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Abstract— This paper addresses the problem of distributed
Nash equilibrium (NE) seeking in strongly contractive ag-
gregative multi-population games subject to partial-decision
information. In particular, we consider the scenario where
the so-called payoff providers of the multiple populations
communicate through a possibly non-complete network, and
we formulate some consensus-like dynamics for the payoff
providers to distributedly compute their payoff signals using
local information only. Moreover, by exploiting the notions of
δ-passivity and δ-antipassivity, we provide a unified analysis
for several classes of evolutionary game dynamics. As the main
contributions, we provide sufficient conditions to guarantee the
δ-antipassivity of a class of continuous-time dynamical systems,
and we exploit such results to design distributed NE seek-
ing dynamics for strongly contractive aggregative population
games, as well as for a class of merely contractive aggregative
population games. To the best of our knowledge, this is the first
paper to consider the problem of distributed NE seeking for
such classes of population games and from a unifying passivity-
based perspective.

I. INTRODUCTION

Population games provide an evolutionary game theoreti-
cal framework to study the strategic interaction of multiple
large populations of decision-making agents with bounded
rationality levels [1]–[3]. Under the considered setup, the
agents are payoff-driven decision makers that seek to select
the strategy leading to the highest payoff. Consequently,
in the context of population games one is often interested
in deducing sufficient conditions for the agents to reach a
Nash equilibrium (NE) of the underlying game. That is,
a self-enforceable state where no agent has incentives to
unilaterally deviate from her selected strategy. Namely, the
motivation behind such a goal is that the convergence to
an NE serves as a long-term predictor for the strategic
distribution of the populations of agents.

As the number of agents is assumed to be large, the
temporal evolution of the mean strategic distribution of each
population can be approximated through a set of ordinary
differential equations, here referred to as an evolutionary dy-
namics model (EDM). On the other hand, the payoff provider
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mechanism that generates the payoff signal is, in general,
synthesized as a continuous-time dynamical system termed
as the payoff dynamics model (PDM), which acts as a causal
map from the populations’ strategic distribution to the payoff
signal [3]. Therefore, to study the convergence to an NE, one
should analyze the closed-loop interconnection between the
EDM and the PDM, also referred to as the EDM-PDM or
the mean closed-loop system. To accomplish this goal, the
authors in [3]–[6] have developed some passivity-based tools
suitable for the analysis of EDM-PDMs. Namely, the authors
in [4] introduce the notions of δ-passivity and δ-antipassivity,
and the authors in [3] and [5] provide sufficient conditions
to guarantee the convergence to an NE under EDM-PDMs
comprised of a δ-passive EDM and a δ-antipassive PDM.
Similarly, the authors in [6] introduce the notions of δ-
dissipativity and δ-antidissipativity, and provide sufficient
conditions to guarantee the convergence to an NE under
EDM-PDMs comprised of a δ-dissipative EDM and a δ-
antidissipative PDM. The main advantage of such passivity-
based approaches is that they allow us to study several EDMs
in a unified fashion. Thus, they provide a powerful toolbox
to analyze various decision-making mechanisms at once.

The framework of population games is flexible enough to
model several multi-agent decision-making scenarios. Some
examples reported in the literature include applications to
traffic assignment [6], [7], wireless networks [8], dynamic re-
source allocation [9], [10], and demand response [11], among
others. Furthermore, some recent researches have considered
networked interaction structures over the decision-making
agents to further extend the scope of applications [12], [13].
However, one remaining drawback of the available theory
on population games is that the payoff signal to which
the agents respond is often assumed to be generated by a
centralized oracle-like entity that has complete information
regarding the strategic distribution of all populations. Clearly,
this assumption signifies an information bottleneck that limits
the flexibility and scope of application of the framework. For
instance, consider the scenario where multiple populations
of agents are spatially distributed over some geographical
region. In such a case, it would be unpractical to regard
a single payoff provider for the entire set of populations.
Instead, it would be more convenient to consider multiple
payoff providers that communicate over a possibly non-
complete network and generate their payoff signals based on
partial-decision information. Motivated by this idea, in this
paper we formulate and analyze a framework for distributed
NE seeking in population games under partial-decision in-
formation.



Recently, the problem of distributed NE seeking under
partial-decision information has received significant atten-
tion for classical N -player games. Typically, the reported
approaches involve two components: 1) a strategy update
mechanism based on local information, e.g., gradient play;
and 2) a consensus-based algorithm to estimate non-local
interfering information, e.g., the joint action profile of other
players. For instance, the combination of gradient play and
consensus methods for N -player games has been recently
studied in [14] and [15] from the discrete-time perspective,
as well as in [16]–[18] from the continuous-time context. Be-
sides, such an approach has also been recently considered for
N -player aggregative games in [19] and [20]. An advantage
of aggregative games is that players need only to estimate
the aggregate term rather than the full joint action profile.
Similarly, gradient play and consensus approaches have also
been proposed for distributed NE seeking in N -coalition
games [21]. In the latter, multiple agents are split into N
coalitions, and consensus-based methods are employed so
that agents within the same coalition minimize a common
objective by using partial information. On the other hand,
distributed NE seeking methods have also been studied in the
context of multi-population mean-field aggregative games.
Namely, the authors in [22] consider the scenario where
multiple large populations of players are engaged in an
aggregative game. In such a context, each player responds
optimally to a given mean-field signal, provided by a so-
called population coordinator, while the multiple population
coordinators employ a consensus-based method to compute
the mean-field signal using partial-decision information. We
highlight that the framework in [22] is closely related to
the population games studied in this paper. However, in
the evolutionary context of population games the decision-
making agents follow fairly simple strategy revision rules,
and thus are allowed to have significantly bounded rationality
levels.

Despite the recent interest on distributed NE seeking prob-
lems under partial-decision information, such a problem has
not been thoroughly studied from the aforementioned context
of population games. To the best of our knowledge, such a
problem has only been addressed in our previous work [23],
which considered a specific class of EDMs and population
games. As mentioned above, in the available literature on
population games the payoff signals are often assumed to
be generated by an oracle-like entity with complete infor-
mation regarding the strategic distribution of all populations.
In contrast, in this paper we consider the scenario where
each population has an associated payoff provider subject
to partial-decision information of the strategic distribution
of the other populations. The multiple payoff providers
communicate through a possibly non-complete network to
estimate the relevant non-local information in a distributed
fashion. In particular, we focus on the class of aggregative
games (where the populations’ payoffs are coupled through
an aggregate term), and so the payoff providers need not to
estimate the entire strategic distribution of all populations,
but only the aggregate term. Furthermore, for the sake of

generality, we focus on the classes of merely contractive and
strongly contractive population games, which are relevant to
study several decision-making scenarios [3], and we provide
a δ-passivity-based analysis of our proposed framework,
which allows us to consider a wide family of EDMs and
fully generalizes the results in [23].

In summary, the contributions of this paper are threefold.

i) First, the formulation of a class of PDMs, and provid-
ing sufficient conditions to certify their δ-antipassivity
property (see Theorem 1). It is worth to highlight that
the considered class of PDMs is in general not captured
by the so-called smoothing-anticipatory PDMs [3]–
[6], which, to the best of our knowledge, are the
only PDMs whose δ-antipassivity properties have been
formally proven. Yet, our proposed PDM is indeed
able to recover the smoothing PDM of [4] and [6]
(see Example 1), as well as to model several linear
systems subject to non-linear input saturation functions
(see Example 2).

ii) Second, based on a Lyapunov-LaSalle argument, the
establishment of sufficient conditions to guarantee the
asymptotic stability of the set of equilibria of EDM-
PDMs that are subject to a PDM from the aforemen-
tioned class of PDMs (see Corollary 1). We remark
that, for the case where the proposed class of PDMs is
considered, Corollary 1 provides alternative sufficient
conditions to the ones reported in the literature (e.g., [6,
Theorem 2]). Namely, Corollary 1 eliminates the need
to construct a so-called informative δ-antistorage func-
tion when the proposed class of PDMs is considered
and certain smoothness and contractivity conditions are
satisfied.

iii) Third, the formulation of a distributed NE seek-
ing method for aggregative population games under
partial-decision information schemes. In particular, we
show that the so-called proportional integral consensus
algorithm [24] can also be captured by the proposed
class of PDMs, and thus we exploit Corollary 1 to
deduce sufficient conditions to guarantee the conver-
gence to an NE for certain merely contractive and
strongly contractive aggregative population games sub-
ject to partial-decision information, and for any Nash
stationary δ-passive EDM with informative δ-storage
function (see Corollary 2).

In addition, we validate our theoretical developments through
some numerical simulations considering a practical scenario
in the context of congestion games [25].

The remainder of this paper is organized as follows.
In Section II, we introduce some preliminary concepts on
population games, EDMs, and PDMs, we present the no-
tions of δ-passive EDMs and δ-antipassive PDMs, and we
formally state the problem of NE seeking in population
games. In Section III, we formulate a class of PDMs and
deduce sufficient conditions to certify their δ-antipassivity
property. In addition, we deduce sufficient conditions for the
asymptotic stability of the set of equilibria of EDM-PDMs



subject to the aforementioned class of PDMs. In Section IV,
we state the distributed NE seeking problem that motivates
this research, and we formulate our proposed approach to
solve such a problem. In Section V, we analyze the proposed
distributed NE seeking method under the light of the δ-
antipassitivity results obtained in Section III. In particular, we
deduce sufficient conditions to certify the asymptotic stability
of the set of Nash equilibria under the proposed approach.
In Section VI, we validate our theoretical results through
some numerical simulations. Finally, Section VII concludes
the paper.

II. PRELIMINARIES

Notation: Throughout, Rn denotes the n-dimensional Eu-
clidean space, and Rn≥0 and Rn>0 are the non-negative and
positive orthants of Rn, respectively. Besides, Rm×n is the
space of m×n real matrices, and Z≥0, Z≥1, and Z≥2 are the
sets of integers greater or equal than 0, 1, and 2, respectively.
We let col (v1,v2, . . . ,vN ) be the column vector obtained
by stacking the collection of column vectors v1,v2, . . . ,vN .
Similarly, diag (M1,M2, . . . ,MN ) denotes the block diag-
onal matrix, with the matrices M1,M2, . . . ,MN in its main
diagonal. Given a symmetric matrix S, we let λmax (S)
and λmin (S) be the maximum and minimum eigenvalues
of S, respectively, and we say that S is negative definite
if λmax (S) < 0. We say that S is positive semi-definite
if λmin (S) ≥ 0, and we compactly denote this fact as
S � 0. Given a vector v and a matrix M, we let ‖v‖∞,
‖v‖2, and ‖M‖2 denote the infinity, Euclidean, and spectral
norms, respectively. In contrast, given a scalar a ∈ R and
a set S, we let |a| and |S| denote their absolute value and
cardinality, respectively. Furthermore, given a differentiable
scalar-valued function f : Rn → R, we let ∇xf (x) denote
the gradient of f(x) with respect to x (we view gradients as
column vectors by default). Similarly, given a differentiable
vector-valued function f : Rn → Rm, we let Dxf (x) ∈
Rm×n denote the m×n Jacobian matrix of f(x) with respect
to x (namely, if fi : Rn → R is the i-th component of
f(·), then the i-th row of Dxf (x) is equal to ∇xfi(x)>). In
addition, we let In be the n × n identity matrix, we let 1n
(0n) be the column vector with n ones (zeros), and we let
0n×m be the n ×m matrix of zeros. Finally, in this paper
we let ⊗ denote the Kronecker product.

