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ABSTRACT

The purpose of this work is to determine which is the best
general method of feature localization for image matching
in endoscopy images. To accomplish this, we conduct an
exhaustive analysis of ten well-known feature detectors, de-
scriptors, and learned algorithms, such as SIFT, FAST, SURF,
ORB, BRIEF, BRISK, FREAK, HARRIS, DFM, and LoFTR.
The analysis is performed across six challenging medical
datasets, including cardiorespiratory endoscopy, human la-
paroscopy, bronchoscopy, gastroscopy, rabbit laparoscopy,
and pig laparoscopy. This framework is highly diverse, con-
taining a variety of textures, camera motions, tissue deforma-
tions, and visual barriers. To determine which technique is
the best on average, we perform a qualitative analysis of the
inliers and a quantitative analysis using the number of key-
points, number of matches, number of inliers, computational
cost, sparsity of the inliers, recall and 1-precision. To com-
plete the study, we considered the sequential and template
modes, as they are highly used in computer vision. Further-
more, we examine how those features may be exploited in the
reconstruction of 3D shapes from visual cues.

Index Terms— Endoscopic Images, Feature Extraction
and Matching, Data-driven Features.

1. INTRODUCTION

Endoscopies are Minimally Invasive Surgeries (MIS) used for
diagnosing and treating diseases, conducting direct interven-
tions, and performing surveillance [1] [2]. Their advantages
include reducing recovery time, postoperative pain, hospital
stays and possible complications [3]. Nevertheless, tunnel vi-
sion of the endoscopic images usually increases the duration
and risk of the operation in order to obtain information on the
scene, e.g., 3D data [4, 5] or the real motion of the endoscope
to revisit a particular region [6]. Recently, computer vision
techniques have begun to be used in MIS for tasks such as im-
age classification [7], shape clustering [8], object detection,
and 3D reconstruction [9], which can help to further reduce
the procedures’ time and possible diagnostic and technical er-
rors caused by humans. All of the aforementioned computer

This work has been supported by the project MoHuCo PID2020-
120049RB-I00 funded by MCIN/AEI/10.13039/501100011033.

# frames Resolution T # frames Resolution T # frames Resolution T

Cardiopulmonary Endoscopy Human Laparoscopy Bronchoscopy
79 360×288 9 1,589 1,280×720 449 78 1,280×1,024 1

Gastroscopy Rabbit Laparoscopy Pig Laparoscopy
96 413×504 63 462 220×220 280 1,275 1,300×1,800 81

Table 1. Dataset information. For all sequences, the table
reports the number of frames and image resolution. In addi-
tion, it is included T to denote the number of frame chosen as
template for every case.

vision tasks employ image matching, i.e., finding correspon-
dences between images. Consequently, finding accurate fea-
tures of the images and the right feature matching between
sequential endoscopy images in real-time is essential [5, 6].

Endoscopic images are highly challenging since there
are many types of endoscopies, which implies having images
with diverse textures and challenging visual scenarios, such as
textureless areas, occlusions, or elastic deformations. These
characteristics affect matching accuracy and lead to areas
without detected features and mismatchings [5]. Therefore,
this work aims to study and find the most appropriate average
feature localization technique (including both handcrafted
and learned approaches) for non-specific medical settings.

2. METHODOLOGY

In this paper we use up to six different monocular en-
doscopy sequences (see Table 1), including cardiopulmonary
endoscopy (heart) [10], laparoscopy (human uterus) [11],
bronchoscopy, gastroscopy, laparoscopy (rabbit) [6], and la-
paroscopy (pig liver). Each of them contains different visual
obstacles such as blood, foam, fluids and tools. Moreover,
some elastic deformations due to the motion of the organs or
the pressure made by the tools can be seen in the images. The
data also include textureless areas, as well as specularities
and changes of intensity caused by the lighting. Moreover,
the camera performs large motions, by means of rotations and
translations, producing large changes in the point of view.

2.1. Algorithms

To find image features there are many well-known methods,
which can be classified into handcrafted and learned [12].

