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Abstract— In this paper, we consider the framework of
population games and evolutionary dynamics. Based on such
a framework, we formulate a novel approach for distributed
Nash equilibrium seeking under partial-decision information
for a class of evolutionary dynamics and a family of contrac-
tive population games. As the main contribution, we provide
sufficient conditions to guarantee the asymptotic stability of the
set of Nash equilibria of the underlying game. To the best of
our knowledge, this is the first paper to address the problem
of distributed Nash equilibrium seeking under partial-decision
information in the aforementioned context of population games
and evolutionary dynamics.

I. INTRODUCTION

Consider a set of N ∈ Z≥2 populations, each comprised
of a large and constant number of strategic decision-making
agents. Throughout, the set of populations is indexed by P =
{1, 2, . . . , N}, the set of strategies available to the agents of
population k ∈ P is indexed by Sk = {1, 2, . . . , nk}, with
nk ∈ Z≥2, and the totality of agents of each population
k ∈ P is modeled as a continuum of mass mk ∈ R>0.
At any time, the mass of agents choosing strategy i ∈ Sk
at population k ∈ P is given by xki ∈ R≥0. Therefore,
the vectors xk = col

(
xk1 , x

k
2 , . . . , x

k
nk

)
∈ ∆k and x =

col
(
x1,x2, . . . ,xN

)
∈ ∆ provide the strategic distribution

of population k ∈ P and of the entire society, respectively.
Here, col (·) denotes the column vector stack operation,
n =

∑
k∈P n

k, ∆k =
{

xk ∈ Rnk

≥0 :
∑

i∈Sk xki = mk
}

, and
∆ =

{
x ∈ Rn

≥0 : xk ∈ ∆k,∀k ∈ P
}

. Namely, ∆k is the set
of all possible strategic distributions of population k ∈ P ,
while ∆ is the set of all possible strategic distributions of
the entire society.

Under the considered framework, the strategic distribution
of each population evolves over time according to a stochas-
tic decision-making process [1]. However, since the number
of agents within each population is large, the temporal
evolution of the strategic distribution of the society can be
well approximated (see [1, Chapter 10] or [2]) by a so-called
evolutionary dynamics model (EDM), as defined next.
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Definition 1: The EDM that describes the temporal evo-
lution of the strategic distribution x(t) is given by

ρkij(t) =
[
pkj (t)− pki (t)

]
+

(1a)

ẋki (t) =
∑
j∈Sk

xkj (t)ρkji(t)− xki (t)ρkij(t), (1b)

for all i, j ∈ Sk and all k ∈ P , with x(0) ∈ ∆. Here,
t ∈ R≥0 is the continuous-time index, x(t) is the value of
x at time t, pki (t) ∈ R is the payoff perceived by the agents
of population k choosing the strategy i at time t, and [·]+ ,
max(·, 0).

Based on Definition 1, the EDM can be thought as a
continuous-time dynamical system whose input is the payoff
vector p(t) = col

(
p1(t),p2(t), . . . ,pN (t)

)
∈ Rn, where

pk(t) = col
(
pk1(t), pk2(t), . . . , pknk(t)

)
∈ Rnk

, for all k ∈ P .
In general, the payoff vector p(t) is generated by a causal
map of the society’s strategic distribution x(t) [2].

Motivation: The framework of population games is suit-
able to model several multi-agent decision-making scenarios.
Some examples include resource allocation [3], demand
response [4], and congestion games [5], among others.
However, one limitation of the available theory on population
games is that the payoff vector p(t) is often assumed to be
provided by an oracle-like entity with complete information
about the society’s strategic distribution x(t). Clearly, such
an assumption imposes practical difficulties when the multi-
ple populations are spatially distributed over some geograph-
ical region (as could be the case in the aforementioned exam-
ples), and complete information on the strategic distribution
of the society might not be readily available at a single place,
or complete information broadcasting might not be feasible.
To cope with such difficulties, in this paper we consider that
each population k ∈ P has an associated payoff provider,
which provides the vector pk(t) to the agents of population
k, and has direct access only to the strategic distribution of
population k. Namely, each payoff provider has only partial-
decision information regarding the strategic distribution of
the entire society. Yet, the payoff providers communicate
through a possibly non-complete time-invariant network in
order to estimate the relevant non-local information. As
such, the considered framework generalizes the conventional
oracle-based approach, and grants more flexibility to the
design and application scope of population games.