A. Population Games

Population games provide a game theoretical framework
to study the strategic interaction of large populations of
decision-making agents [2]. In this paper, we adopt the
deterministic model approximation described in [3] and [5],
and so our analyses are subject to the assumption that the
number of agents within each population tends to infinity1.
More precisely, we consider a set of N ∈ Z≥2 populations,
each comprised of a continuum of agents modeled as a mass
mk ∈ R>0, for all k ∈ P . Here, mk denotes the mass of
agents of population k, and P = {1, 2, . . . , N} is the set

1We refer the interested reader to [2, Chapter 10] and [5, Section V] for
the finite-agent description of population games.

indexing the populations. Besides, we refer to the whole set
of populations as the society.

Under the considered framework, the strategies available
to the agents of each population k ∈ P are indexed by
the set Sk = {1, 2, . . . , nk}, with nk ∈ Z≥2. Therefore,
to describe the strategic distribution within population k,
we let xki ∈ R≥0 denote the mass of agents of population
k choosing strategy i ∈ Sk. Hence, the set of possible
strategic distributions for each population k is given by ∆k ={

xk ∈ Rnk

≥0 :
∑
i∈Sk xki = mk

}
, while the set of possible

strategic distributions for the entire society is given by
∆ =

{
x ∈ Rn≥0 : xk ∈ ∆k,∀k ∈ P

}
. Here, and through the

remaining of this paper, we let xk = col
(
xk1 , x

k
2 , . . . , x

k
nk

)
,

x = col
(
x1,x2, . . . ,xN

)
, and n =

∑
k∈P n

k. Thus, xk

is the strategic distribution of population k, whilst x is the
strategic distribution of the entire society. Furthermore, each
strategy i ∈ Sk is characterized by a continuously differen-
tiable and Lipschitz continuous fitness function fki : Rn≥0 →
R. Namely, fki (x) provides the fitness value of strategy
i ∈ Sk at the strategic distribution x ∈ ∆. Throughout,
we let f(·) = col

(
f1(·), f2(·), . . . , fN (·)

)
be the overall

fitness vector, where fk(·) = col
(
fk1 (·), fk2 (·), . . . , fknk(·)

)
,

for all k ∈ P . Based on the overall fitness vector f(·), a
population game can then be defined in normal form as
the tuple G = (P,∆, f(·)), which captures the involved
populations (P), the set of possible strategic distributions
(∆), and the fitness vector (f(·)).

Remark 1: We remark that fitness functions depend on the
problem under consideration and they determine the strategic
environment for the population game. For example, in the
scenario where each population seeks to maximize some
(smooth) utility function, the populations’ fitness vectors
might be taken as the gradients of such utility functions.
In such a case, the overall fitness vector plays the role of the
so-called pseudo-gradient mapping of the game [26, Section
6].

B. Evolutionary Dynamics and Payoff Dynamics Models
To establish how the strategic distribution of the society

evolves over time, let t ∈ R≥0 denote the continuous-time
index, and let x(t) be the value of x at time t. Moreover,
let pki (t) ∈ R be the (time-varying) payoff received by
the agents choosing strategy i in population k at time t,
for all i ∈ Sk and all k ∈ P . Accordingly, pk(t) =

col
(
pk1(t), pk2(t), . . . , pknk(t)

)
∈ Rnk

is the payoff vector of
population k, and p(t) = col

(
p1(t),p2(t), . . . ,pN (t)

)
∈

Rn is the payoff vector of the entire society.
In the finite-agent description of population games, it is

assumed that each agent is equipped with a stochastic alarm
clock and a so-called revision protocol. Alarm clocks provide
(independent) strategic revision opportunities that follow a
rate R exponential distribution, while the revision protocols
are maps of the form ρkij : ∆k×Rnk → R≥0 which define the
probability distribution that agents use to update their strate-
gies. More precisely, if at time t an agent choosing strategy
i ∈ Sk in population k ∈ P receives a revision opportunity,
then such an agent switches to strategy j ∈ Sk \ {i} with



probability ρkij
(
xk
(
t̃
)
,pk

(
t̃
))
/R, or remains at strategy i

with probability 1 − (1/R)
∑
j∈Sk\{i} ρ

k
ij

(
xk
(
t̃
)
,pk

(
t̃
))

,
where t̃ < t is an arbitrary time instant between the previous
revision time of any agent of the society and time t (as
in [2, Section 4.1], it is assumed that R is large enough
so that these probabilities are well-defined for all times).
As discussed in [2, Chapter 10], [3], and [5], in the limit
of an infinite number of agents within each population
k, the aforementioned stochastic decision-making process
can be arbitrarily well described by a set of deterministic
ordinary differential equations. Throughout, we refer to such
a deterministic model as the evolutionary dynamics model,
which is defined as follows [3].

Definition 1: The temporal evolution of the strategic dis-
tribution x(t) is described by an evolutionary dynamics
model (EDM) of the form

ẋ(t) = V (x(t),p(t)) , x(0) ∈ ∆,

where V : ∆×Rn → Rn is Lipschitz continuous and satisfies
that V (x(t),p(t)) ∈ T∆ (x(t)) and ‖V (x(t),p(t))‖∞ <
∞, for all t ≥ 0. Here, T∆ (x(t)) denotes the tangent cone
of ∆ at x(t), and the input space of an EDM regards all
differentiable and bounded p(t) ∈ Rn, such that ‖p(t)‖∞ <
∞ and ‖ṗ(t)‖∞ <∞, for all t ≥ 0. In addition, an EDM is
said to be Nash stationary, if for every t ≥ 0, it satisfies that

V (x(t),p(t)) = 0n ⇔ x(t) ∈ arg max
y∈∆

y>p(t).

Some examples of EDMs include the Brown-von
Neumann-Nash (BNN) dynamics [27], the replicator dynam-
ics [28], and the Smith dynamics [7], among many others
[2], [3]. For instance, the so-called Smith dynamics are
characterized by

ẋki (t) =
∑
j∈Sk

xkj (t)
[
pki (t)− pkj (t)

]
+
−xki (t)

[
pkj (t)− pki (t)

]
+
,

(1)
for all i ∈ Sk and all k ∈ P , with [·]+ , max(·, 0). In fact,
the Smith dynamics in (1) are a Nash stationary EDM [3].

According to Definition 1, an EDM can be viewed as
a continuous-time dynamical system with input p(t) and
output x(t). Hence, in the study of EDMs and population
games, it is paramount to establish how the payoff vector
p(t) is generated. In the nominal framework of [2], the
payoff vector p(t) is provided by a memoryless map x(t) 7→
p(t), from the society state to the payoff vector. Conven-
tionally, such a memoryless map is precisely the overall
fitness vector f(·). That is, p(t) = f (x(t)). Therefore, in
the nominal framework of [2], the notions of payoffs and
fitness values are equivalent. Nevertheless, as highlighted in
[3], payoffs mechanisms based solely on memoryless maps
cannot account for dynamical effects such as anticipation,
delay, and inertia, which are inherent to learning processes.
Consequently, for the sake of generality, it is convenient to
consider that payoffs are provided by a dynamical system
rather than by a memoryless map. Thus, following the ideas
in [3] and [5], in this paper we consider that the payoff vector
p(t) is given by a so-called payoff dynamics model, which
is defined as follows.

Definition 2: The payoff vector p(t) is specified by a
payoff dynamics model (PDM) of the form

q̇(t) = W (q(t),x(t)) , q(0) ∈ Rd

p(t) = H (q(t),x(t)) ,

where q(t) ∈ Rd is the (internal) state of the PDM at time
t, W : Rd × ∆ → Rd is Lipschitz continuous, and the
map H : Rd × Rn≥0 → Rn is continuously differentiable
and Lipschitz continuous. Moreover, the input space of a
PDM regards all differentiable and bounded x(t), such that
x(t) ∈ ∆ and ‖ẋ(t)‖∞ < ∞, for all t ≥ 0. In addition, a
PDM is said to be bounded if it satisfies that ‖q(t)‖∞ <∞,
for all t ≥ 0.

Furthermore, to align the PDM to the fitness vector of
the underlying population game G, the following technical
condition is often imposed [3], [6].

Assumption 1: The PDM recovers the overall fitness vec-
tor in steady state, i.e., for every (x∗,q∗) ∈ ∆×Rd it holds
that

W (q∗,x∗) = 0d ⇒ H (q∗,x∗) = f (x∗) .

Notice that Under Definition 2 and Assumption 1, the
notions of payoff and fitness values are equivalent at every
equilibrium point of the PDM, yet they might differ at the
transient state of the PDM. Moreover, we highlight that
while the considered PDM framework is flexible enough
to capture the nominal memoryless approach of [2] (i.e.,
one might simply consider a PDM with d = 0, neglect
the internal dynamics, and set H(·) = f(·)), the PDM
framework also allows us to include dynamics on the payoff
generation process (an impossibility under the memoryless
approach). As an example, consider the so-called smoothing-
anticipatory PDM [3, Section V], [6, Section VI] given by

q̇(t) = ε0

(
W̃ (x(t))− q(t)

)
, q(0) ∈ Rd (2a)

p(t) = ε1H̃ (x(t)) + ε2Hq(t) + ε3q̇(t), (2b)

where W̃ : Rn≥0 → Rd and H̃ : Rn≥0 → Rn are continuously
differentiable and Lipschitz continuous, H ∈ Rn×d, ε0 ∈
R>0, and ε1, ε2, ε3 ∈ R≥0, with ε1 +ε2 = 1. The PDM in (2)
comprises a bounded PDM and, depending on its parameters,
it might capture different learning dynamics [3]. For instance,
by setting ε0 > 0, ε1 = 1, ε2 = 0, ε3 > 0, W̃(·) = H̃(·) =
f(·), and H = In, one obtains an anticipatory PDM, as in
[29]; by setting ε0 > 0, ε1 = 0, ε2 = 1, ε3 = 0, W̃(·) =
H̃(·) = f(·), and H = In, one obtains a smoothing PDM, as
in [4]; and, if the fitness vector is of the form f(x) = Rf̃(x),
with Rn×d and f̃ : Rn≥0 → Rd, then by setting ε0 > 0,
ε1 = 0, ε2 = 1, ε3 = 0, W̃(·) = f̃(·), H̃(·) = 0n, and
H = −R, one obtains an alternative smoothing PDM, as in
[6].

