
opportunities over every (small) time interval of length dt,
the considered framework still implies high communication
demands for large societies, rendering the approach nonvi-
able for many practical applications.

III. AN EVENT-TRIGGERED PAYOFF PROVIDER

To overcome the aforementioned issues and reduce the
requirements on the communication capabilities of the pay-
off provider, yet still guaranteeing asymptotic stability of
NE(f) under the RD, we formulate an event-triggered pay-
off provider, which broadcasts the fitness values at a rate
(possibly aperiodic) that is independent of the size of the
society. Our proposed event-triggered scheme is as follows.
Let (t`)`∈Z≥0

denote the sequence of event times and define

x̂(t) = x(t`), ∀t ∈ [t`, t`+1), (4a)
e(t) = x̂(t)− x(t). (4b)

Namely, x̂(t) takes the value of x(t`) when the `-th event
occurs, and x̂(t) is held constant in between events, while
e(t) denotes the error of x̂(t) with respect to x(t). We
assume that the payoff provider can only broadcast the fitness
values at the event times. Thus, at time t`, the payoff provider
computes and broadcasts f (x(t`)), and for any t ∈ [t`, t`+1),
the agents update their strategies based on the (constant)
fitness vector f (x̂(t)). As such, for an agent of population k
revising its strategy at time t, the probability to switch from
strategy i to j is xkj (t)%kij (x̂(t)) (i.e., agents operate under
the microscopic dynamics of Section II-A, but with %kij(·) in
(1) evaluated at x̂(t) instead of x(t)). Consequently, under
our event-triggered scheme, the RD in (3) become

ẋki (t) = xki (t)
(
fki (x̂(t))−

∑
j∈Sk

xkj (t)fkj (x̂(t))
)
, (5)

for all i ∈ Sk and all k ∈ P , where x̂(t) is as in (4a).
Clearly, if x̂(t) = x(t) for all t, then the RD in (5) recover
the RD in (3). Besides, we recall that when an agent updates
its strategy, it informs its new strategy to the payoff provider
(but not to the other agents). Thus, the payoff provider always
knows x(t) regardless of the event times.

We remark that the RD in (5) resemble the event-triggered
control scheme [12], where a nonlinear system (the RD
in (3)) is subject to an event-triggered control input (the
fitness vector). Therefore, motivated by the analytical frame-
work in [12], we now state our main technical results. To
this end, let ∆k

xk∗ =
{
xk ∈ ∆k : supp

(
xk∗) ⊆ supp

(
xk
)}

be the set of strategic distributions in ∆k whose support
contains the support of xk∗, and let ∆x∗ =

∏
k∈P ∆k

xk∗ .
In addition, note that (5) can be rewritten compactly for
each population k ∈ P as ẋk(t) = gk

(
xk(t), x̂(t)

)
,

and for the entire society as ẋ(t) = g (x(t), x̂(t)),
where gk

(
xk, x̂

)
= diag

(
xk
) (

Ink − 1nkxk>) fk (x̂) and



g (x, x̂) = diag(x) (In −M(x)) f (x̂), with M(x) =

diag
((

1nkxk>)
k∈P

)
∈ Rn×n.

Theorem 1: Consider the RD in (5) under an event-
triggered payoff provider with event times specified by
t`+1 = min{t′ ≥ t` + τ : ‖e(t′)‖2 ≥ τ ‖g (x(t′), x̂(t′))‖2},
with τ = 2µ/ (θ(θ + µ)), and x̂(t), e(t) are as in (4). The
unique x∗ ∈ NE(f) is globally asymptotically stable from
every x(0) ∈ ∆x∗ . Besides, the proposed trigger is free from
Zeno behavior with minimum inter-event time τmin = τ . �
Theorem 1 reveals that employing the periodic trigger given
by t`+1 = t`+τ is enough to guarantee the global asymptotic
stability of x∗ within ∆x∗ . Hence, by following such a
periodic sequence, the payoff provider does not need to
evaluate any state-dependent event-triggering condition at the
cost of possibly more overall broadcast communications than
the event-triggered counterpart.