Problem statement: Throughout, we view each popula-
tion k ∈ P as a (macro) player engaged in a game
with the other populations. More precisely, we consider



the scenario where each population k ∈ P seeks to reach
a strategic distribution xk ∈ arg maxxk∈∆k ψk

(
xk,x−k

)
,

where x−k = col
(
x1, . . . ,xk−1,xk+1, . . . ,xN

)
denotes the

strategic distribution of all populations other than k, and
ψk : Rnk

≥0 × Rn−nk

≥0 → R is the local utility function of
population k. Thus, the considered population game can be
defined in normal form as G =

(
P, {∆k}k∈P , {ψk(·)}k∈P

)
.

The key issue to keep in mind, however, is that the actual
decision-making agents involved in the game G are not
the populations per se, but the agents that comprise each
population.

Throughout, we impose the following assumption on the
utility functions of the game G.

Standing Assumption 1: For all k ∈ P , it holds that
i) ψk

(
xk,x−k

)
is concave and twice continuously dif-

ferentiable in xk.
ii) ∇xkψk

(
xk,x−k

)
= gk

(
xk
)
− Ck>Cx, where

gk : Rnk

≥0 → Rnk

is contractive in the sense
that

(
xk − yk

)> (
gk
(
xk
)
− gk

(
yk
))
≤ 0, for all

xk,yk ∈ Rnk

≥0, and the matrix C ∈ Rd×n is of the
form C =

[
C1,C2, . . . ,CN

]
, with Ck ∈ Rd×nk

and
d ∈ Z≥1. Moreover, both gk(·) and Ck are known by
the payoff provider of population k.

It is worth to highlight that population games satisfying
Standing Assumption 1 arise in various scenarios. For the
sake of illustration, here we provide two examples.

Example 1 (Games with coupled concave quadratic po-
tentials): In these games, the utility functions are of the
form ψk

(
xk,x−k

)
= ψ̄k

(
xk
)
− (1/2)x>Qx, where the

map ψ̄k : Rnk

≥0 → R is concave and twice continuously
differentiable, and Q ∈ Rn×n is symmetric and positive
semi-definite, for all k ∈ P (observe that every concave
quadratic optimization problem subject to x ∈ ∆ can be
seen as a game of this form). For these games, one can
set C =

√
ΛP>, where Λ and P satisfy the orthonormal

eigendecomposition Q = PΛP>, so that Q = C>C. Then,
setting Ck as the k-th block of C (c.f., Standing Assumption
1-ii)), it follows that ∇xkψk

(
x−k,x

)
= gk

(
xk
)
−Ck>Cx,

with gk
(
xk
)

= ∇xk ψ̄k
(
xk
)
, for all k ∈ P .

Example 2 (Allocation games under affine congestion
costs): In these games, there is a total of d possible locations
and the agents of each population k ∈ P seek to distribute
themselves over a subset of nk ≤ d locations. Here, one
can set Ck to define a bipartite graph between population
k and the d locations. For instance, if there is a total of
d = 3 locations and the agents of population k are allowed to
choose only locations 1 and 3, then Ck = Dk [e1, e3], where
Dk ∈ Rd×d is a diagonal weighting matrix with positive
diagonal entries, and e1, e3 are the first and third columns
of the 3 × 3 identity matrix, respectively. Thus, Cx ∈ Rd

≥0

provides the overall allocation of all agents over all locations
(here C is constructed from the Ck matrices as in Standing
Assumption 1-ii)). Now, the locations are characterized by
affine congestion costs given by the map J (Cx) = Cx− J̄,
with J̄ ∈ Rd. Namely, J(Cx) ∈ Rd provides the congestion
cost for each of the d locations under the allocation Cx.

Consequently, the utility function for each population k ∈ P
is given by ψk

(
xk,x−k

)
= ψ̄k

(
xk
)
− (J (Cx))

>
Ckxk,

where ψ̄k : Rnk

≥0 → R is a concave and twice continuously
differentiable local utility function for population k. Thus,
∇xkψk

(
xk,x−k

)
= gk

(
xk
)
− Ck>Cx, with gk

(
xk
)

=
∇xk ψ̄k

(
xk
)

+ Ck>J̄ − Ck>Ckxk, for all k ∈ P . We
highlight that these allocation games can be used to model
several practical decision-making scenarios. As an example,
consider the charging coordination of N plug-in electric
vehicles (PEVs) over a horizon of d time-slots. In such a
context, each population k ∈ P would represent a PEV, mk

would be the total energy to be charged to PEV k, Sk would
be the charging time-slots available to PEV k, xk would be
the scheduled charging profile of PEV k, and J (Cx) would
represent the price of electricity under the allocation Cx.