According to Definition 2, a PDM can be viewed as
a continuous-time dynamical system with input x(t) and
output p(t). Consequently, in the context of population
games one is often interested in studying the closed-loop
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Fig. 1. Feedback interconnection between an EDM and a PDM.

interconnection between the EDM and the PDM, which is
depicted in Fig. 1 and formally defined as follows [3].

Definition 3: An EDM-PDM is the feedback interconnec-
tion between an EDM and a PDM, where the EDM takes
p(t) as input and provides x(t) as output, while the PDM
takes x(t) as input and provides p(t) as output (see Fig.
1). More precisely, an EDM-PDM is characterized by the
dynamics

ẋ(t) = V (x(t),H (q(t),x(t))) , x(0) ∈ ∆
q̇(t) = W (q(t),x(t)) , q(0) ∈ Rd.

Consequently, the set of equilibria of an EDM-PDM is

E =

{
(x∗,q∗) ∈ ∆× Rd :

V (x∗,H(q∗,x∗)) = 0n
W(q∗,x∗) = 0d

}
.

Furthermore, an EDM-PDM is said to be admissible if, for
every initial condition (x(0),q(0)) ∈ ∆×Rd, it satisfies that
‖q(t)‖∞ <∞, for all t ≥ 0.

Remark 2: From Definitions 1-3 and [5, Proposition 1],
it follows that if the PDM is bounded, then the resulting
EDM-PDM is admissible. Moreover, if the EDM-PDM is
admissible, then for every initial condition (x(0),q(0)) ∈
∆×Rd there exists a unique solution {(x(t),q(t))}t≥0, and
the solution is such that x(t) belongs to the input space of
the PDM while p(t) belongs to the input space of the EDM,
for all t ≥ 0.

In order to study the temporal evolution of admissible
EDM-PDMs from a generalized point of view, we now
proceed to introduce some notions of passivity that result
useful in the analysis of such interconnected systems.

C. δ-Passive EDMs and δ-Antipassive PDMs

In this section, we introduce the concepts of δ-passive
EDMs and δ-antipassive PDMs. The following definitions
are adapted from [3], [5], and [6].

Definition 4: An EDM is said to be δ-passive if there exist
a continuously differentiable non-negative δ-storage function
S : Rn≥0×Rn → R≥0, and a non-negative auxiliary function
ζ : ∆× Rn → R≥0, such that, for all t ≥ 0,

S (x(t),p(t)) = 0⇔ V (x(t),p(t)) = 0n (3a)

Ṡ(t) ≤ −ζ (x(t),p(t)) + ẋ(t)>ṗ(t). (3b)

Here, ṗ(t) is the time-derivative of the payoff
vector p(t), and Ṡ(t) = ∇xS (x(t),p(t))

>
ẋ(t) +

∇pS (x(t),p(t))
>

ṗ(t). Furthermore, the auxiliary function
ζ(·, ·) is said to be informative if, for all t ≥ 0, it satisfies
that

ζ (x(t),p(t)) = 0⇔ V (x(t),p(t)) = 0n.
Definition 5: A PDM is said to be δ-antipassive if there

exist a continuously differentiable non-negative δ-antistorage
function Q : Rd×Rn≥0 → R≥0, and a non-negative auxiliary
function ν : Rd ×∆→ R≥0, such that, for all t ≥ 0,

Q (q(t),x(t)) = 0⇔W (q(t),x(t)) = 0d (4a)

Q̇(t) ≤ −ν (q(t),x(t))− ẋ(t)>ṗ(t). (4b)

Here, ṗ(t) = DqH (q(t),x(t)) q̇(t) +
DxH (q(t),x(t)) ẋ(t), and
Q̇(t) = ∇qQ (q(t),x(t))

>
q̇(t) +∇xQ (q(t),x(t))

>
ẋ(t).

Furthermore, the auxiliary function ν(·, ·) is said to be
informative if, for all t ≥ 0, it satisfies that

ν (q(t),x(t)) = 0⇔W (q(t),x(t)) = 0d.
As with other notions of passivity, it is expected for

an EDM-PDM comprised of a δ-passive EDM and a δ-
antipassive PDM to exhibit certain stability properties. Such
a result is formalized in Proposition 1, which is adapted from
[6].

Proposition 1: Consider an admissible EDM-PDM com-
prised of a δ-passive EDM with informative ζ(·, ·), and
a δ-antipassive PDM with informative ν(·, ·). Moreover,
suppose that the set of equilibria E of such an EDM-PDM
is nonempty and compact. Then, the set E is asymptotically
stable under the considered EDM-PDM.

Proof: Since E is nonempty and compact, we can apply
standard Lyapunov stability theory to investigate the stability
properties of E [30, Corollary 4.7]. Namely, consider the
function V (x(t),q(t)) = S (x(t),p(t)) + Q (q(t),x(t)),
where p(t) = H (q(t),x(t)). From (3a) and (4a), it follows
that V (·, ·) is a valid Lyapunov function candidate. Further-
more, from (3b) and (4b) we have that, for all t ≥ 0,

V̇ (t) = Ṡ(t) + Q̇(t)

≤ −ζ (x(t),p(t))− ν (q(t),x(t))

≤ 0,

where the last inequality follows from the non-negativity
of ζ(·, ·) and ν(·, ·). Finally, given that ζ(·, ·) and ν(·, ·)
are informative, we conclude that V̇ (t) = 0 if and only if
(x(t),q(t)) ∈ E . Hence, the set E is asymptotically stable
under the considered EDM-PDM.

Proposition 1 provides sufficient conditions to certify
the stability of admissible EDM-PDMs. It is worth to
highlight that there are several EDMs in the literature
which have been shown to be δ-passive with informa-
tive ζ(·, ·). Some examples include the impartial pair-
wise comparison EDM [6], excess payoff target EDM
[3], and perturbed best response EDM [5]. As a punc-
tual example, recall the Smith dynamics in (1). Such dy-
namics can be shown to be δ-passive with informative
ζ(·, ·) by taking [6] S (x,p) =

∑
k∈P

∑
i∈Sk xki Γki

(
pk
)

and ζ (x,p) = −
∑
k∈P

∑
i∈Sk Vki

(
xk,pk

)
Γki
(
pk
)
, with



Vki
(
xk,pk

)
=
∑
j∈Sk xkj

[
pki − pkj

]
+
− xki

[
pkj − pki

]
+

, and

Γki
(
pk
)

=
∑
`∈Sk

∫ pk`−pki
0

[z]+ dz. On the other hand, the
δ-antipassivity of PDMs has been significantly less studied.
To the best of our knowledge, the only PDM whose δ-
antipassivity properties have been formally characterized is
the smoothing-anticipatory PDM in (2). For certain particular
parameters, such a PDM has been shown to be δ-antipassive
with informative ν(·, ·). The corresponding analyses are
primarily based on the Legendre transform (see for instance
[6, Section VI.A]).

To further contribute to the field of δ-antipassive PDMs, in
this paper we characterize the δ-antipassivity properties of a
class of (bounded) PDMs, which captures various dynamical
systems, including the smoothing PDM in (2) when ε3 = 0.
Such a topic is the focus of Section III.

D. Nash Equilibrium Seeking in Population Games

As presented in Section II-B, in the context of population
games the agents are payoff-driven decision-makers that
update their strategies usually seeking the highest payoff.
Hence, it is important to characterize the set of strategic
distributions where no agent can improve her payoff by
unilaterally changing her strategy. Such a set corresponds
to the set of Nash equilibria for the society of agents, and it
is formally defined as follows [2], [3].

Definition 6: Given a (fixed) payoff vector p∗ ∈ Rn, the
set of Nash equilibria for the society of agents is given by

NE(p∗) =

{
x∗ ∈ ∆ : x∗ ∈ arg max

x∈∆
x>p∗

}
.

Moreover, if p∗ is the output of a PDM in steady state and
Assumption 1 holds, then NE(p∗) = NE (f), where

NE (f) =

{
x∗ ∈ ∆ : x∗ ∈ arg max

x∈∆
x>f (x∗)

}
.

Here, NE(f) is the set of Nash equilibria of the population
game G characterized by the fitness vector f(·).

Definition 6 reveals the following facts. First, it follows
that NE(f) is aligned to the set of solutions of the variational
inequality VI (∆,−f(·)) (see [31, Definition 1.1.1]). Thus,
since by definition f(·) is continuous and ∆ is nonempty,
compact, and convex, it holds from [31, Corollary 2.2.5] that
the set NE(f) is nonempty and compact. We formalize this
observation in Lemma 1, which is adapted from [31].

Lemma 1: The set NE(f) is nonempty and compact.
Moreover, if f(·) is strictly contractive in the sense that
(x− y)

>
(f(x)− f(y)) < 0, for all x,y ∈ ∆ with x 6= y,

then there exists a unique x∗ ∈ NE(f).
Proof: See [31, Corollary 2.2.5 and Theorem 2.3.3].

Second, if the society of agents is characterized by an EDM-
PDM comprised of a Nash stationary EDM and a PDM
satisfying Assumption 1, then the set of equilibria E of the
EDM-PDM is aligned to the set of Nash equilibria of the
population game G. This result is formally stated as follows.

Lemma 2: Consider an EDM-PDM comprised of a Nash
stationary EDM and a PDM satisfying Assumption 1. Then,
it holds that (x∗,q∗) ∈ E ⇒ x∗ ∈ NE(f).

Proof: Directly from Definitions 1, 3, and 6.
Lemma 2 asserts the correspondence between the set of

equilibria of the EDM-PDM and the set of Nash equilibria
of the population game G. Such a result is paramount when
considering the problem of Nash equilibrium seeking in
population games, as defined next.

Definition 7: Consider a population game G characterized
by the fitness vector f(·), and a society characterized by any
Nash stationary EDM. The NE seeking problem consists of
designing a PDM that renders the set NE(f) asymptotically
stable under the resulting EDM-PDM.

