
FWC2023-SCA-018 

Proceedings of the FISITA 2023 World Congress, Barcelona, 12 – 15 September 2023 

 

Sensor-Agnostic Multimodal Fusion for Multiple Object Tracking from 
Camera, Radar, Lidar and V2X 

Marc Perez* 1,2 and Antonio Agudo 2  

1Applus+ IDIADA  
PO Box 20, Santa Oliva, 43710, L'Albornar, Tarragona, Spain  

2Institut de Robòtica i Informàtica Industrial, CSIC-UPC   
Carrer de Llorens i Artigas, 4, 08028 Barcelona, Spain  

 

ABSTRACT: Automated vehicles rely on different sensors to detect and track other vehicles and road users over time, to then 
be able to plan and execute safe trajectories. The characteristics of sensors are quite diverse and will probably be even more 
so in the future, so in this work we present a sensor-agnostic multimodal fusion framework for multiple object tracking that 
can seamlessly integrate information coming from different object detectors, sensors, and vehicle-to-everything messages, 
either from other road users or from the infrastructure. All the information received is converted to a standardized set of 
detections that are then combined using a Kalman Filter with a constant velocity model. To ensure robustness, we propose 
methods to handle errors in classification and incorrect bounding box reconstruction, a couple of problems that are often 
ignored in academic literature, although they are very relevant in practice. To evaluate our framework, we use three diverse 
and challenging scenarios. First, we present results for a perception system based on camera and radar that was integrated into 
a prototype traffic jam chauffeur function. Second, we show qualitative results for a traffic monitoring application in highways, 
with multiple cameras, lidars and a radar. And finally, we show how our framework can integrate vehicle-to-everything 
messages to improve the safety of vulnerable road users, such as pedestrians and cyclists, with an autonomous emergency 
braking function in proving grounds.  
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1. Introduction 

In 3D Multi-Object Tracking (MOT) the goal is to infer the 
trajectories of all the relevant objects in an unknown and dynamic 
scene. Frequently, the input data can be composed of raw data from 
a set of sensors such as cameras, radars or lidars; or 3D detections 
in the case of tracking-by-detection strategies. In the tracking-by-
detection context, a common approach is online tracking [1]-[4], 
where the MOT module keeps a list of tracks. As new detections 
are received at every time, the track list is updated by modifying 
the state of some tracks, creating or removing others. 

The performance of MOT approaches depends on the effectiveness 
of the object detector as well as on the handling of errors from the 
detector. In this work, we propose the introduction of a detection 
and tracking pipeline that works with a configurable set of sensors 
and provides robust solutions under different scenarios. Our 
solution can naturally manage misclassification errors and 
incomplete detections (smaller bounding box detected than the real 
one) from the object detector in the MOT module. 

Object detectors can provide accurate estimations but sometimes 
fail to classify them, being rarely taken into account in current 
metrics. For most of the metrics, a car detected as a truck will be 
reported as both a false positive and a false negative, although in 
the case of self-driving a misclassification error is preferable as it 
is reported in planning-based metrics. Due to recent MOT methods 
[1]–[4] focus on associating detections from each class 
independently, they cannot handle the misclassification errors from 

the object detector. To alleviate this limitation, in this work we 
improve the robustness of a MOT module, by allowing detection-
to-track association for similar classes. 

A common assumption in MOT methods is that the detector can 
detect the whole bounding box. Unfortunately, some approaches 
and sensors are only able to reconstruct the visible part of the object, 
providing incomplete detections. As a consequence, it is one of our 
goals to propose a method to handle incomplete detections in a 
MOT module and demonstrate that it can be used to improve the 
robustness of state-of-the-art MOT methods. 

Next, we review related works in MOT and Cooperative Perception. 