Traditional feature detectors and descriptors follow the



next scheme: detection of interest points, description, and
matching the descriptors. The interest points must be well
localized in the image and should be likely to match points in
other images [13]. Matching success mainly depends on the
properties of the keypoints and their descriptors. To choose
appropriate detector and descriptor algorithms the nature and
the expected deformations of the image should be considered,
since some algorithms are more robust than others to specific
variations such as brightness or scale [14].

Regarding the well-known handcrafted detectors and
descriptors, some of the most used in the last decades are
SIFT [15], FAST [16], BRIEF [17], ORB [18], SURF [19],
BRISK [20], HARRIS [21] and FREAK [22, 23]. For learned
feature matching algorithms, we will focus on LoFTR [24],
DFM [25] and COTR [26].

HARRIS [21] is a computer vision algorithm designed
to detect corners –discrete, meaningful, and reliable feature
points–. It has been proved that it performs consistently on
natural images. SIFT [15] algorithm efficiently computes
local features invariant rotation, and is partially invariant to
3D camera viewpoint, illumination, some affine distortions,
and noise addition. Unlike HARRIS [21], SIFT [15] is also
scale invariant. SIFT [15] keypoints are remarkably distinc-
tive, which allows finding matches with high probability.
Using the scale space to detect local features permits match-
ing small and highly occluded objects for small keypoints. In
addition, it permits matching blurred and noisy objects for
large keypoints. Even though HARRIS [21] and SIFT [15]
obtain high-quality features, they are computationally de-
manding for real-time applications. Therefore, FAST [16]
algorithm was developed to cover the need for high-speed
feature detection. SURF [19] is a rotation and scale invariant,
robust, and distinctive feature detector and descriptor. Over-
all, SURF [19] performs similarly to SIFT [15], while being
around three times faster. Indeed, it successfully handles
blurred and rotated images but does not deal well with illu-
mination and viewpoint changes. BRIEF [17], ORB [18] and
BRISK [20] compute binary descriptors and they were pro-
posed as computationally efficient alternatives to SIFT [15]
and SURF [19]. FREAK [22] descriptor is based on the
retina, i.e., the human visual system. The aim was to make
a faster, more compact, and more robust to scale, rotation,
and noise algorithm. It has been proven to be competitive for
embedded applications, having a low memory load, as well as
being faster and more robust than state-of-the-art descriptors
such as SIFT [15], SURF [19], and BRISK [20].

COTR [26] and LoFTR [24] are deep-learning based algo-
rithms that use transformers on attention layer in order to find
correspondences. One of the main benefits of LoFTR [24]
is that it produces dense matches even in indistinctive re-
gions such as low-texture areas, motion blur, or repetitive pat-
terns. DFM [25] is a deep-learning-based image-matching
algorithm that uses features extracted by an off-the-shelf pre-
trained deep neural network [27] without additional training.

SIFT FAST BRIEF ORB SURF BRISK HARRIS FREAK
Detector SIFT FAST STAR ORB SURF BRISK HARRIS STAR

Descriptor SIFT BRISK BRIEF ORB SURF BRISK SIFT FREAK

Table 2. Detectors and descriptors considered in this
study. When both are not the same it is displayed in gray.

It was motivated by the mental rotation paradigm. All three
algorithms have shown state-of-the-art results.

2.2. Implementation

First of all, we tune the parameters for all methods, and
then use the same values for all our experiments. For the
eight Python-code handcrafted algorithms, we use the open
source computer vision (OpenCV) library. Since BRIEF [17]
and FREAK [22] need another algorithm as a detector and
FAST [16] and HARRIS [21] need another algorithm as a
descriptor, we use the configuration in Table 2. The machine
we use to execute the scripts has a Debian GNU/Linux 11
operating system with a processor Intel Core i5-8250U CPU
at 1.60GHz×8. Furthermore, learned algorithms are also
executed in Google Collab to analyze the computational time
when accelerating the methods using GPU.

In our experiments, we execute the code for two different
image matching scenarios: 1) sequential mode, where consec-
utive images are considered and, 2) template mode, where all
images are matched with respect to the same image. For the
template case, we select a particular reference frame T (see
Table 1, third column) for each dataset taking into account
visual characteristics such as the sharpness of the image, oc-
clusions, and motion of the camera. We consider that strategy
to be coherent, as it is standard in optical flow algorithms.