In this paper, we consider the NE seeking problem of
Definition 7 under the additional assumption that the PDM
is comprised of multiple payoff providers, one for each
population, that are subject to partial-decision information
regarding the strategic distribution of the society, and that are
allowed to communicate with each other over a possibly non-
complete network. Consequently, in this paper we deal with
a distributed NE seeking problem under a partial-decision
information scheme. Further details on such a problem are
given in Section IV.

III. ON THE δ-ANTIPASSIVITY OF A CLASS OF PDMS

In this section, we provide sufficient conditions to guar-
antee the δ-antipassivity of a class of PDMs (Theorem 1).
Moreover, we provide a result analogous to Proposition 1 for
the case where such PDMs are considered (Corollary 1). The
results provided in this section comprise the building blocks
for the forthcoming analyses of the proposed distributed NE
seeking dynamics in Section V.

Consider a PDM of the form

q̇1(t) =
1

τ
(Aq1(t)−Bq2(t) + Φ (x(t))) (5a)

q̇2(t) =
1

τ
B>q1(t) (5b)

p(t) = F (x(t),q1(t)) , (5c)

where τ ∈ R>0, q1(0) ∈ Rd1 , q2(0) ∈ Rd2 , A ∈ Rd1×d1 ,
B ∈ Rd1×d2 , Φ : Rn≥0 → Rd1 , F : Rn≥0 × Rd1 → Rn,
with d1 ∈ Z≥1 and d2 ∈ Z≥0. Besides, both Φ(·) and
F(·, ·) are continuously differentiable and Lipschitz contin-
uous. Thus, the PDM in (5) agrees with Definition 2, with
q(t) = col (q1(t),q2(t)), d = d1 +d2, and H (q(t),x(t)) =
F (x(t),q1(t)). In addition, we often impose Assumption 2.

Assumption 2: The following conditions hold.
i) The matrix

(
A + A>

)
is negative definite.

ii) The matrix Ã =

[
A −B
B> 0d2×d2

]
is Hurwitz2.

iii) The function Φ(·) is LΦ-Lipschitz continuous under
the Euclidean norm, i.e., there is an LΦ ∈ R>0 such
that ‖Φ(x)−Φ(x̃)‖2 ≤ LΦ ‖x− x̃‖2, for all x, x̃ ∈
Rn≥0.

iv) The function F(x, ·) is LF -Lipschitz continuous under
the Euclidean norm, i.e., there is an LF ∈ R>0 such

2If A satisfies Assumption 2-i) and d1 ≥ d2, then a sufficient condition
for Ã to be Hurwitz is rank (B) = d2 [24, Lemma 9], [32, Lemma 2.2].



that ‖F(x,q1)−F(x, q̃1)‖2 ≤ LF ‖q1 − q̃1‖2, for
all x ∈ ∆, and all q1, q̃1 ∈ Rd1 .

v) The function F(·,q1) is µ-strongly contractive in the
following sense. There is a µ ∈ R>0 such that

z>DxF(x,q1)z ≤ −µz>z,

for all x ∈ ∆, all q1 ∈ Rd1 , and all z ∈ Rn.
We now provide two examples to show that the PDM in

(5) is flexible enough to capture several dynamical systems.
Example 1: Consider the smoothing PDM in (2) subject

to ε3 = 0. By setting d1 = d, d2 = 0, q1(t) , q(t),
τ = 1/ε0, A = −Id, Φ (·) = W̃ (·), and F (x(t),q1(t)) =
ε1H̃ (x(t))+ε2Hq1(t), it follows that our proposed PDM in
(5) is able to capture the considered smoothing PDM (yet the
converse is in general not true). Furthermore, if in addition
ε1H̃(·) satisfies that ε1z>DxH̃ (x) z ≤ −µz>z, for some
µ ∈ R>0, all x ∈ ∆, and all z ∈ Rn, then Assumption 2 is
immediately satisfied. We highlight that smoothing PDMs are
useful to smooth short-term fluctuations and to isolate long-
term trends in the decision-making process of the society [4].
As illustration, a smoothing PDM has been applied in [6]
to consider delays in congestion games over vehicle traffic
networks, e.g., to account for the time lag with which the
drivers receive and process congestion information.

Example 2: Consider any system with state q ∈ Rd, input
x ∈ Rn, and dynamics given by q̇(t) = M̃q(t) + Φ̃ (x(t)),
where M̃ ∈ Rd×d is Hurwitz, and Φ̃ : Rn≥0 → Rd is
continuously differentiable and Lipschitz continuous. We
highlight that any continuous-time asymptotically stable lin-
ear system has this form. Besides, note that Φ̃(·) might
represent a smooth (nonlinear) input saturation function,
e.g., an hyperbolic tangent or a sigmoid function, which
are often considered in the context of control systems.
Now, suppose that the control objective regarding such a
system is to drive the state-input pair to a point (q∗,x∗) ∈
arg max(q,x)∈Rd×∆ J(q,x), where the utility J : Rd ×
Rn≥0 → R is twice-continuously differentiable, LF -smooth
in its first argument, and µ-strongly concave in its second
argument. By setting d1 = d, d2 = 0, q1(t) , q(t), A = M̃,
Φ(·) = Φ̃(·), and F (x(t),q1(t)) = ∇xJ (q(t),x(t)), it
follows that the PDM in (5) is able to capture the dynamics
and control objective of the considered system. In addition,
if M̃ + M̃> is negative definite, then all the conditions in
Assumption 2 hold. Also, recall that any linear system with
all simple, real, and strictly negative eigenvalues, can be
rewritten in modal canonical form characterized by a real
diagonal matrix M̃ for which the negative definiteness of
M̃+M̃> immediately holds. Hence, the considered PDM is
flexible enough to capture several dynamical systems, which
may account for additional internal dynamics in the society.

In Section IV, we provide yet a third example of dynamics
that can be captured by the PDM in (5), which are relevant
for the problem of distributed NE seeking in population
games. Now, however, we proceed to characterize the bound-
edness and δ-antipassivity of the PDM in (5).

Lemma 3: Let Assumption 2-ii) hold. Then, the PDM in
(5) is bounded in the sense of Definition 2.

Proof: Observe that the dynamics of the PDM in (5)
can be rewritten as

q̇(t) =
1

τ
Ãq(t) +

1

τ

[
Φ (x(t))

0d2

]
, (6)

with Ã taken as in Assumption 2-ii). Since Ã is Hurwitz,
it follows that the PDM in (5) is input-to-state stable [33,
Lemma 4.6]. Thus, under any input x(t) ∈ ∆, the state of
the PDM in (5) is bounded, for all t ≥ 0.

Lemma 4: Let Assumption 2 hold and consider the matrix

M (q1,x) =

[
− 1
τA − 1

τ DxΦ (x)
−Dq1

F (x,q1) −DxF (x,q1)

]
. (7)

Moreover, suppose that the following inequalities hold3:

2LΦLF

|λmax (A + A>)|
≤ µ (8a)

2L2
Φ

µ |λmax (A + A>)|
≤ τ ≤

µ
∣∣λmax

(
A + A>

)∣∣
2L2

F
. (8b)

Then, z>M (q1,x) z ≥ 0, for all q1 ∈ Rd1 , all x ∈ ∆, and
all z ∈ Rd1+n.

Proof: First, note that for (8b) to hold it is necessary
that

2L2
Φ

µ |λmax (A + A>)|
≤
µ
∣∣λmax

(
A + A>

)∣∣
2L2

F
.

Clearly, such a condition is satisfied only if (8a) holds. Thus,
(8a) is a necessary condition for (8b) to hold. With this fact
in mind, we now proceed to show that if (8b) holds, then
z>M (q1,x) z ≥ 0, for all q1 ∈ Rd1 , x ∈ ∆, and z ∈
Rd1+n. Throughout this proof, let q1, x, and z be arbitrary.

Now, observe that

z>M (q1,x) z =
1

2
z>
(
M (q1,x) + M (q1,x)

>
)

z

= z> (MΦ (q1,x) + MF (q1,x)) z,

where

MΦ (q1,x) =

[
− 1

4τ

(
A + A>

)
− 1

2τ DxΦ(x)

− 1
2τ DxΦ(x)> − 1

4S (x,q1)

]

MF (q1,x) =

[
− 1

4τ

(
A + A>

)
− 1

2 Dq1
F (x,q1)

>

− 1
2 Dq1F (x,q1) − 1

4S (x,q1)

]
,

with S (x,q1) = DxF (x,q1) + DxF (x,q1)
>. Hence, to

show that z>M (q1,x) z ≥ 0, it suffices to show that both
z>MΦ (q1,x) z ≥ 0 and z>MF (q1,x) z ≥ 0.

Let us consider z>MΦ (q1,x) z ≥ 0 first. By Assumption
2-i) and the Schur complement characterization of definite
matrices [34, Prop. 8.2.4], it follows that MΦ (q1,x) � 0 if
and only if

−1

4
S (x,q1) +

1

τ
DxΦ(x)>

(
A + A>

)−1
DxΦ(x) � 0.

3If τ is a tunable parameter and (8a) holds, then setting τ = LΦ/LF is
sufficient to satisfy (8b). To see this fact, simply replace the equality value
of (8a) into both sides of (8b).



Equivalently, z>MΦ (q1,x) z ≥ 0 if and only if

1

τ
z>T1(x)z ≥ 1

4
z>S (x,q1) z, (9)

with T1(x) = DxΦ(x)>
(
A + A>

)−1
DxΦ(x). Now, let

T2(x) = DxΦ(x)>DxΦ(x) and notice that

1

τ
z>T1(x)z ≥ 1

τ
λmin

((
A + A>

)−1
)

z>T2(x)z

=
1

τ

1

λmax (A + A>)
z>T2(x)z

≥ 1

τ

1

λmax (A + A>)
‖DxΦ(x)‖22 z>z

≥ 1

τ

1

λmax (A + A>)
L2

Φz>z,

where the last two inequalities follow from the fact that
λmax

(
A + A>

)
< 0, in conjunction with the fact that

λmax (T2(x)) = ‖DxΦ(x)‖22 ≤ L2
Φ (here, the latter inequal-

ity follows from the mean value theorem together with the
definition of LΦ-Lipschitz continuity). On the other hand,
observe that

1

2
z>S (x,q1) z = z>DxF(x,q1)z.

Thus, from Assumption 2-v) it holds that

−1

2
µz>z ≥ 1

4
z>S (x,q1) z.