As formally stated next, when the payoff provider knows
x∗ in advance, we can obtain a different triggering condition
that yields less frequent triggers than that of Theorem 1.

Proposition 1: Consider the RD in (5) under an event-
triggered payoff provider with event times specified by
t`+1 = min{t′ ≥ t` + τ : ‖e(t′)‖2 ≥ (µ/θ) ‖x∗ − x(t′)‖2},
with τ = 2µ/ (θ(θ + µ)), and e(t) is as in (4b). The unique
x∗ ∈ NE(f) is globally asymptotically stable from every
x(0) ∈ ∆x∗ . Besides, the proposed trigger is free from Zeno
behavior with minimum inter-event time τmin = τ . �

Finally, we remark that both of the proposed event-
triggered payoff providers will perpetually trigger (at the
periodic rate t`+1 = t` + τ ) even after x(t) = x∗. Neverthe-
less, to overcome unnecessary broadcast of information, the
payoff provider might simply avoid to broadcast the fitness
vector whenever f(t`+1) = f(t`), because that would not
change the fitness values perceived by the agents.

IV. A DEMAND RESPONSE APPLICATION

Let us consider a large society of consumers (agents)
engaged in a demand response (DR) program. The goal of
the DR program is to shave the aggregate demand by at
least C kW, and the multiple populations in P characterize
different types of DR agents according to their allowed
power commitment levels. Specifically, each DR agent of
population k must choose a power commitment strategy
from the set Sk = {1, 2, . . . , nk}, where each strategy in
Sk corresponds to an individual power demand reduction of
rki kW. Let rk = col

(
(rki )i∈Sk

)
∈ Rnk

≥0, for all k ∈ P .
Moreover, let Ak = {1, 2, . . . , Nk} be the set indexing the
agents of population k, and let ska ∈ {0, 1}n

k

represent the
selected strategy of agent a ∈ Ak (i.e., if agent a chooses
strategy i ∈ Sk, then ska is the i-th column of the nk × nk
identity matrix). Hence, the power committed by the a-th
agent is given by rk>ska, and the total power committed by
the entire society is given by

∑
k∈P

∑
a∈Ak rk>ska.

To encourage the participation in the DR program, the
energy power utility (EPU) provides monetary incentives
to the agents based on their power demand reductions. Let
P k
i,i ∈ R>0 be the monetary incentive for a power demand

reduction of rki kW, and let Pk = diag
((
P k
i,i

)
i∈Sk

)
∈

Rnk×nk

. The goal of the DR program is given by

min
{ska}a∈Ak,k∈P

∑
k∈P

(∑
a∈Ak

ska

)>
Pk
(∑

a∈Ak
ska

)
s.t.
∑

k∈P

∑
a∈Ak

rk>ska ≥ C.
(6)

The optimization problem in (6) is an integer optimization
problem, which regards the minimization of the overall
monetary incentive subject to the desired shaving of the
demand. To solve (6) in a distributed fashion, we employ
the framework of population games and RD. Given that xk

describes the proportions of agents choosing the multiple
strategies in population k ∈ P , it follows that Nkxk =∑

a∈Ak ska. Thus, (6) can be rewritten as

min
x∈∆

∑
k∈P

(
Nk
)2

xk>Pkxk s.t.
∑
k∈P

Nkrk>xk ≥ C. (7)

Note that (7) is no longer an integer optimization prob-
lem, as x ∈ ∆ ⊂ Rn, and its optimal solution x∗ can
be computed with standard quadratic optimization solvers.
Since the EPU knows the DR program parameters (C and{
Nk,Pk, rk

}
k∈P ), it is reasonable to assume that the EPU

knows x∗. As such, a population game with {x∗} = NE(f)
can be designed by the EPU, which acts as a payoff provider,
and the consumers can then employ the (microscopic) im-
itative revision protocols of Section II-A to solve (6) in a
(resilient [7]) distributed fashion. As in [7], it is assumed that
the EPU can measure in real-time the proportion of power
demand reductions (x(t)) at the distribution substation level.