Regarding learned algorithms, we first compare COTR [26]
and LoFTR [24] by using the Heart dataset in sequential
mode. Since COTR [26] is 1,012 times more computation-
ally expensive than LoFTR [24], while producing 10 times
fewer inliers, for the rest of the datasets we just analyze
LoFTR [24]. Moreover, learned algorithms apparently tend
to be sensitive to input image resolution since the architecture
is optimized for the training resolution. Consequently, we
execute DFM [25] and LoFTR [24] for the Uterus dataset
in two different scenarios: with the original video resolu-
tion and with the corresponding training one. To compare
them, we crop the frames to patches, maintaining the aspect-
ratio of the corresponding training resolution. Analyzing
the number of inliers directly would not be adequate since
the frames with higher resolution would likely have more
inliers. Therefore, to analyze the performance of the methods
we should consider the concentration of inliers computed by
σ = average number of inliers

number of pixels in image . Table 3 shows that the metric is
higher for the training resolution than for the original one.
Therefore, the most convenient option is to execute them
with the image resolution used in training. In any case, as we
seek the best general algorithm, no assumption can be made
since each video could be acquired by a different system,



DFM [25] LoFTR [24]
Video resolution 1.01 ·10−2 1.06 ·10−2

Training resolution 3.77 ·10−2 1.20 ·10−2

Table 3. Resolution Comparison. The table reports σ to
denote the number of inliers per pixel for both input video
and training resolutions.

under specific conditions, etc. and, therefore, we will use
the original video resolution with no variation. Otherwise,
we would have to deal with different image patches for each
method and the comparison would be unfair.

2.3. Quantitative Metrics

The metrics we use for the quantitative analysis of algorithm
performance are the number of keypoints, number of matches,
number of inliers, the computational time in seconds, the in-
lier sparsity, the recall and 1-precision. The inliers are ob-
tained by applying RANSAC [28] to the handcrafted algo-
rithms and MAGSAC [29] to LoFTR [24]. In the case of
DFM [25], the algorithm already uses hierarchical refinement,
so we do not apply any further steps to filter the matches. For
the inlier sparsity metric, if we divide an image into equal
size areas, ideally there should be the same number of in-
liers in each area, at least, from a theoretical point of view.
However, that observation could fail especially in endoscopy
images, where the content in the image could not be well dis-
tributed. Therefore, we divide the frames into 16 areas of the
same size. The metric is computed as βi = αi−λ

θ , where
λ = θ

16 , αi represents the number of inliers in the i-th area,
λ indicates the ideal number of inliers for each area, and θ
is the total number of inliers in the frame. The metric cal-
culates normalized values of the average sparsity across the
whole dataset. The metric’s result is a value between -1 and
1 for each of the 16 areas. The ideal result would be to obtain
zero for each of them. A negative value indicates that there
are fewer inliers than expected in the area, while a positive
one indicates a larger concentration of inliers.

3. EXPERIMENTAL RESULTS

In this section, we provide our experimental results to evalu-
ate all the feature methods in our endoscopic videos. We also
test the use of some 2D points to infer 3D information.

3.1. Feature evaluation

Table 4 shows the average number of keypoints and matches
that the methods produce for each dataset. While for some
methods such as ORB [18], SURF [19], and BRISK [20] the
difference between the number of keypoints and the num-
ber of matches is not very significant, for other methods the
amount might reduce up to a 40%.

Next, we evaluate the number of inliers together with the
computational cost for both sequential and template modes in

Cardiopulmonary Human Laparoscopy Bronchoscopy Gastroscopy Rabbit Laparoscopy Pig Laparoscopy
# kp # Matches # kp # Matches # kp # Matches # kp # Matches # kp # Matches # kp # Matches