Hence, to satisfy the inequality in (9), it suffices to ensure
that L2

Φ/
(
τλmax

(
A + A>

))
≥ −µ/2, which, by the fact

that λmax

(
A + A>

)
< 0, is equivalent to

2L2
Φ

τ |λmax (A + A>)|
≤ µ. (10)

Therefore, if τ ≥ 2L2
Φ/
(
µ
∣∣λmax

(
A + A>

)∣∣), then the
inequalities in (9)-(10) hold, and z>MΦ (q1,x) z ≥ 0.

We now consider z>MF (q1,x) z ≥ 0. Similar as before,
by Assumption 2-i) and the Schur complement characteriza-
tion of definite matrices, it follows that z>MF (q1,x) z ≥ 0
if and only if

τz>T3 (x,q1) z ≥ 1

4
z>S (x,q1) z, (11)

with T3 (x,q1) = Dq1
F(x,q1)

(
A + A>

)−1
Dq1

F(x,q1)>.
By setting T4 (x,q1) = Dq1F(x,q1)Dq1F(x,q1)>, it
follows that

τz>T3 (x,q1) z ≥ τλmin

((
A + A>

)−1
)

z>T4(x,q1)z

= τ
1

λmax (A + A>)
z>T4(x,q1)z

≥ τ 1

λmax (A + A>)
‖Dq1

F(x,q1)‖22 z>z

≥ τ 1

λmax (A + A>)
L2
Fz>z,

where we have used the facts that λmax

(
A + A>

)
< 0, and

λmax (T4(x)) = ‖Dq1
F(x,q1)‖22 ≤ L

2
F . Thus, following a

similar analysis as before, to satisfy the inequality in (11) it
suffices to ensure that

2τL2
F

|λmax (A + A>)|
≤ µ. (12)

Consequently, if τ ≤ µ
∣∣λmax

(
A + A>

)∣∣ / (2L2
F
)
, then the

inequalities in (11)-(12) hold, and z>MF (q1,x) z ≥ 0.
Lemma 5: Consider the matrix M(q1,x) in (7). Let As-

sumptions 2-i) and 2-v) hold, with 2-v) relaxed with µ = 0,
and suppose that Dq1F(x,q1)> = −(1/τ)DxΦ(x), for all
x ∈ ∆ and all q1 ∈ Rd1 . Then, z>M (q1,x) z ≥ 0, for all
q1 ∈ Rd1 , all x ∈ ∆, and all z ∈ Rd1+n.

Proof: Given that Dq1
F(x,q1)> = −(1/τ)DxΦ(x),

for all x ∈ ∆ and all q1 ∈ Rd1 , it holds that

z>M (q1,x) z =
1

2
z>
(
M (q1,x) + M (q1,x)

>
)

z

= −1

2
z>
[

1
τ

(
A + A>

)
0d1×n

0n×d1 S (x,q1)

]
z

≥ 0,

for all q1 ∈ Rd1 , all x ∈ ∆, and all z ∈ Rd1+n. Here,
S (x,q1) = DxF (x,q1) + DxF (x,q1)

>, and the last
inequality follows from Assumption 2-i) and the relaxed
Assumption 2-v).

Due to Lemma 3, we conclude that an EDM-PDM subject
to the PDM in (5) satisfying Assumption 2-ii) is admissible
in the sense of Definition 3, which implies that solutions
to the initial value problem of such an EDM-PDM exist,
are unique, and are within the input spaces of the EDM and
PDM (c.f., Remark 2). On the other hand, based on Lemmas
4 and 5, we now provide our main result regarding the δ-
antipassivity of the PDM in (5).

Theorem 1: Consider the PDM in (5) and suppose that at
least one of the following two cases holds:

i) Assumption 2 and the inequalities in (8) hold.
ii) Assumptions 2-i), 2-ii), and 2-v) hold, with 2-

v) relaxed with µ = 0, and Dq1F(x,q1)> =
−(1/τ)DxΦ(x), for all x ∈ ∆ and all q1 ∈ Rd1 .

Then, the considered PDM is bounded and δ-antipassive.
Proof: Throughout this proof, let M (q1,x) be the

matrix given in (7). Moreover, note that from Lemma 3
it holds that the considered PDM is bounded, and from
Lemmas 4 and 5 it follows that z>M (q1,x) z ≥ 0, for
all q1 ∈ Rd1 , all x ∈ ∆, and all z ∈ Rd1+n.

Given the PDM in (5), it follows that

ṗ(t) = Dq1
F (x(t),q1(t)) q̇1(t) + DxF (x(t),q1(t)) ẋ(t).

(13)
Moreover, consider the (valid) δ-antistorage function given
by

Q (q,x) =
1

2τ2
‖Aq1 −Bq2 + Φ(x)‖22 +

1

2τ2

∥∥B>q1

∥∥2

2
,



such that

∇q1
Q (q(t),x(t)) =

1

τ
A>q̇1(t) +

1

τ
Bq̇2(t)

∇q2
Q (q(t),x(t)) = −1

τ
B>q̇1(t)

∇xQ (q(t),x(t)) =
1

τ
DxΦ (x(t))

>
q̇1(t).

Consequently,

Q̇(t) =
1

τ
q̇1(t)>Aq̇1(t) +

1

τ
q̇1(t)>DxΦ (x(t)) ẋ(t). (14)

Finally, consider the function

ν (q(t),x(t)) =

[
q̇1(t)
ẋ(t)

]>
M (q1(t),x(t))

[
q̇1(t)
ẋ(t)

]
.

(15)
Since, z>M (q1,x) z ≥ 0, for all q1 ∈ Rd1 , all x ∈ ∆,
and all z ∈ Rd1+n, it follows that ν (q(t),x(t)) ≥ 0 for all
times. Furthermore, from (7) and (13)-(15) it holds that

−ν (q(t),x(t)) = ẋ(t)>ṗ(t) + Q̇(t),

which implies that the δ-antipassivity inequality in (4b) is
satisfied (in this case with equality).

Theorem 1 provides sufficient conditions to guarantee the
δ-antipassivity of the PDM in (5). Moreover, such sufficient
conditions can be checked by examining the parameters’
values of the PDM in (5). In particular, Case i) of Theorem
1 requires for the output map of the PDM in (5) to be
sufficiently strongly contractive in the sense of Assumption
2-v) and the inequalities in (8). In contrast, Case ii) of The-
orem 1 removes such a strong contractivity requirement and
replaces it by mere contractivity, but presumes a particular
matching condition between the Jacobians of F(x, ·) and
Φ(·). Nevertheless, such a matching condition can be easily
satisfied in certain especial cases. For instance, consider the
PDM in (5) subject to Φ(x) = Cx, with C ∈ Rd1×n,
and F (x,q1) = F̃(x) − τC>q1, with F̃ : Rn≥0 → Rn

satisfying z>DxF̃(x)z ≤ 0, for all x ∈ ∆ and all z ∈ Rn.
We highlight that such PDMs are relevant for the class of
aggregative population games reported in [23], which we
reconsider and generalize in Section VI.

Although Theorem 1 allows us to assert the δ-antipassivity
of the PDM in (5), note that the auxiliary function ν(·, ·) in
(15), employed in the proof of Theorem 1, is not informative
in the sense of Definition 5. For instance, observe that such a
ν(·, ·) might be zero even if q̇2(t) 6= 0d2 . Consequently, the
result of Proposition 1 cannot be directly invoked when the
PDM in (5) is considered (at least not with the given ν(·, ·)).
To overcome this issue, we provide a result alternative
to Proposition 1 for the case where the PDM in (5) is
considered.

Corollary 1: Consider an EDM-PDM comprised of a δ-
passive EDM with informative ζ(·, ·), and the PDM in (5).
Moreover, suppose that the set of equilibria E of such an
EDM-PDM is nonempty and compact. In addition, let at least
one of the following two cases hold:

i) Assumption 2 and the inequalities in (8) hold.

ii) Assumptions 2-i), 2-ii), and 2-v) hold, with 2-
v) relaxed with µ = 0, and Dq1F(x,q1)> =
−(1/τ)DxΦ(x), for all x ∈ ∆ and all q1 ∈ Rd1 .

Then, the set E is asymptotically stable under the considered
EDM-PDM.

Proof: From Lemma 3, it follows that the consid-
ered EDM-PDM is admissible in the sense of Definition
3 (c.f., Remark 2). In addition, from Theorem 1, it fol-
lows that the PDM in (5) is δ-antipassive with the (non-
informative) ν(·, ·) given in (15). Hence, consider the func-
tion V (x(t),q(t)) = S (x(t),p(t)) + Q (q(t),x(t)), where
p(t) = F (x(t),q1(t)). From (3a) and (4a), it follows that
V (·, ·) is a valid Lyapunov function candidate. Moreover,
from (3b) and (4b) we have that, for all t ≥ 0,

V̇ (t) = Ṡ(t) + Q̇(t)

≤ −ζ (x(t),p(t))− ν (q(t),x(t))

≤ 0,

where the last inequality follows from the non-negativity of
ζ(·, ·) and ν(·, ·). Thus, we conclude that E is stable in the
sense of Lyapunov [30, Corollary 4.7].

From the non-negativity of ζ(·, ·) and ν(·, ·), it holds
that V̇ (t) = 0 only if ζ(x(t),p(t)) = ν(q(t),x(t)) =
0. Besides, given that ζ(·, ·) is informative, we conclude
that ζ (x(t),p(t)) = 0 ⇔ V (x(t),p(t)) = 0n. Hence,
ẋ(t) = 0n is a necessary condition for V̇ (t) = 0 (recall
that ẋ(t) = V (x(t),p(t)) by definition). On the other hand,
from the definition of ν(·, ·) in (15), the definition of M(·, ·)
in (7), and Assumption 2-i), it follows that if ẋ(t) = 0n, then
ν(q(t),x(t)) = 0 if and only if q̇1(t) = 0d1 . Therefore, we
can further conclude that

V̇ (t) = 0⇔ [ẋ(t) = 0n and q̇1(t) = 0d1 ]

Equivalently, due to (5), V̇ (t) = 0⇔ (x(t),q(t)) ∈ R, with

R =

{
(x,q) ∈ ∆× Rd :

V (x,F(x,q1)) = 0n
Aq1 −Bq2 + Φ (x) = 0d1

}
.

Now, let I ⊆ R be the largest invariant set of the EDM-
PDM within R. By LaSalle’s Theorem [30, Theorem 3.3], it
follows that (x(t),q(t))→ I as t→∞, i.e., I is attractive
under the EDM-PDM. Also, by Definition 3 it holds that
E ⊆ I. Hence, if E = I, then E is asymptotically stable and
the proof is complete. We now proceed to show that E = I
indeed.