Multi-object tracking: A MOT method takes as input a sequence 
of detections and it obtains a list of tracks with a sequence of states. 
The state of each track usually contains the position, velocity, 
orientation, and size. Only a variant of CBMOT [2] considers the 
acceleration as well. This is expected since common datasets do not 
include the acceleration in the annotations and do not consider it in 
the evaluation. However, being able to calculate the acceleration is 
a key factor when deploying these systems in real applications, e.g., 
to be able to react to a vehicle in front braking suddenly. There are 
three main tasks that a MOT method needs to handle: Associate 
detections to tracks, update the tracks based on those associations, 
and track life cycle management. Next, we introduce them.  

In terms of data association, the methods can be classified into 
offline and online tracking. For offline tracking, the goal is to 
associate the global set of detections from different time stamps to 
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a global set of tracks using, for example, network flows [5]. For 
online tracking, the goal is to associate the detections to the tracks 
for each time step independently. For real-time applications, only 
online tracking is possible as the detections from the future are not 
available. Most methods assume that one detection can be assigned 
only to one track and that one track can only be assigned to one 
detection, creating a bipartite matching problem that can be solved 
using a Hungarian algorithm [6], or others [7]. An alternative is to 
associate each detection sequentially to the closest track by order 
of confidence in a greedy way. This approach normally provides 
better results when there are a lot of detections and large differences 
in confidence [2], [3]. The key factor for data association is 
selecting a good distance, some examples include the use of the 
Intersection over Union (IoU), the Mahalanobis distance, the 
Euclidean distance, or even learned cost functions based on data. 
Detections can also be combined from different modalities to create 
a merged detection that is then associated to tracks [8]. These 
fusion mechanisms assume that the two modalities are 
synchronized, a requirement that could be hard to achieve in 
practice. In contrast, our method can work without this assumption. 
To the best of our knowledge, no previous MOT method considers 
association between different classes with no synchronization as 
we do in this work. This is especially relevant when a trained model 
is used on a different domain, since the model might detect some 
objects but fail to classify them properly, as we will see in the 
experimental section. Thanks to our method, this can be considered 
in the MOT system.  

Regarding filtering, to update the tracks based on the associated 
detections, we need to define a state, how this state evolves over 
time (prediction), and how this state is modified when a detection 
is assigned to it (update). Most methods [1], [3], [4], use some kind 
of Bayesian filter to do that, such as Kalman Filters (KF) [9]. When 
low-frequency accurate detections with velocity are available, we 
can use a simpler approach [2], and predict the position of the 
detection in the last frame instead of predicting the position of the 
tracks in the current one. We can then set the state of the track to 
be equal to the state of the detection associated. All recent methods 
for 3D MOT assume that the complete bounding box of the object 
is detected, making it very complex to handle incomplete 
detections and achieve a good generalization when only the visible 
part of the object is detected. To improve the robustness of state-
of-the-art MOT, we propose a method to cope with incomplete 
detections.  

Finally, we discuss track management. Every MOT method needs 
some form of track management system to decide which tracks are 
considered as an output, which ones are inactive in the list, and 
which ones need to be removed from the list. A simple solution for 
that is to use count-based thresholds and output tracks that have a 
minimum number of successive detections, and delete tracks after 
a successive number of time steps without getting any detections 
associated [1]. A better alternative could be to use a score or 
confidence for each track. [2] shows that confidence-based 
methods outperform count-based methods when a proper score 
update function is used to combine the score of the detection as 
well as the track. 

Cooperative Perception: Works proposing cooperative 
perception systems can be classified in terms of the information 
shared (raw sensor data, feature maps, or detections), in terms of 
the source of information (vehicles, other actors, or infrastructure), 
in terms of  the environment for testing (simulation, proving 
grounds, or open road), in terms of real-time/offline processing, 
and depending on  the scenarios tested. There is a lack of 
cooperative perception works analysing their performance in real-
time real-world safety-critical scenarios with vulnerable road users 
such as pedestrians. Most works using real-world data focus on 
collected datasets and evaluate  only the performance of the 
perception system when the vehicle-to-everything (V2X) 
communications are available [10], [11], but do not analyse how 
these communications can help actuate critical ADAS functions 
such as an AEB in real-time. 