Based on the considered framework, the technical problem
that we study in this paper is the evolutionary convergence
to a Nash equilibrium (NE) of the game G, as defined next.

Definition 2: An NE of the game G is a strategic dis-
tribution x∗ = col

(
x1∗,x2∗, . . . ,xN∗) ∈ ∆ such that

ψk
(
xk∗,x−k∗

)
≥ ψk

(
xk,x−k∗

)
, ∀xk ∈ ∆k, for all k ∈

P . Here, x−k∗ = col
(
x1∗, . . . ,x(k−1)∗,x(k+1)∗, . . . ,xN∗).

By Standing Assumption 1-i), it holds that an NE of
the game G exists (see Lemma 1). Moreover, according to
the EDM, the only way to steer the strategic distributions
xk(t) towards an NE of the game G is through the payoff
signals pk(t). Hence, the task is to design appropriate payoff
providers to guarantee the evolutionary convergence of the
strategic distribution x(t) to an NE of the game G.

As mentioned above and shown in Fig. 1, we consider that
the multiple payoff providers communicate through a pos-
sibly non-complete time-invariant network. More formally,
we let G = (P,L,W) be the directed graph (digraph) of
the network, where P is the set of nodes corresponding to
the payoff providers, L ⊆ {(k, `) : k, ` ∈ P} is the set of
communication links, and W ∈ RN×N

≥0 is the corresponding
weighted adjacency matrix. Here, we let wk` ∈ R≥0 be the
(k, `)-th element of W, and it is assumed that wk` > 0
if and only if node k can receive information from node
` (by convention wkk = 0). In addition, we let N k =
{` ∈ P : wk` > 0} be the set of in-neighbors of node k, for
all k ∈ P , and we impose the following assumptions.

Standing Assumption 2: The digraph G is strongly con-
nected and weight-balanced.

Standing Assumption 3: All the payoff providers know the
total number of populations N . Also, for all k ∈ P , the k-th
payoff provider knows the k-th row and column of W.

Contributions of this paper: Based on the considered
framework, the main contribution of this paper is the design
and formulation of appropriate payoff providers (synthesized
as continuous-time dynamical systems that comprise a so-
called payoff dynamics model [2]), which effectively steer
the strategic distribution of the entire society to an NE of
the population game G under partial-decision information
constraints ruled by the digraph G. Namely, our proposed
approach solves the distributed NE seeking problem for the
game G under the digraph G. To the best of our knowledge,
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Communication through a possibly non-complete network

Fig. 1. Considered framework. Note that the payoff providers exchange
certain auxiliary variables qk(t) (defined in Section II) by communicating
with their neighbors over a possibly non-complete network.

this is the first paper to address such a distributed NE seek-
ing problem from the considered perspective of population
games and evolutionary dynamics. As the main technical
contribution, we formally prove the asymptotic stability of
the set of Nash equilibria of the game G under the proposed
continuous-time dynamics. Moreover, to validate our results,
we provide a numerical illustration regarding an allocation
game as the one in Example 2.

Related work: The problem of distributed NE seeking has
been recently studied from various perspectives. Perhaps, the
most popular one regards the combination of gradient play
and consensus algorithms. Namely, a gradient-based mech-
anism is used to update the players’ actions, and consensus
methods are applied to estimate the joint action profile of all
players. Such a scheme has been recently considered both in
discrete time [6], [7] and continuous time [8], [9]. Similarly,
in this paper we design each payoff provider so that pk(t)
corresponds to an estimate of ∇xkψk

(
xk(t),x−k(t)