Suppose that E ⊂ I and let T = I \ E . Thus, T 6= ∅.
Besides, let t̃ ∈ R≥0 be an arbitrary time instant (which
might even be the initial time t̃ = 0). Given that T ⊂ I ⊆ R
and E ∩ T = ∅, it follows from the definition of R and (5b)
that(
x
(
t̃
)
,q
(
t̃
))
∈ T ⇒

[
q̇2 (t) =

1

τ
B>q1

(
t̃
)
6= 0d2 , ∀t ≥ t̃

]
.

Therefore,
(
x
(
t̃
)
,q
(
t̃
))
∈ T implies that ‖q2(t)‖2 → ∞

as t → ∞. Clearly, since t̃ is arbitrary, such an implication
contradicts the boundedness of the PDM given by Lemma
3. Consequently, we conclude that T must be an empty set
and thus E = I. This observation completes the proof.



Corollary 1 provides sufficient conditions to certify the
asymptotic stability of the set of equilibria of EDM-PDMs
when the PDM in (5) is considered. As we show in Section
V, such a result allows us to guarantee the effectiveness of
our proposed approach for solving the distributed NE seeking
problem of the forthcoming section.

IV. DISTRIBUTED NE SEEKING IN POPULATION GAMES

Recall that, according to the NE seeking problem of
Definition 7, the goal is to design a PDM that renders
the set NE(f) asymptotically stable under the corresponding
EDM-PDM. Moreover, we seek to accomplish such a goal
under a partial-decision information scheme. Namely, it is
assumed that each population k ∈ P has an associated
higher level entity, here referred to as the payoff provider
of population k, which provides the payoff vector pk(t)
to the agents of population k at time t. In addition, the
payoff provider of population k has direct access only to
the strategic distribution of population k (xk), and it is not
able to directly measure the strategic distribution of any other
population ` ∈ P \ {k}. However, the payoff providers are
allowed to communicate with each other through a possibly
non-complete network. Consequently, by defining the PDM
as the ensemble of all payoff providers, the goal is to
design each payoff provider (synthesized as a continuous-
time dynamical system), so that the resulting PDM solves
the aforementioned distributed NE seeking problem.

Throughout, we impose the following assumptions on the
fitness functions of the population game G.

Standing Assumption 1: For all i ∈ Sk and all k ∈
P , the continuously differentiable and Lipschitz contin-
uous map fki (·) is of the aggregative form fki (x) =

gki
(
xk,σ(x)

)
, where gki : Rnk

≥0 × Rr → R and σ(x) =

(1/N)
∑
`∈P φ`

(
x`
)
, with r ∈ Z≥1 and φ` : Rn`

≥0 → Rr,
for all ` ∈ P . Moreover,

∥∥gki (xk,qk1)− gki (xk, q̃k1)∥∥2
≤

Lgki

∥∥qk1 − q̃k1
∥∥

2
, for some Lgki ∈ R>0, for all xk ∈ ∆k,

and for all qk1 , q̃
k
1 ∈ Rr; and

∥∥∥φk (xk)− φk
(
x̃k
)∥∥∥

2
≤

Lφk

∥∥xk − x̃k
∥∥

2
, for some Lφk ∈ R>0, and for all xk, x̃k ∈

Rnk

≥0.
Under Standing Assumption 1, it follows that the fitness

functions depend on the strategic distribution of the entire
society through the aggregate term σ(x). Thus, the fitness
function of a given strategy at a given population is, in
general, affected by the strategic distribution of the whole
society. It is important to keep this observation in mind as we
seek to design an NE seeking method under partial-decision
information.

Now, to define the communication between the multiple
payoff providers, we let Gc = (P,Lc,W) be the directed
graph (digraph) associated to the communication network.
Here, P is the set of nodes corresponding to the payoff
providers (which are indexed according to their associated
populations), Lc ⊆ P × P is the set of links of possible
communication, and W ∈ RN×N≥0 is the weighted adjacency
matrix that captures the topology of the digraph. Throughout,
we say that (`, k) ∈ Lc if and only if node k can receive

information from node `, and for simplicity we adopt the
convention that (k, k) /∈ Lc. Moreover, wk` > 0 for all
(`, k) ∈ Lc, and wk` = 0 otherwise. Here, wk` denotes
the (k, `)-th element of W. Furthermore, we let N k

in =
{` ∈ P : wk` > 0} denote the set of in-neighbors of node
k, for all k ∈ P , and we let L = diag (W1N )−W be the
Laplacian matrix associated to Gc. In addition, we impose
the following conditions on Gc.

Standing Assumption 2: The digraph Gc is strongly con-
nected and weight-balanced.

Remark 3: Following [35], the strong connectivity in
Standing Assumption 2 implies that there exists a directed
path from any node to any other node in Gc. On the other
hand, the weigh-balanced condition means that

∑
`∈P wk` =∑

`∈P w`k, for all k ∈ P , i.e., the sum of in-weights matches
the sum of out-weights at every node, and thus 1>NL = 0>N .
Overall, Standing Assumption 2 implies that rank (L) =
N − 1 and λmin

(
L + L>

)
= 0. Finally, it is worth to

highlight that a weight-balanced digraph can be constructed
in a distributed manner from a strongly connected digraph
[36], [37].

Having defined the information and communication re-
lated constraints to be considered, we now proceed to for-
mulate the continuous-time dynamics that characterize each
payoff provider. Namely, following the ideas in [24] and [32]
on the so-called proportional integral consensus algorithm4,
for each population k ∈ P we formulate the corresponding
payoff provider as a dynamical system of the form

q̇k1(t) =
1

τ

(
−qk1(t)−

∑
`∈P

wk`
(
qk1(t)− q`1(t)

)
−
∑
`∈P

w`k
(
qk2(t)− q`2(t)

)
+ φk

(
xk(t)

))
(16a)

q̇k2(t) =
1

τ

∑
`∈P

wk`
(
qk1(t)− q`1(t)

)
(16b)

pk(t) = Fk
(
xk(t),qk1(t)

)
, (16c)

with qk1(0),qk2(0) ∈ Rr, τ ∈ R>0, and Fk :

Rnk

≥0 × Rr → Rnk

given by Fk
(
xk,qk1

)
=

col
(
gk1
(
xk,qk1

)
, · · · , gknk

(
xk,qk1

))
. Namely, the intuition

behind (16) is as follows. Under the dynamics in (16a)-(16b),
the state variable qk1 comprises an estimate of the aggregate
term σ(x) held by the payoff provider of population k. If
at time t such an estimate is correct, i.e., qk1(t) = σ (x(t)),
then it holds that

pk(t) = Fk
(
xk(t),σ (x(t))

)
= col

(
gk1
(
xk(t),σ (x(t))

)
, · · · , gknk

(
xk(t),σ (x(t))

))
= fk (x(t)) .

That is, under a correct estimate of the aggregate term, the
dynamics in (16) align the payoff vector of population k to

4As discussed in [24], in contrast to the merely proportional con-
sensus algorithm, the proportional integral consensus method does not
require a correct initialization of the estimators to eliminate steady-state
errors under constant inputs. This property is due to (16b) and the term∑

`∈P w`k

(
qk
2(t)− q`

2(t)
)

in (16a) (see the proof of Lemma 6).



the fitness vector of population k. Moreover, the dynamics
in (16) can be computed in a distributed fashion under the
communication ruled by Gc. For the sake of clarity, in Fig.
2 we depict the overall considered framework.

Remark 4: Notice that to compute (16a)-(16b), the payoff
provider of each population k ∈ P should in general know
the global parameter τ . In addition, the payoff provider of
each population k must know the k-th row of the adjacency
matrix W (which contains its own weights on its neighbors’
data), as well as the k-th column of W (which contains its
neighbors’ weights on its own data) [24]. Throughout, we
consider such informational requirements as granted.

Based on (16), it follows that the ensemble of all payoff
providers’ dynamics can be compactly written as

q̇1(t) =
1

τ

(
− (INr + L⊗ Ir) q1(t)−

(
L> ⊗ Ir

)
q2(t)

+ Φ (x(t))

)
(17a)

q̇2(t) =
1

τ
(L⊗ Ir) q1(t) (17b)

p(t) = F (x(t),q1(t)) , (17c)

with q1(0),q2(0) ∈ RNr, q1(t) = col
(
q1

1(t), · · · ,qN1 (t)
)
,

q2(t) = col
(
q1

2(t), · · · ,qN2 (t)
)
,

Φ (x(t)) = col
(
φ1
(
x1(t)

)
, · · · ,φN

(
xN (t)

))
,

and

F (x(t),q1(t)) =

 F1
(
x1(t),q1

1(t)
)

...
FN

(
xN (t),qN1 (t)

)
 .

Clearly, Standing Assumption 1 implies that Φ(·) is
LΦ-Lipschitz continuous under the Euclidean norm with
LΦ = maxk∈PLφk , and that F(x, ·) is LF -Lipschitz
continuous under the Euclidean norm with LF =
maxk∈P maxi∈Sk Lgki . Hence, under Standing Assumption
1, the dynamics in (17) can be viewed as a PDM in the
sense of Definition 2, with q(t) = col (q1(t),q2(t)) and
d = 2Nr. Furthermore, to exploit the results in Section III,
we impose the next requirement.

Standing Assumption 3: For all i ∈ Sk and all k ∈ P ,
the functions gki (·,qk1) are such that the resulting function
F(·,q1) is µ-strongly contractive in the sense that there
exists a µ ∈ R>0 such that z>DxF (x,q1) z ≤ −µz>z,
for all x ∈ ∆, all q1 ∈ RNr, and all z ∈ Rn.

It is worth to highlight that for a given population game G
and EDM, the convergence to an NE under the conventional
memoryless oracle-like payoff provider of [2] does not
guarantee the convergence to an NE under the proposed PDM
in (17). More precisely, the fact that the EDM-PDM with the
oracle-like PDM characterized by p(t) = f (x(t)) converges
to an NE of a game G does not immediately imply, in
general, that the EDM-PDM with the PDM in (17) converges
to an NE of the same game G. We support this claim through
the following academic example.

Population  (continuum of mass ) Population  (continuum of mass )

Communication through the network given by 

Payoff provider of Population  
(characterized by the dynamics in (15))

Payoff provider of Population  
(characterized by the dynamics in (15))

Fig. 2. Considered framework. Here, qk(t) = col
(
qk
1(t),qk

2(t)
)
, for all

k ∈ P . Besides, observe that the payoff providers receive the state vectors
of their in-neighbors.