In this work we present a method to generate robust 3D detections 
from raw sensor data, including sensor-specific detection methods 
and a sensor-agnostic multi-object tracking module. This allows us 
to work with a large set of sensors and detection methods, without 
the need to synchronize them, and to generalize well to different 
real-world scenarios, thanks to the capability to handle incomplete 
detections and misclassifications. Moreover, our method can 
integrate V2X messages seamlessly. We test our method on three 
real-world challenging scenarios. A traffic jam chauffeur, a traffic 
monitoring application, and an AEB function being applied on 
safety-critical scenarios with Vulnerable Road Users (VRUs) such 
as pedestrians and cyclists. In these scenarios, we show the 
effectiveness of our sensor fusion solution. 

2. Sensor-agnostic Multi-Object Tracking 

Our key contribution is to present a versatile and configurable 
technique for multi-object tracking that can easily combine a wide 
variety of sensors and detection methods including RGB cameras, 
lidars, radars, and V2X messages either from other road users or 
from infrastructure. As the type of information we obtain with 
every sensor is different, our approach includes a perception 
module where all data are transformed to 3D detections. Finally, all 
3D detections are fused by means of a KF [9] and a track 
management logic module, increasing the robustness of the 
detections. Figure 1 shows a diagram of the process we follow to 
merge these different modalities and obtain robust 3D detections. 

Figure 1 Detection and tracking pipeline. 

To obtain 3D detections from visual information, we first use 
YOLO [12] trained on the COCO dataset [13] to obtain 2D 
bounding boxes, and then apply [14] for depth estimation. The 
resulting 3D detections have a larger positioning error in the 
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direction of the principal axis of the camera, and as the object gets 
further away this effect is increased. but this is handled by the MOT 
as it considers the covariance matrices for the detections.  

To process lidar data, we use a height-based filter to remove the 
ground so that different objects are not connected, and then use a 
clustering algorithm to obtain bounding boxes of the visible parts 
of all the objects of the scene. These detections do not have an 
associated class, but this will be obtained in the MOT module along 
with the reconstruction of the complete bounding box. 

In terms of V2X integration, the vehicle receives via V2X the 
positions of the other objects in the scene in global coordinates. To 
transform from global coordinates to the relative position in the ego 
vehicle frame of reference, we get the position  of the vehicle at the 
time from the localization module on the vehicle, based on a GNSS 
system with a Kalman Filter with a  constant velocity model. Once 
we have the two latitudes and longitudes at that time, we convert 
them to UTM coordinates and then calculate the relative position.  
The confidence 𝛼 is set to 1 and the covariance is set according to 
the error of the localization KF on the ego vehicle and the 
positioning error of the V2X message. Then we pass this 
information to the data fusion module that processes the 
information as it would process detections from a sensor. 

In the sensor fusion module, the input corresponds to a sequence of 
3D detections from different sensors, composed by a timestamp 
and a vector d = [rx, ry , rz , w, h, l, θ, c, α, σrx,rx , σrx,ry , σry,ry ]⊤, that 
includes the center of the object (rx, ry , rz), the width w, height h, 
and length l of the bounding box, the yaw rotation θ in the axis 
perpendicular to the road plane –pitch and roll angles can be 
ignored in this context–, the class of the object c, the corresponding 
confidence score α, and the 2D-location covariance values (σrx,rx , 
σrx,ry , σry,ry). For radar sensors, we also consider the velocity v = [vx, 
vy]⊤ and its covariance entries σv = [σvx,vx , σvx,vy , σvy,vy]⊤. Since all 
these detections are encoded into the same representation, the MOT 
module can process them in the same way without needing to take 
into account the modality of origin. 

We keep a track list of all the objects that have been detected and 
are being tracked in the scene, and this list is shared for all sensors. 
Every track in the list stores a KF [13] with a constant velocity 
model. At time tk, a given track stores the state sk = [rx, ry , vx, vy ]⊤ 
and its covariance Pk,i. Then, we can update this track list 
asynchronously every time that we receive a new set of detections 
from any sensor. When we receive a detection, we consider the time 
difference ∆t = tk − tk−1, between the time of detection and the last 
time of update for each track, then all the tracks are updated to the 
time of the detection following the KF prediction step, and 
associated to tracks by minimizing the global cost of the 
associations. We consider the Mahalanobis distance to define these 
costs, as it considers the covariance of the detections and tracks. 
Once a detection has been associated to a track, that detection is 
used to update the track that has been associated with by following 
the KF update step. If the detection is not associated, it can be used 
to create a new track. Then a track remover periodically checks the 
track list and removes tracks that have dropped the confidence 
below a certain threshold.  