SIFT [15] 969 624 3,626 2,292 970 534 458 262 380 242 18,073 10,695
FAST [16] 3,044 1,776 19,449 10,251 2,746 1,372 1,418 747 2,201 1,342 37,381 20,283
BRIEF [17] 320 240 2,848 2,036 1,656 901 315 197 111 81 10,228 6,796
ORB [18] 412 407 491 491 498 486 437 434 405 404 500 500
SURF [19] 736 726 3,870 3,868 2,708 2,633 829 819 523 522 9,368 9,363
BRISK [20] 782 773 1,657 1,657 473 461 593 592 330 329 7,751 7,744
HARRIS [21] 3,851 2,335 5,801 4,110 1,643 726 3,182 1,460 1,516 1,322 8,320 5,514
FREAK [22] 302 204 2,822 1,701 1,665 854 308 174 111 75 10,213 5,629
DFM [25] 2,033 11,095 100 302 781 3,996
LoFTR [24] 1,183 11,271 7,668 2,272 566 11,199

Table 4. Quantitative comparison in terms of keypoints
and matches. The table reports the average number of key-
points and matches across the whole sequence.

Cardiopulmonary Human Laparoscopy Bronchoscopy Gastroscopy Rabbit Laparoscopy Pig Laparoscopy
# inliers t[s] t[s] GPU # inliers t[s] t[s] GPU # inliers t[s] t[s] GPU # inliers t[s] t[s] GPU # inliers t[s] t[s] GPU # inliers t[s] t[s] GPU

Sequential mode
SIFT [15] 321 0.46 1,254 4.31 64 1.91 60 0.67 131 0.29 2,944 62.02
FAST [16] 708 1.08 2,942 46.38 9 0.93 59 0.31 616 0.61 429 182.81
BRIEF [17] 150 0.07 1,253 0.58 83 0.30 61 0.08 52 0.05 3,250 6.75
ORB [18] 141 0.05 178 0.09 64 0.12 60 0.06 149 0.05 150 0.13
SURF [19] 313 0.53 1,687 5.25 102 4.91 122 1.08 226 0.36 1,900 16.53
BRISK [20] 299 0.13 700 0.47 71 0.18 66 0.11 117 0.06 1,730 8.76
HARRIS [21] 105 5.45 187 11.46 36 2.45 67 5.15 8 1.75 124 19.92
FREAK [22] 121 0.08 726 1.09 11 0.47 32 0.09 48 0.06 624 12.41
DFM [25] 2,033 1.91 0.1 11,095 16.55 0.52 100 22.85 0.67 302 4.93 0.17 781 1.81 0.08 3,996 36.80 0.81
LoFTR [24] 1,008 2.10 0.06 9,842 28.66 0.65 3,498 27.85 0.67 1,423 7.38 0.14 494 2.14 0.06 11,199 55.04 1.00

Template mode
SIFT [15] 76 0.46 98 4.58 44 0.09 15 0.71 54 0.31 77 43.53
FAST [16] 111 1.08 34 40.39 7 0.05 11 0.31 157 0.67 11 160.64
BRIEF [17] 37 0.07 99 0.59 56 0.09 16 0.09 19 0.05 102 5.88
ORB [18] 26 0.05 17 0.09 42 0.30 23 0.06 35 0.05 21 0.15
SURF [19] 60 0.53 81 5.49 46 0.06 30 1.25 71 0.34 47 14.19
BRISK [20] 67 0.13 35 0.56 58 0.10 21 0.11 45 0.06 71 5.82
HARRIS [21] 34 5.45 40 14.55 31 0.15 23 6.42 1 1.69 2 19.58
FREAK [22] 26 0.08 29 1.06 6 0.08 8 0.10 16 0.06 13 11.20
DFM [25] 312 1.72 0.1 465 15.27 0.51 35 22.80 0.12 53 4.92 0.17 112 1.75 0.07 153 36.53 0.82
LoFTR [24] 360 1.83 0.06 1,245 22.93 0.68 2,261 26.72 0.07 410 5.78 0.16 204 2.04 0.06 340 54.47 1.06

Table 5. Quantitative comparison in terms of inliers and
computational cost. The same information is provided for
sequential and template modes. The average number of inliers
and computational time (in seconds) are computed across the
whole sequence. The computational cost for the GPU accel-
erated execution of learned methods is also provided.