To establish a population game G whose unique NE
matches x∗, the EPU sets fki (x) = α

(
xk∗i − xki

)
, for all

i ∈ Sk and all k ∈ P , where α ∈ R>0 is a gain parameter
to be set in brief. Therefore, the resulting fitness vector is
f(x) = α (x∗ − x), and it immediately holds that x∗ ∈
NE(f) (c.f., Definition 1). In addition, f(·) satisfies Standing
Assumption 1 with θ = µ = α, and satisfies Standing
Assumption 2 as f (x∗) = 0n ∈ span(1n). Throughout,
we assume that the Poisson alarm clocks of the agents are
characterized by R = 1 s−1, and so we set α = 1/2 to
satisfy (2). Hence, τmin = 1/α = 2 s (the time units of τmin

are given by the units of R in the Poisson clocks).
As illustration, we first consider a fixed instance of the

problem with P = 2, N1 = N2 = 104, n1 = 3, n2 = 2,
r1 = [0.001, 0.01, 0.1]>, r2 = [0.1, 1]>, P k

i,i = rki , ∀i, k,
and C = 5·103. Under such parameters, the solution of (7) is
x∗ = [0.261, 0.364, 0.375, 0.602, 0.398]>. We compare the
performance of the proposed event-triggered payoff provider
against a continuously-triggered (CT) payoff provider that
broadcasts the fitness vector after every strategy-update.
Besides, we simulate both the expected evolution under
the ODEs in (3) and (5) and the actual evolution of the
microscopic decision-making processes of 2 ·104 agents. We
simulate the dynamics under 500 different initial strategic
distributions x(0) randomly sampled from ∆x∗ , and, for
all cases, we measure the normalized distance to the NE
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Fig. 1. Numerical results for the considered (fixed) instance of the DR
problem. (Left) The expected strategic evolution under the ODEs in (3)
and (5), averaged over 500 random initial conditions. (Right) A particular
simulation of the actual evolution of the microscopic dynamics of 2 · 104
agents. Here, the markers depict the corresponding event times.

given by dNE(t) = ‖x∗ − x(t)‖2 / ‖x∗ − x(0)‖2. Figure 1
(left) shows the expected convergence of the event-triggered
RD in (5) under the triggering schemes of Theorem 1
and Proposition 1. These dynamics converge faster than
the their continuously-triggered counterpart. This counter-
intuitive phenomenon can be (informally) explained by com-
paring the right hand sides of (3) and (5). Note that while
the fitness values in (3) get closer to zero as x(t) → x∗,
the fitness values in (5) remain constant in between event
times. Thus, ‖ẋ(t)‖2 is larger under (5) than under (3) as
x(t) → x∗, which implies that the RD in (5) moves faster
near x∗ than the RD in (3). Figure 1 (right) shows that similar
results hold for the actual microscopic dynamics, and in this
case convergence is achieved in finite time.

Next, we simulate the microscopic dynamics for 50 ran-
dom instances of the DR problem, with P ∼ U [1, 3], Nk ∼
U [5 · 103, 104], nk ∼ U [2, 4], rki ∼ U [0.001, 1], P k

i,i = rki ,
and C uniformly sampled from the maximum and minimum
attainable demand reduction capacities. For simplicity, we
only consider interior Nash equilibria where xk∗i ≥ 0.05
(note that, for boundary solutions, the EPU might simply
remove the unused strategies from the DR program). Figure 2
shows that the event-triggered scheme requires significantly
(i.e., two order of magnitude) less broadcasting operations
than its continuously-triggered counterpart while maintaining
comparable convergence time. Besides, the trigger of Propo-
sition 1 slightly outperforms the one of Theorem 1, at the
expense of requiring the knowledge of x∗.

V. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In population games under the replicator evolutionary dy-
namics, convergence to a Nash equilibrium can be guaranteed
even with event-based communication between the payoff
provider and the agents. In our numerical simulations on a
large-scale demand response problem, the proposed event-
triggered schemes significantly improve communication ef-
ficiency. Future work should extend the framework to other
evolutionary dynamics models and large-scale applications.

APPENDIX

We first prove Proposition 1 and then Theorem 1.
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Fig. 2. Performance comparison under 50 randomized instances of the DR
program. Relative convergence time refers to the quotient of the convergence
time of the event-triggered scheme over the convergence time of the CT one.
A relative time below 1 implies faster convergence than the CT approach.