)
, for all

k ∈ P . Moreover, to handle the partial-decision information
scenario, we ascribe the payoff providers within the so-called
proportional integral consensus algorithm [10], [11] (c.f.,
Section II). Our considered problem is closely related to
the contexts of N -coalition games [12] and multi-population
mean-field games [13]. Namely, in N -coalition games a
group of decision-making agents is split into multiple coali-
tions, each of them behaving as a virtual (macro) player
engaged in a non-cooperative game with the other coalitions.
While such a setup resembles our considered framework,
the perspective of population games is more suitable when
considering a large number of agents that make decisions in
a sporadic and stochastic manner. On the other hand, multi-
population mean-field games regard a large society of non-
cooperative players that optimally respond to a mean-field
signal. To reduce the communication burden, the players
are partitioned into multiple populations and the so-called
population coordinators employ a consensus-like protocol to
estimate the mean-field signal using partial-decision infor-
mation. In contrast with such a context, in our framework
the population agents are payoff-driven decision-makers that
choose strategies based on quite simple pairwise comparison
protocols, and thus are allowed to have significantly bounded
rationality levels. Nevertheless, similar to the population

coordinators, our payoff providers also employ a consensus-
like method to estimate the relevant non-local information to
compute the payoff vectors. Finally, it is worth to highlight
that even though some non-complete interaction scenarios
have been considered in the context of NE seeking in popu-
lation games, e.g., [14], [15], to the best of our knowledge all
of these approaches have only considered the scenario with
a centralized oracle-like payoff provider which has complete
information regarding the strategic distribution of the entire
society. Therefore, such approaches are not applicable to
the distributed NE seeking problem under partial-decision
information that is studied in this paper.

II. PROPOSED APPROACH

In this section, we formulate our proposed approach for
distributed NE seeking under the framework of Section I.

As mentioned above, we formulate the payoff provider of
each population k ∈ P as a dynamical system whose output
pk(t) corresponds to an estimate of ∇xkψk

(
xk(t),x−k(t)

)
.

Furthermore, to cope with the considered partial-decision
information scenario, in this paper we ascribe the payoff
providers within the so-called proportional integral consensus
algorithm [10], [11]. More precisely, we let the payoff
provider of each population k ∈ P be characterized by

µ̇k(t) = −µk(t)−
∑
`∈P

wk`

(
µk(t)− µ`(t)

)
−
∑
`∈P

w`k

(
λk(t)− λ`(t)

)
+ Ckxk(t), (2a)

λ̇
k
(t) =

∑
`∈P

wk`

(
µk(t)− µ`(t)

)
, (2b)

pk(t) = gk
(
xk(t)

)
−NCk>µk(t), (2c)

where µk(t),λk(t) ∈ Rd. Under such a model, it fol-
lows that the information exchange between the differ-
ent payoff providers regards only the vectors qk(t) =

col
(
µk(t),λk(t)

)
∈ R2d, and such information exchange is

ruled by the digraph G (see Fig. 1). Hence, under Standing
Assumptions 1, 2, and 3, the dynamics in (2) can be
computed locally at every payoff provider k ∈ P .

We highlight that the collection of all payoff providers
comprise a dynamical system, with input x(t) and output
p(t), here referred to as the payoff dynamics model (PDM).

Definition 3: The PDM that describes the temporal evo-
lution of the overall payoff vector p(t) is given by[

µ̇(t)

λ̇(t)

]
=

[
−INd − L⊗ Id, −L> ⊗ Id

L⊗ Id, 0Nd×Nd

] [
µ(t)
λ(t)

]
+

[
E

0Nd×n

]
x(t), (3a)

p(t) = g (x(t))−NE>µ(t), (3b)

with µ(0),λ(0) ∈ RNd, where ⊗ denotes the Kronecker
product, Ia is the a × a identity matrix, 0a×b is the a × b
matrix of zeros, L ∈ RN×N is the Laplacian matrix of the



digraph G, and

E = diag
(
C1,C2, . . . ,CN

)
∈ RNd×n,

µ(t) = col
(
µ1(t),µ2(t), . . . ,µN (t)

)
∈ RNd,

λ(t) = col
(
λ1(t),λ2(t), . . . ,λN (t)

)
∈ RNd,

g (x(t)) = col
(
g1
(
x1(t)

)
, . . . ,gN

(
xN (t)

))
∈ Rn.

Here, diag(·) is the block diagonal matrix stack operation.
Under the considered framework, the EDM and PDM

systems are interconnected in a feedback loop where the
EDM takes as input the overall payoff vector p(t) and
provides as output the strategic distribution x(t), while the
PDM takes x(t) as input and provides p(t) as output.
Throughout, we refer to such an interconnected system as
the EDM-PDM system, and our main theoretical result is
summarized next.

Theorem 1: The set of Nash equilibria of the game G is
asymptotically stable under the EDM-PDM system.