Table 5. For the sequential case, the method that obtains the
most sparse results is LoFTR [24] with a maximum devia-
tion of 0.06, followed by SURF [19] (0.17) and DFM [25]
(0.19). In contrast, the least sparse ones would be HAR-
RIS [21] and BRISK [20], reaching up to a maximum de-
viation of 0.47 and 0.46, respectively. Moreover, LoFTR [24]
is one of the algorithms with a higher number of inliers. The
difference in the number of inliers compared to the rest of the
algorithms is especially noticeable for the bronchoscopy and
gastroscopy sequences, two very challenging scenarios. In-
deed, LoFTR [24] produces on average 3.5k and 995 inliers,
respectively, while the rest of the algorithms obtain at most
102 and 58 inliers. In the pig laparoscopy, the computational
time of most algorithms is extremely high for real-time ap-
plications having average values between 6.75 and 182.81 for
BRIEF [17] and FAST [16], respectively. The only computa-
tionally efficient option for that dataset is ORB [18]. Never-
theless, when a GPU to accelerate learned algorithms can be
used, both DFM [25] and LoFTR [24] would be good alter-
natives for real-time applications. Furthermore, LoFTR [24]
is by far the algorithm with more inliers. The numbers of in-
liers are much smaller for the template mode, which is mainly
caused by the camera motion –including both translations and
rotations–, and the elastic deformations of the organs. Never-
theless, LoFTR [24] is still the most sparse algorithm, with
more inliers and the computationally cheapest when using
GPU acceleration.

Table 6 shows the recall and 1-precision metrics com-
puted for both sequential and template modes. The algorithms
with the highest recall for most datasets are BRIEF [17] and



Cardiopulmonary Human Laparoscopy Bronchoscopy Gastroscopy Rabbit Laparoscopy Pig Laparoscopy
recall 1-precision recall 1-precision recall 1-precision recall 1-precision recall 1-precision recall 1-precision

Sequential mode
SIFT [15] 0.33 0.49 0.35 0.46 0.07 0.88 0.12 0.79 0.35 0.46 0.16 0.73
FAST [16] 0.24 0.60 0.16 0.72 0 0.99 0.04 0.92 0.28 0.54 0.01 0.98
BRIEF [17] 0.47 0.39 0.44 0.39 0.05 0.91 0.18 0.72 0.47 0.35 0.31 0.53
ORB [18] 0.34 0.65 0.36 0.64 0.13 0.87 0.14 0.86 0.37 0.63 0.30 0.70
SURF [19] 0.43 0.57 0.44 0.57 0.04 0.96 0.14 0.86 0.43 0.57 0.20 0.80
BRISK [20] 0.38 0.62 0.43 0.57 0.15 0.85 0.12 0.88 0.35 0.65 0.22 0.78
HARRIS [21] 0.03 0.96 0.03 0.95 0.02 0.95 0.02 0.95 0.01 0.99 0.02 0.98
FREAK [22] 0.40 0.42 0.26 0.58 0.01 0.99 0.10 0.83 0.43 0.37 0.06 0.89
DFM [25] 0 0 0 0 0 0
LoFTR [24] 0.15 0.13 0.55 0.38 0.13 0.28

Template mode
SIFT [15] 0.09 0.86 0.03 0.95 0.05 0.92 0.04 0.94 0.14 0.77 0.01 0.99
FAST [16] 0.05 0.92 0 1 0 1 0.02 0.97 0.07 0.88 0 1
BRIEF [17] 0.13 0.81 0.03 0.94 0.04 0.95 0.06 0.92 0.17 0.72 0.01 0.98
ORB [18] 0.08 0.92 0.04 0.96 0.08 0.91 0.06 0.94 0.09 0.91 0.04 0.96
SURF [19] 0.09 0.91 0.02 0.98 0.02 0.99 0.05 0.96 0.13 0.87 0.01 0.99
BRISK [20] 0.10 0.89 0.02 0.98 0.13 0.87 0.05 0.95 0.13 0.90 0.02 0.99
HARRIS [21] 0.01 0.97 0.01 0.97 0.02 0.95 0.01 0.97 0 1 0 1
FREAK [22] 0.10 0.85 0.01 0.98 0 0.99 0.04 0.95 0.14 0.78 0 1
DFM [25] 0 0 0 0 0 0
LoFTR [24] 0.58 0.76 0.71 0.72 0.45 0.85

Table 6. Quantitative comparison in terms of recall and
1-precision. See caption in Table 5. The recall cannot be
computed for DFM [25] and LoFTR [24] since these learned
methods do not calculate the keypoints for each of the images.
The 1-precision metric is always 0 for DFM [25] since due
to its refinement layer we consider that all of the computed
matches are indeed inliers.