A. Proof of Proposition 1

We can observe that the proposed trigger is free from Zeno
behavior as t`+1− t` ≥ τ > 0 follows immediately from the
definition of the triggering condition. Moreover, if ‖e(t)‖2 =
‖x∗ − x(t)‖2 = 0, then the event will trigger periodically
throughout [t,∞) with t`+1 = t`+τ , implying that τmin = τ .

From [1, Thm. 5.4.7], x(0) ∈ ∆x∗ ⇒ x(t) ∈ ∆x∗ ,∀t ≥ 0.
Thus, let us consider the Lyapunov function candidate given
by V (x) =

∑
k∈P

∑
i∈supp(xk∗) x

k∗
i log

(
xk∗i /x

k
i

)
. From [1,

Thm. 7.2.4], V (·) is a valid Lyapunov function candidate.
Moreover, V (x) → ∞ as x → ∆ \ ∆x∗ , and so V (·) is
radially unbounded with respect to ∆x∗ . In addition,

V̇ (t) = −
∑
k∈P

∑
i∈Sk

xk∗i

fki (x̂(t))−
∑
j∈Sk

xkj (t)fkj (x̂(t))


= −

∑
k∈P

xk∗> (Ink − 1nkxk>(t)
)
fk (x̂(t))

= −d(t)>f (x̂(t)) , [with d(t) = x∗ − x(t)]

= −d(t)>f (x(t)) + d(t)> (f (x(t))− f (x̂(t)))

≤ −d(t)>f (x(t)) + θ ‖d(t)‖2 ‖x(t)− x̂(t)‖2
= − (x∗ − x(t))

>
f (x(t)) + θ ‖x∗ − x(t)‖2 ‖e(t)‖2

≤ −µ ‖x∗ − x(t)‖22 + θ ‖x∗ − x(t)‖2 ‖e(t)‖2 ,

where the last inequality follows from Standing Assumption
1 in conjunction with the fact that (x∗ − x)

>
f (x∗) ≥ 0,

for all x ∈ ∆ (see Definition 1). Now, we observe that
if ‖e(t)‖2 < (µ/θ) ‖x∗ − x(t)‖2, then V̇ (t) < 0, for all
x(t) 6= x∗. Furthermore, the proposed trigger guarantees that

‖e(t)‖2 <
µ

θ
‖x∗ − x(t)‖2 , ∀t ∈ [t` + τ, t`+1) : x(t) 6= x∗.

(8)
Therefore, to prove the global asymptotic stability of x∗

within ∆x∗ , it suffices to show that

‖e(t)‖2 <
µ

θ
‖x∗ − x(t)‖2, ∀t ∈ [t`, t` + τ) : x(t`) 6= x∗.

(9)
Observe that if x(t`) = x∗, then x̂(t`) = x∗ and ẋ(t) =
g(x∗,x∗) = 0n, for all t ≥ t` (see Remark 1), implying
that the RD in (5) have converged to x∗. We now proceed
to prove that (9) indeed holds.



First, from Standing Assumption 2: fk (x∗) ∈ span(1nk),
for all k ∈ P . Thus,

(
Ink − 1nkxk>) fk (x∗) = 0nk , for all

xk ∈ ∆k, and (In −M(x)) f (x∗) = 0n, for all x ∈ ∆. In
consequence,

ẋ(t) = diag (x(t)) (In −M (x(t))) (f (x̂(t))− f (x∗)) .
(10)

Thus, ‖ẋ(t)‖2 ≤ θ ‖Z(t)‖2
(
‖e(t)‖2 + ‖x(t)− x∗‖2

)
,

where Z(t) = diag (x(t)) (In −M (x(t))). Here, notice that
Z(t) is an n × n block diagonal matrix whose k-th block
is given by Zk(t) = diag

(
xk(t)

)
− xk(t)xk>(t). Hence,

the elements of the k-th block are given by Zk
i,i(t) =

xki (t)
(
1− xki (t)