We now proceed to formally prove Theorem 1.

III. PROOF OF THEOREM 1

To start the discussion, we first characterize the set of Nash
equilibria of G.

Lemma 1: Consider the pseudo-gradient given by

f(x) = col
(
∇x1ψ1

(
x1,x−1

)
, · · · ,∇xNψN

(
xN ,x−N

))
,

and the set NE (f) =
{
x ∈ ∆ : x ∈ arg maxy∈∆ y>f (x)

}
.

A strategic distribution x∗ ∈ ∆ is an NE of the game G if and
only if x∗ ∈ NE (f). Moreover, the set NE (f) is nonempty
and compact. Furthermore, if f(·) is strictly contractive in the
sense that (x− y)

>
(f(x)− f(y)) < 0, for all x,y ∈ Rn

≥0

with x 6= y, then there exists a unique x∗ ∈ NE(f).
Proof: The proof follows immediately from [16, Propo-

sition 1.4.2] and [16, Corollary 2.2.5] by considering the
variational inequality VI (∆,−f(·)). Similarly, the unique-
ness claim follows from [16, Theorem 2.3.3].

Now, we proceed to highlight some properties of the EDM.
Lemma 2: The set ∆ is positively invariant under the

EDM, i.e., x(0) ∈ ∆⇒ x(t) ∈ ∆, for all t ≥ 0.
Proof: The proof follows from [17, Proposition 1].

Lemma 3: Consider the EDM. Then, ẋ(t) = 0n if and
only if x(t) ∈ arg maxy∈∆ y>p(t). Here, 0n ∈ Rn is the
vector of n zeros.

Proof: By Lemma 2, x(t) ∈ ∆ ⊂ Rn
≥0, for all t ≥ 0.

(Sufficiency) Suppose that x(t) ∈ arg maxy∈∆ y>p(t).
Then, xki (t) > 0 ⇒ pki (t) ≥ pkj (t), for all i, j ∈ Sk and all
k ∈ P . Hence, from (1), xki (t)ρkij(t) = 0, for all i, j ∈ Sk
and all k ∈ P , and ẋki (t) = 0, for all i ∈ Sk and all k ∈ P .

(Necessity) Suppose that x(t) /∈ arg maxy∈∆ y>p(t).
Then, there are some ` ∈ P and i ∈ S` such that x`i(t) > 0
and p`i(t) < maxj∈S` p`j(t). Now, let z ∈ S` be such that
p`z(t) = maxj∈S` p`j(t). It follows that x`z(t)ρ`zj(t) = 0, for
all j ∈ S`, and thus ẋ`z(t) ≥ 0. In fact, by construction we
have that x`i(t)ρ

`
iz(t) > 0, which implies that ẋ`z(t) > 0.

Therefore, x(t) /∈ arg maxy∈∆ y>p(t) implies that ẋ(t) 6=
0n.

Namely, Lemma 2 provides some invariance properties of
the EDM, and Lemma 3 characterizes the set of equilibria
of the EDM as a function of the overall payoff vector p(t).

To analyze the EDM-PDM system, we reformulate the
PDM in an equivalent form as follows. Take v =
(1/
√
N)1N , where 1N ∈ RN is the vector of N ones

(hence Lv = 0N and v>L = 0>N ), and let U =
[
Ũ,v

]
∈

RN×N be an orthonormal matrix. Using such a matrix U,

we replace λ(t) in (3a) by λ(t) = (U⊗ Id)

[
λŨ(t)
λv(t)

]
,

with λŨ(t) ∈ RNd−d and λv(t) ∈ Rd. Thus, by the
identities (U⊗ Id)

−1
= U−1 ⊗ Id and U−1 = U>, one

obtains that
[

λ̇Ũ(t)

λ̇v(t)

]
=
(
U> ⊗ Id

)
λ̇(t). Noting that

λ̇(t) = (L⊗ Id)µ(t) [c.f., (3a)], and applying the mixed-
product property (M1 ⊗M2) (M3 ⊗M4) = (M1M3) ⊗
(M2M4) (whenever M1M3 and M2M4 are both valid
matrix products), it follows that the dynamics in (3a) can
be equivalently written as ˙̃q(t) = Aq̃(t) + Bx(t), with
q̃(t) = col

(
µ(t),λŨ(t),λv(t)

)
, and

A =


−INd − L⊗ Id, −

(
L>Ũ

)
⊗ Id, 0Nd×d(

Ũ>L
)
⊗ Id, 0(Nd−d)×(Nd−d), 0(Nd−d)×d

0d×Nd, 0d×(Nd−d), 0d×d

 ,
B =

 E
0(Nd−d)×n

0d×n

 .
Here, we highlight that λv(t) comprises a state variable that
does not interact with the rest of the system, and so one
can eliminate λv(t) and consider only the resulting reduced-
order system. For the remainder of this section, we refer to
such a reduced-order system as the reduced PDM (rPDM).