 

Some terms are not kept in the state of the KF, and they are instead 
computed separately. This helps to generalize better to a larger set 
of sensors that cannot estimate these terms. For instance, we use 
the orientation of the velocity vector included in the state to 
calculate the yaw angle or heading, we can also choose to calculate 
it from the orientation of the bounding boxes when complete and 
accurate detections are available.  

We also infer the acceleration by filtering the local differences in 
velocity from the KF state. Given the velocity of the track vk at the 
current time step tk, and the acceleration a𝑘−1 and velocity vk-1, at 
the previous time step tk-1, the instant acceleration âk is calculated 
as âk = max(min((vk − vk-1)/(tk - tk-1), b·12),-b·12), where max and 
min indicate the enterwise max/min operators respectively, 12 

represents a 2-dimensional vector of ones, and b is a reasonable 
maximum for acceleration which for driving scenarios can be set 
to 6m/s2. Then we filter the acceleration considering previous 
accelerations as  ak = γ ·ak-1 + (1- 𝛾)âk for γ ∈ [0,1]. We use γ = 0.8. 

To update the confidence score, we use the multiplication score 
update function from [2]. Next, we introduce our approach to 
calculate the width, height, and length of the bounding boxes, and 
the class of the track in a way that is robust to errors in these values 
from the object detectors. 

2.1. Handling misclassifications 

Learning-based methods tend to have a lower performance when 
they are applied to sensors and scenarios different from the dataset 
they have been trained with [15]. We have seen that 
misclassification errors between similar classes (e.g., trucks and 
cars) are very common, and although the method might classify the 
object correctly in most of the frames, it sometimes misclassifies it. 
To handle this in the MOT module, we first associate tracks and 
detections of the same class, and then we associate tracks and 
detections from similar classes. Which classes are similar can be 
configured based on a confusion matrix when available or 
empirically. In this way we can still associate detections with tracks 
when a misclassification occurs. We keep a vector with the number 
of times a detection from each class has been associated with the 
track and output the class with more associations.  

2.2. Handling incomplete detections 

Some sensors, like some radars, can only detect a part of the object 
or even only one point of it. To be able to associate these partial 
detections with complete bounding box tracks, we select a 
minimum bounding box size for each class, and considering that 
the closest part of the complete bounding box is detected, we resize 
and reorient the box if necessary, in a way that the closest point 
remains the same. First, we calculate the intersection of the 
bounding box with the segment from the center of the bounding 
box to the origin of the sensor, this is the closest point of the 
bounding box. If the detection is a point, we can skip this step. Then 
we set the width, length, and height to the maximum between the 
detected values and the minimum bounding box for the class. When 
the orientation is unreliable or not available, we can set it to the 
orientation of the candidate track we are considering for association. 
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3. Experiments 

3.1. MOT for a traffic jam chauffeur 

We use our sensor fusion approach as a perception module for a 
challenging Traffic Jam Chauffeur scenario. The vehicle is 
equipped with a front radar (Continental ARS 408-21)  and a front 
camera with integrated detections (Mobileye 630). The detections 
from the camera have a much higher frontal error than lateral one, 
and they will be fused with those of the radar. Our vehicle and the 
corresponding target one in front are equipped with high-precision 
dGNSS and they communicate with each other so that we can get 
their relative position at any time with an accuracy of 1cm. These 
data are used as ground truth. The camera’s main contribution is to 
create and classify the tracks, given that the radar produces too 
many false positives to be used for track initialization. We can see 
that the performance of the radar is much better than the camera, 
and our sensor fusion is able to outperform the radar by leveraging 
radar and camera detections over time. Figure 2 shows the 
evolution of the error in longitudinal position and velocity of each 
sensor over time along with the reference position and velocity, and 
the estimations of the sensor fusion for a scenario where the ego 
vehicle is driving at 60km/h and approaching a vehicle driving at 
20km/h in the same lane. The ego vehicle reacts and adjusts its 
speed accordingly.  