Example 3: Consider a population game G with N = 10,
mk = 1, for all k ∈ P , and characterized by fitness vectors
of the form5

fk (x) = −µxk +

 0 −1 1
1 0 −1
−1 1 0

σ (x) , ∀k ∈ P,

with µ ∈ R>0, and σ(x) = (1/N)
∑
`∈P x`. Moreover,

consider an EDM characterized by the Smith dynamics in
(1), and consider two different PDMs: i) the conventional
oracle-like PDM given by p(t) = f (x(t)); and ii) the
PDM in (17) with τ = LΦ/LF ≈ 1/1.73 and with Gc
taken as a directed cycle with unitary weights. Namely,
the PDM in i) corresponds to a centralized payoff provider
with full-decision information, as in [2], while the PDM
in ii) represents the proposed distributed approach subject
to partial-decision information. In Fig. 3, we depict the
numerical simulations of the corresponding EDM-PDMs
considering two different values of µ. We remark that whilst
the oracle-like approach converges to the NE for both values
of µ, the distributed approach only converges to the NE for
the first value of µ = 1.73. Therefore, the convergence of
the conventional (centralized) dynamics is not enough to
guarantee the convergence under the proposed distributed
scheme.

Example 3 highlights the importance of characterizing
sufficient conditions on the underlying population game to
assert the convergence of the proposed distributed approach
to an NE. As such, we now proceed to formally characterize
such sufficient conditions.

V. CONVERGENCE ANALYSIS

In this section, we analyze the distributed NE seeking
approach proposed in Section IV under the light of the results
of Section III. Throughout, the reader should keep in mind
Standing Assumptions 1-3.

To start the discussion, we first show that the PDM in (17)
satisfies Assumption 1.

5The considered fitness vectors represent an aggregative Rock-Paper-
Scissors [2] multi-population game with added µ-strong contractivity.
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Fig. 3. Simulation results for Example 3. Without loss of generality, in
all cases we let xk(0) = col(1, 0, 0), and qk

1(0) = qk
2(0) = 0Nr , for all

k ∈ P . Moreover, the key performance index (KPI) is taken as KPI(t) =
‖x(t)− x∗‖2 / ‖x(0)− x∗‖2, where x∗ = (1/3)1n is the unique NE of
G. Hence, the convergence of KPI(t) to 0 implies the convergence of x(t)
to the NE of the population game G.

Lemma 6: Assumption 1 holds under the PDM in (17)
with any τ > 0.

Proof: Due to Standing Assumption 2, it holds that∑
k∈P

∑
`∈P

wk`
(
qk1 − q`1

)
=
∑
k∈P

∑
`∈P

wk`q
k
1 −

∑
k∈P

∑
`∈P

wk`q
`
1

=
∑
k∈P

∑
`∈P

wk`q
k
1 −

∑
k∈P

∑
`∈P

w`kq
k
1

=
∑
k∈P

qk1

(∑
`∈P

wk` −
∑
`∈P

w`k

)
= 0Nr.

Similarly,
∑
k∈P

∑
`∈P w`k

(
qk2 − q`2

)
= 0Nr. Therefore,

from (16a) it follows that, for all t ≥ 0,∑
k∈P

q̇k1(t) = −1

τ

∑
k∈P

qk1(t) +
1

τ

∑
k∈P

φk
(
xk(t)

)
.

Hence, q̇1(t) = 0Nr ⇒
∑
k∈P qk1(t) =

∑
k∈P φk

(
xk(t)

)
.

On the other hand, from Standing Assumption 2 and (16b),
it holds that q̇2(t) = 0Nr if and only if qk1(t) = q`1(t) for
all k, ` ∈ P . Consequently,

q̇(t) = 02Nr ⇒ qk1(t) =
1

N

∑
`∈P

φ`
(
x`(t)

)
, ∀k ∈ P

⇒ qk1(t) = σ (x(t)) , ∀k ∈ P
⇒ pk(t) = fk (x(t)) , ∀k ∈ P
⇒ p(t) = f (x(t)) ,

which completes the proof.
Lemma 6 allows us to invoke the results of Lemma 2 for

any EDM-PDM comprised of a Nash stationary EDM and
the PDM in (17). This fact is summarized in Lemma 7.

Lemma 7: Consider an EDM-PDM comprised of a Nash
stationary EDM and the PDM in (17) with any τ > 0. The
corresponding set of equilibria E is nonempty and satisfies
that (x∗,q∗) ∈ E ⇒ x∗ ∈ NE (f).

Proof: The implication (⇒) follows from Lemmas 2
and 6. To prove that E is nonempty, it suffices to see that
NE (f) is nonempty and compact (by Lemma 1), and to note

that x∗ ∈ NE (f), q∗1 = 1N ⊗ σ (x∗), and q∗2 ∈ span (1Nr),
comprise an equilibrium of the considered EDM-PDM.

We now proceed to show that the PDM in (17) also
satisfies Assumption 2. In order to do so, we reformulate the
PDM in (17) in an equivalent reduced-order form as follows.
Let v =

(
1/
√
N
)

1N and let U =
[
Ũ,v

]
∈ RN×N be an

orthonormal matrix. Based on U, consider the change of

variable q2(t) = (U⊗ Ir)

[
q̃2(t)
q̂2(t)

]
, with q̃2(t) ∈ RNr−r

and q̂2(t) ∈ Rr. Under such a change of variable, we have(
L> ⊗ Ir

)
q2(t) =

(
L> ⊗ Ir

)
(U⊗ Ir)

[
q̃2(t)
q̂2(t)

]
=
((

L>Ũ
)
⊗ Ir

)
q̃2(t).

Here, the second equality follows from the properties of the
Kronecker product and the fact that L>v = 0N (c.f., Remark
3). On the other hand, notice that[

˙̃q2(t)
˙̂q2(t)

]
= (U⊗ Ir)

−1
q̇2(t)

=
(
U> ⊗ Ir

)
q̇2(t) [since U is orthonormal]

=
1

τ

(
U> ⊗ Ir

)
(L⊗ Ir) q1(t) [using (17b)]

=

[
1
τ

((
Ũ>L

)
⊗ Ir

)
q1(t)

0r

]
,

Therefore, under the considered change of variable, the
dynamics in (17a)-(17b) can be equivalently written as q̇1(t)

˙̃q2(t)
˙̂q2(t)

 =
1

τ

 A −B 0
B> 0 0
0 0 0

 q1(t)
q̃2(t)
q̂2(t)


+

1

τ

 Φ (x(t))
0
0

 ,
with 0 having appropriate dimensions in all cases, and

A = − (INr + L⊗ Ir)

B =
(
L>Ũ

)
⊗ Ir.

In particular, observe that q̂2 is an uncontrollable state
variable that does not interact with the rest of the states.
Hence, without loss of generality, we can ignore q̂2 and
reformulate the PDM in (17) as the reduced-order PDM
given by

q̇1(t) =
1

τ
(Aq1(t)−Bq̃2(t) + Φ (x(t))) (18a)

˙̃q2(t) =
1

τ
B>q1(t) (18b)

p(t) = F (x(t),q1(t)) . (18c)

Remark 5: Given that the state variable q̂2 does not
interact with q1 and q̃2, it follows that, under matching initial
conditions, the PDMs in (17) and (18) have the same input-
output behaviors. More precisely, if the q̃2 and q2 initial
conditions satisfy that q̃2(0) = Ũ>q2(0), and both PDMs



are given the exact same input x(t) for all t ≥ 0, then both
PDMs produce exactly the same output p(t), for all t ≥ 0.
Consequently, to study the δ-antipassivity of the PDM in
(17), it suffices to analyze the reduced-order PDM in (18).

Clearly, the reduced-order PDM in (18) has the same
form as the PDM in (5), studied in Section III. More-
over, from Standing Assumption 2, the matrix A + A> =
−
(
2INr +

(
L + L>

)
⊗ Ir

)
is negative definite, and the

matrix B is full column rank (c.f., Remark 3). Thus,
from [32, Lemma 2.2] we conclude that the matrix Ã =[

A −B
B> 0

]
is Hurwitz. Consequently, the PDM in (18)

satisfies Assumptions 2-i) and 2-ii). Furthermore, from
Standing Assumption 1 it follows that the PDM in (18)
also satisfies Assumptions 2-iii) and 2-iv). Finally, the PDM
in (18) satisfies Assumption 2-v) by means of Standing
Assumption 3. Therefore, by Remark 5, the PDM in (17)
satisfies Assumption 2.

Based on these observations, and exploiting the results in
Section III, we now formally state some sufficient conditions
to assert the asymptotic stability of the set of Nash equilibria
of population games under any EDM-PDM comprised of a
Nash stationary EDM and our proposed PDM in (17).

Corollary 2: Consider an EDM-PDM comprised of a
Nash stationary δ-passive EDM with informative ζ(·, ·) and
the PDM in (17). Moreover, let at least one of the following
two cases hold:

i) The parameters LΦ, LF , µ, and τ satisfy that

LΦ = maxk∈PLφk (19a)

LF = max
k∈P

max
i∈Sk

Lgki (19b)

LΦLF ≤ µ (19c)
L2

Φ

µ
≤ τ ≤ µ

L2
F
. (19d)

ii) Standing Assumption 3 holds with the relaxation µ =

0, and Dqk
1
Fk
(
xk,qk1

)>
= −(1/τ)Dxkφk

(
xk
)
, for

all xk ∈ ∆k, all qk1 ∈ Rr, and all k ∈ P .
Then, the set of equilibria E is asymptotically stable and, for
all (x∗,q∗) ∈ E , it holds that x∗ ∈ NE (f), i.e., x∗ is an NE
of the game G.

Proof: As discussed in Remark 5, without loss of
generality we can consider the reduced-order PDM in (18)
instead of the one in (17). Now, from Lemma 7, and the fact

that the matrix Ã =

[
A −B
B> 0

]
is Hurwitz, it follows

that the set of equilibria E is nonempty and compact. Also,
under the PDM in (18), it holds that

∣∣λmax

(
A + A>

)∣∣ = 2,
which implies that (8) reduces to (19c)-(19d). Consequently,
the results follow from Corollary 1 and Lemma 7.

Remark 6: Recall from Remark 4 that the payoff
providers are assumed to know the value of τ . Also, note
that if (19c) holds, then one can simply set τ = LΦ/LF
to satisfy (19d). Thus, if τ is set as τ = LΦ/LF , then the
payoff providers should know both LΦ and LF . Now, given
that LΦ = maxk∈PLφk and LF = maxk∈P maxi∈Sk Lgki ,

it turns out that LΦ and LF can be computed over Gc as fol-
lows. Define a variable L̃kΦ with L̃kΦ(0) = Lφk , and update it

iteratively as L̃kΦ(κ+1) = max
{
L̃kΦ(κ), L̃`Φ(κ),∀` ∈ N k

in

}
,

with κ ∈ Z≥0. That way, one can compute LΦ within N −1
iterations. Clearly, a similar approach can be employed to
compute LF .