)
and Zk

i,j(t) = −xki (t)xkj (t), for all i 6= j.
Therefore, for every x(t) ∈ ∆, the matrix Z(t) is sym-
metric and diagonally dominant with non-negative diagonal
elements, i.e., Z(t) is positive semi-definite. Consequently,
by the Gershgorin Circle Theorem, ‖Z(t)‖2 ≤ 1/2, and so

‖ẋ(t)‖2 ≤
θ

2
(‖e(t)‖2 + ‖x∗ − x(t)‖2) . (11)

Next, let x(t`) 6= x∗ and y(t) = ‖e(t)‖2 / ‖x∗ − x(t)‖2, for
all t ∈ [t`, t`+1). Notice that y(t`) = 0 is well-defined and

dy(t)

dt
=

e(t)>ė(t)

‖e(t)‖2 ‖x∗ − x(t)‖2
+
‖e(t)‖2 (x∗ − x(t))

>
ẋ(t)

‖x∗ − x(t)‖32

≤
‖ė(t)‖2

‖x∗ − x(t)‖2
+
‖e(t)‖2 ‖ẋ(t)‖2
‖x∗ − x(t)‖22

=
‖ẋ(t)‖2

‖x∗ − x(t)‖2
(1 + y(t)) ,

where the last equality uses the fact that ‖ẋ(t)‖2 = ‖ė(t)‖2,
for all t ∈ [t`, t`+1). Using (11) one can further conclude
that dy(t)/dt ≤ (θ/2) (1 + y(t))

2, and hence, by the Com-
parison Lemma [22, Lemma 3.4] it holds that y(t) ≤ φ(t),
where φ(t) = θ(t − t`)/ (2− θ(t− t`)) is the solution to
dφ(t)/dt = (θ/2)(1 + φ(t))2, for all t ∈ [t`, t` + 2/θ) and
with φ(t`) = 0. Therefore, for every σ ∈ [0, 1), it holds that

y(t` + στ) ≤ θστ

2− θστ
=

σµ

θ + (1− σ)µ
<
µ

θ
.

Consequently, ‖e(t)‖2/‖x∗ − x(t)‖2 = y(t) < µ/θ, for all
t ∈ [t`, t` + τ) ⊂ [t`, t` + 2/θ), and thus (9) holds.

B. Proof of Theorem 1

As in the proof of Proposition 1, it is straightforward to
show that the proposed trigger is free from Zeno behavior
with τmin = τ .

Now, let g(t) , g (x(t), x̂(t)). The trigger guarantees that
‖e(t)‖2 < τ ‖g(t)‖2, for all t ∈ [t` + τ, t`+1) : g(t) 6=
0n. From (11) in the proof of Proposition 1, it follows that
‖g(t)‖2 ≤ (θ/2) (‖e(t)‖2 + ‖x∗ − x(t)‖2), which implies
that the proposed trigger ensures that

‖e(t)‖2 <
µ

θ
‖x∗ − x(t)‖2 , ∀t ∈ [t` + τ, t`+1) : g(t) 6= 0n.

(12)
Observe that if g

(
t̃
)

= 0n at some arbitrary t̃ ∈ [t`+τ, t`+1),
then t`+1 = t̃ and

∥∥e (t̃)∥∥
2

=
∥∥g (x (t̃) , x̂ (t̃))∥∥

2
= 0.

On the other hand, from [1, Thm. 5.4.13] it follows that
ζ ∈ ∆x∗ ⇒ (g (ζ, ζ) = 0n ⇔ ζ = x∗). Hence, since x(t) ∈
∆x∗ ,∀t ≥ 0, and ‖e(t)‖2 = 0⇒ x̂(t) = x(t), it holds that

‖e(t)‖2 = 0 ⇒ (‖g (x(t), x̂(t))‖2 = 0⇔ x(t) = x∗) .

Therefore, if ‖e(t)‖2 = ‖g(t)‖2 = 0, then x(t) = x∗ and the
RD in (5) have converged to x∗. By marshalling all of these
facts, we conclude that by guaranteeing (12), the proposed
trigger also guarantees (8). As such, the global asymptotic
stability of x∗ within ∆x∗ follows directly from the proof
of Proposition 1 by recalling that (9) holds.
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