 

Figure 2 Traffic Jam Chauffer results: Longitudinal position 
and velocity for each sensor, the sensor fusion, and the 
ground truth, along with errors. 

3.2. MOT for traffic monitoring   
To show how our system can be used to monitor the traffic on 
highways, we propose a real experiment where we equip two 
vehicles with cameras, radars, and lidars, in order to calculate the 
trajectories of vehicles around. We then use our perception system 
to determine the position, size, class, velocity, and acceleration of 
every vehicle over time. Unfortunately, for this experiment we do 
not have a ground truth for quantitative evaluation and, therefore, 
we provide qualitative results. Our results are displayed in Figs. 3-
5. Figure 3 shows the whole scenario, while in Fig. 4 we zoom in 
to the detections in front for an interesting time instance ignoring 
the radar and low-resolution frontal lidar. As it can be seen in Fig. 
4 the lidar clustering algorithm is capable of detecting the truck in 
front but partially. The camera is also detecting the truck, using 
YOLOv4 [12] and [14], but misclassifying the truck as a bus. These 
errors are handled by the MOT using our method and the output is 
the expected bounding boxes. In Fig. 3 we can see that the camera 
detections have a larger covariance as the distance to the object 
increases, but the detections from lidars and radar have a fixed 

covariance. The covariance of the tracks is lower than those of the 
detections whether it gets enough detections associated constantly 
and increases rapidly when no detections are available. In Fig. 5 we 
can see the results of our method over time, we plot the evolution 
of the relative frontal position of multiple objects around the ego 
vehicle along with the detections for a given time. 

 

 

Figure 3 Traffic Monitoring on highways. 360º lidar in red, 
lidar detections in grey, frontal lidar in white, camera 
detections color-coded as filled boxes, radar in cyan, 
and sensor fusion as box edges color-coded.  

 

 

Figure 4 Example of handling of misclassifications. 

 

 

Figure 5 Relative longitudinal trajectories (right) along 
with sensor data and detections for an instant (left). 

 

3.3. MOT with V2X messages 

Finally, we use our system to evaluate whether the addition of V2X 
communications can improve the safety of pedestrians and cyclist 
in challenging urban scenarios with occlusions. We consider 
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different scenarios, similar to the one in Fig. 7, where the vehicle 
is driving at constant speed and a pedestrian comes out of an 
occlusion perpendicularly to the vehicle at a speed that would 
generate a collision. The ego vehicle has an AEB function that will 
brake the vehicle to a full stop if the collision can be predicted 
successfully. Clearance and crashing statistics are shown in Fig. 8 
for scenarios with different speeds of the ego vehicle Vs 
(25,30,35,40,45km/h for tests 1-5 respectively), and the pedestrian 
at VT = 8km/h. We can see that the performance improves with V2X 
messages. 

 

Figure 7 V2X Scenario 1 with a pedestrian. 

 

Figure 8 Clearance and total crashes in V2X Scenario 1. 

4. Conclusion 

We presented a versatile and configurable technique for MOT that 
can combine easily a wide variety of sensors and be robustly used 
in different scenarios. We discussed errors in classification and 
bounding box size of current object detectors and proposed a 
method to handle these errors in the MOT module. We argued the 
importance of acceleration information to deploy MOT systems in 
real applications, and we tested our approach integrating it with a 
traffic jam chauffeur function. We showcased the general nature of 
our system by mounting cameras, lidars, and radars on two vehicles 
to monitor the traffic. And we used our system to show that V2X 
messages can improve the safety of pedestrians in safety-critical 

scenarios. Since the MOT module is sensor agnostic, we believe 
that other works can benefit from our contributions.  
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