SURF [19]. In addition, for the bronchoscopy and gas-
troscopy datasets, the recall values are very low –with a
maximum of 0.15 and 0.18, respectively. This demonstrates
that matching features is an extremely challenging task for
this kind of images. According to 1-precision, the best al-
gorithms are DFM [25] and LoFTR [24], since they obtain a
smaller proportion of false matches.

To sum up, we can conclude that even though SIFT [15],
SURF [19], BRIEF [17] and DFM [25] could be viable op-
tions for endoscopy images with texture, the most promis-
ing algorithm for any kind of endoscopy image would be
LoFTR [24]. This method obtains more inliers all over the
images, including textureless areas and additionally, it is one
of the most computationally efficient (using a GPU). More-
over, it is one of the algorithms with less false matches. Al-
though our results show a great performance of this method
in this type of sequences not considered in training, as future
work a training with endoscopic data could be considered in
order to evaluate the final performance and compare it with
the current general purpose model.

3.2. Application: 3D shape reconstruction

Feature matching can be used in many computer vision appli-
cations, such as the 3D shape reconstruction along with the
camera trajectory from 2D point tracks. This is a highly chal-
lenging task for endoscopic images as the image views that
are captured by the monocular endoscope are far from ideal
for shape reconstruction (type of motion, some constraints in
the shape deformation, strong occlusions, etc.). In this work,
we apply the matches that we have obtained in this study
to solve the problem by means of COLMAP [30], an incre-
mental structure-from-motion algorithm. COLMAP [30] was
originally implemented for SIFT [15] features, but it offers
the option to use matches obtained with other approaches.
The input images should be overlapping images taken from

Fig. 1. Uterus 3D reconstruction. Two novel views (XY
& XZ) of the 3D reconstruction obtained by SIFT [15] and
LoFTR [24], respectively.

different viewpoints. The dataset that better fulfills these con-
straints is the uterus video since it has translation around the
organ (note that not all datasets we use in this paper can be
used for 3D estimation, due to the lack of camera motion).
Therefore, we apply COLMAP [30] for a subset of the dataset
by applying the matches obtained with each of the algorithms.
According to the results that we have obtained, SIFT [15] and
LoFTR [24] have the best 3D reconstructions even though
some inconsistencies are detected. For both algorithms, we
have some outlier points. Then, for SIFT [15] we have that
there are some gaps in the reconstruction since the inliers
were more concentrated in some areas (see first and second
columns in Fig. 1). For LoFTR [24] the reconstruction is con-
siderably denser as there was a large number of inliers in all
the areas of the images (see third and fourth columns in the
same figure). However, there is a part of the reconstruction
in which the depth is not well recovered. This is probably
because due to the translation, there are fewer images that
capture that area and therefore there might not be enough in-
formation –motion parallax– to better determine the depth.
Moreover, that part of the images is much darker than the rest
of the areas, making matching more complex and inaccurate.
Regarding the camera trajectory, SURF [19], SIFT [15] and
LoFTR [24] obtain the most accurate camera trajectory –at
least from a qualitative point of view. Nevertheless, it is hard
to determine to which extent is correct since a 3D ground truth
is not available for quantitative evaluation.

4. CONCLUSION

In this work we have proposed an exhaustive analysis where
both handcrafted and learned algorithms are considered in en-
doscopic images with different particularities. In general, our
sequences include a wide variety of complex points to handle
in this context, such as changes of illumination, deformations,
motion blur, noisy observations, occlusions due to bubbles or
fluids, and so on. The only method that was eligible for all of
the videos –for non-specific endoscopic images and assuming
no specific training data– was LoFTR [24]. It obtained the
most sparse inliers and it was able to find good inliers in ar-
eas that none of the other methods could, such as textureless
or blurred areas. Moreover, this method was also exploited
properly to infer 3D information from endoscopic images.
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