Based on Corollary 2, we conclude that the proposed ap-
proach is indeed suitable to solve the considered distributed
NE seeking problem. For the sake of illustration, we now
proceed to apply the overall developed theory to a practical
numerical scenario.

VI. AN ILLUSTRATIVE APPLICATION

To illustrate the application of our developed theory, we
consider a multi-population congestion game. Note that con-
gestion games, as relevant engineering problems [25], have
been also considered in some of the previous works on pop-
ulation games [3], [6], and for that reason, we consider such
an example game in this paper as well. Namely, consider a
set of N = 10 populations and suppose that each population
k ∈ P seeks to travel from an origin Ok to a destination
Dk by using a set of available routes. Hence, the goal is for
each population of agents to allocate themselves over their
available routes while considering certain congestion costs
for the routes. Moreover, the traveling routes are shared over
the multiple populations, and so the decision-making task of
the multiple populations is coupled. More precisely, while
Ok 6= O` or Dk 6= D`, for every k, ` ∈ P with k 6= `,
the routes available to travel from Ok to Dk might also be
employed to travel from O` to D`, and so the congestion
of a route depends on the allocation of all the populations
that may employ that route. Without loss of generality, we
assume that there is a total of r = 7 routes, and we let
Sk represent the subset of routes that allow population k to
travel from Ok to Dk (thus

∣∣Sk∣∣ ≤ r). Furthermore, we let
Ck ∈ Rr×nk

be a matrix defining a bipartite graph between
population k and the routes in Sk. For instance, if the agents
of population k were allowed to travel through routes 1, 7,
and 14, then Ck = [e1, e7, e14], where ei ∈ Rr denotes the
i-th column vector of the r×r identity matrix. Therefore, the
sum

∑
`∈P C`x` = Cx summarizes how the entire society is

allocated over all the routes (here, C ∈ Rr×n is constructed
as C =

[
C1, C2, . . . ,CN

]
).

Based on the allocation Cx, it is assumed that the routes
are subject to the congestion cost

β (Cx) = col
(
β1

(
e>1 Cx

)
, β2

(
e>2 Cx

)
, . . . , βr

(
e>r Cx

))
,

where βz : R → R is continuously differentiable, Lβz
-

Lipschitz continuous (for some Lβz
∈ R>0), and provides

the congestion cost for route z, for all z ∈ {1, 2, . . . , r}.
Consequently, we let the fitness vector of every population
k be given by

fk (x) = −Dkxk −Ck>β (Cx) , (20)

where Dk ∈ Rn
k×nk

≥0 is a diagonal matrix encoding the
preferences of population k over their available routes.



Throughout, we denote the minimum diagonal entry of Dk

as µk.
Remark 7: We highlight that, if interpreted as the gradi-

ents of a set of utility functions (one for each population),
fitness vectors of the form in (20) appear in several practical
applications even beyond congestion games. Some exam-
ples include demand response management [38], charging
coordination of electric vehicles [39], and Cournot games
[40, Section 7.1], among others. For further details on the
interpretation of fitness vectors as pseudo-gradient mappings,
we refer the reader to [26, Section 6].

Given that each population k ∈ P may have a different
origin Ok, it is safe to assume that populations might be
spatially distributed over some geographical region. There-
fore, the conventional approach with a single centralized
oracle-like payoff provider with full-decision information
may not be viable for the problem under consideration. As
such, we consider our distributed framework and introduce
a dedicated payoff provider for each population. Moreover,
without loss of generality, we let the communication graph
Gc be a directed cycle with unitary weights. Hence, we let
the payoff provider of each population k be characterized by
the dynamics in (16) with

φk
(
xk
)

= NCkxk

Fk
(
xk,qk1

)
= −Dkxk −Ck>β

(
qk1
)
.

Clearly, it follows that σ(x) = (1/N)
∑
`∈P φ`

(
x`
)

= Cx,
and so the considered fitness vectors in (20) are indeed of the
aggregative form (c.f., Standing Assumption 1). Moreover,
for all k ∈ P it holds that φk(·) is Lφk -Lipschitz continuous
and Fk

(
xk, ·

)
is LFk -Lipschitz continuous, with

Lφk = N
∥∥Ck

∥∥
2

LFk =
∥∥Ck>∥∥

2

(
max

z∈{1,2,...,r}
Lβz

)
.

Here, we highlight that from our definition of Ck it follows
that

∥∥Ck
∥∥

2
=
∥∥Ck>

∥∥
2

= 1, for all k ∈ P (because it
always holds that Ck>Ck = Ink , and thus the maximum
singular value of Ck and Ck> is 1). Therefore, Standing
Assumptions 1 and 2 hold. In addition, if µk > 0 for all
k ∈ P , then Fk

(
·,qk1

)
is µk-strongly contractive for all k,

and Standing Assumption 3 holds with µ = mink∈P µ
k.

For the sake of illustration, we now consider two scenarios
with different congestion costs β(·). For our numerical
simulations we consider the Smith dynamics given in (1)
and the BNN dynamics reported in [27], which are Nash
stationary δ-passive EDMs with informative ζ(·, ·) functions
[3]. Besides, we let mk = 1 and we randomly set Sk
ensuring that 2 ≤

∣∣Sk∣∣ ≤ r, for all k ∈ P .

A. First Scenario: Affine Congestion Costs

For this scenario we consider affine congestion costs.
Namely, for every route z ∈ {1, 2, . . . , r}, we let βz(ω) =

γzω + αz , with αz ∈ R and γz ∈ R>0. For simplicity6, we
let γz = γ, for all z, which implies that β

(
qk1
)

= γqk1 +α,
where α = col (α1, α2, . . . , αr), and so

Fk
(
xk,qk1

)
= −Dkxk − γCk>qk1 −Ck>α, ∀k ∈ P.

Thus, Dqk
1
Fk
(
xk,qk1

)>
= −γCk = −(γ/N)Dxkφk

(
xk
)
,

for all xk ∈ ∆k, all qk1 ∈ Rr, and all k ∈ P . Hence, Case ii)
of Corollary 2 holds by setting τ = N/γ. Consequently, by
means of Corollary 2 we can assert the asymptotic stability
of the set of Nash equilibria of the considered population
game G under any Nash stationary δ-passive EDM with
informative ζ(·, ·), and the PDM in (17) with τ = N/γ.
Notice that such a result holds even if µk = 0 for some
k ∈ P , i.e., even if F(·,q1) is only merely contractive.
Figure 4 depicts some numerical simulations to validate our
results.

B. Second Scenario: Huber Congestion Costs

As general practical applications might be better mod-
eled by nonlinear (non-affine) congestion functions, for this
second scenario we consider non-affine congestion costs.
One way to achieve this goal, whist still maintaining global
smoothness requirements, is by employing continuously dif-
ferentiable piecewise functions. As an example, for this
second scenario we consider congestion costs based on the
Huber loss [41]. Namely, for every route z ∈ {1, 2, . . . , r},
we let

βz(ω) =

{
γz
2 ω

2 + αz, if |ω| ≤ 1,
γzω − γz

2 + αz, otherwise,

with αz ∈ R and γz ∈ R>0. Clearly, βz(·) is continuously
differentiable and Lβz -Lipschitz continuous with Lβz = γz .
Under the considered framework and following the notation
in Case i) of Corollary 2, it holds that LΦ = N , and LF =
γ̄ = maxz∈{1,2,...,r} γz . Thus, if µ ≥ Nγ̄, then Corollary
2 can be invoked to assert the asymptotic stability of the
(unique) NE of the considered population game G under
any Nash stationary δ-passive EDM with informative ζ(·, ·),
and the PDM in (17) with τ = LΦ/LF = N/γ̄. Figure 5
depicts some numerical simulations to validate our results.

VII. CONCLUDING REMARKS

In this paper, we have formulated a framework for dis-
tributed Nash equilibrium (NE) seeking in aggregative pop-
ulation games subject to partial-decision information. By
employing a δ-passivity-based perspective, we have deduced
sufficient conditions to guarantee the asymptotic stability of
the set of Nash equilibria of certain merely contractive and
strongly contractive aggregative population games, and the
provided results hold for several δ-passive Nash stationary
dynamics.

6We use homogeneous values of γz to easily check Case ii) of Corollary
2. However, it is also possible to invoke Corollary 2 for heterogeneous values
of γz . For such, we might simply redefine the matrices Ck as Ck , ΓC̃k ,
where Γ = diag(

√
γ1,
√
γ2, . . . ,

√
γr) and C̃k is the original Ck matrix.
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Fig. 4. Simulations for the first scenario under the proposed distributed NE
seeking dynamics, for the Smith and BNN EDMs. Without loss of generality,
we set γ ∼ U [1, 2], αz ∼ U [−5, 5], for all z ∈ {1, 2, . . . , r}, and we set
µk ∼ U [1, 2], for all k ∈ P\{`}, ` ∈ P , and µ` = 0 (to consider a merely
contractive game). Besides, in both cases we let xk(0) = (1/nk)1nk , and
qk
1(0) = qk

2(0) = 0Nr , for all k ∈ P . Moreover, the key performance
index (KPI) is taken as KPI(t) = ‖x(t)− x∗‖2 / ‖x(0)− x∗‖2, where
x∗ is the achieved (non-unique) NE of the underlying population game G.
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Fig. 5. Simulations for the second scenario under the proposed distributed
NE seeking dynamics, for the Smith and BNN EDMs. Without loss of
generality, we set γ ∼ U [1, 2] and αz ∼ U [−5, 5], for all z ∈
{1, 2, . . . , r}. Besides, we set µk ∼ U [2N, 2N + 1], for all k ∈ P , to
ensure that µ ≥ Nγ̄. Besides, in both cases we let xk(0) = (1/nk)1nk ,
and qk

1(0) = qk
2(0) = 0Nr , for all k ∈ P . Moreover, the key performance

index (KPI) is taken as KPI(t) = ‖x(t)− x∗‖2 / ‖x(0)− x∗‖2, where
x∗ is the achieved (unique) NE of the underlying population game G.

Beyond the context of distributed NE seeking dynamics,
we have deduced sufficient conditions to certify the δ-
antipassivity of a class of dynamic payoff mechanisms. Such
a result is not only relevant for the distributed NE seeking
problem studied in this paper, but also for future researches
in the field of evolutionary game theory. As such, future
work should further explore the applications of the developed
theory to other evolutionary game theoretical problems.
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