Definition 4: Let Ar ∈ R(2Nd−d)×(2Nd−d) be the upper-
left block of the matrix A, and let Br ∈ R(2Nd−d)×n be the
upper block of the matrix B. The rPDM is given by[

µ̇(t)

λ̇Ũ(t)

]
= Ar

[
µ(t)
λŨ(t)

]
+ Brx(t), (4a)

p(t) = g (x(t))−NE>µ(t), (4b)

with µ(0) ∈ RNd and λŨ(0) ∈ RNd−d.
The following are key properties of the rPDM.
Lemma 4: The matrix Ar is Hurwitz.

Proof: See [10, Lemma 9] or [11, Lemma 2.2].
Lemma 5: (Adapted from [10, Theorem 5]) Consider the

rPDM under a constant input x(t) = x∗ ∈ Rn, for all t ≥ 0.
Such a system has a unique globally exponentially stable
equilibrium point

(
µ∗,λ∗

Ũ

)
, with µ∗ = (1/N) (1N ⊗Cx∗).

Proof: The proof follows from [10, Theorem 5].
Lemma 6: Consider the rPDM under a bounded input

x(t) ∈ Rn, for all t ≥ 0, i.e., ‖x(t)‖2 <∞,∀t ≥ 0. Then,
i) ‖µ(t)‖2 <∞ and ‖λ(t)‖2 <∞, for all t ≥ 0.

ii) lim
t→∞

‖ẋ(t)‖2 = 0 ⇒ lim
t→∞

‖p(t)− f (x(t))‖2 = 0,
where f : Rn

≥0 → Rn is the map defined in Lemma 1.
Here, ‖ · ‖2 is the Euclidean norm.



Proof: i) From Lemma 5 and [18, Lemma 4.6], we
conclude that the dynamics in (4a) are input-to-state stable.
Thus, under any bounded input x(t) ∈ Rn it holds that
‖µ(t)‖2 <∞ and ‖λ(t)‖2 <∞, for all t ≥ 0.

ii) From Lemma 5, it holds that lim
t→∞

‖ẋ(t)‖2 = 0 implies
that lim

t→∞
‖µ(t)− (1/N) (1N ⊗Cx(t))‖2 = 0. Observing

that NE> ((1/N) (1N ⊗Cx(t))) = C>Cx(t) leads to the
desired result p(t)→ f (x(t)).

Remark 1: Following the same argument in [11, Lemma
2.1], to study the EDM-PDM system we can equivalently
analyze the EDM-rPDM system that results from the feed-
back interconnection between the EDM and the rPDM (i.e.,
the EDM takes p(t) as input and provides x(t) as output,
and the rPDM takes x(t) as input and provides p(t) as
output). Hence, without loss of generality, we analyze the
EDM-rPDM system in the remainder of this section.

Based on the above results, we now characterize the set
of equilibria of the EDM-rPDM system.

Proposition 1: Consider the EDM-rPDM system, and the
map V : Rn

≥0 × RNd × RNd−d → R≥0 given by
V
(
x,µ,λŨ

)
= V1 (x,µ) + V2

(
x,µ,λŨ

)
, with

V1 (x,µ) =
∑
k∈P

∑
j∈Sk

∑
i∈Sk

xki

∫ pk
j−p

k
i

0

[σ]+ dσ,

V2

(
x,µ,λŨ

)
=
N

2

∥∥∥∥Ar

[
µ
λŨ

]
+ Brx

∥∥∥∥2

2

,

where pki , pki
(
xk,µk

)
is defined as the i-th element

of the vector pk
(
xk,µk

)
= gk

(
xk
)
− NCk>µk, for all

i ∈ Sk and all k ∈ P . Furthermore, consider the set E ={(
x,µ,λŨ

)
∈ ∆× RNd × RNd−d : V

(
x,µ,λŨ

)
= 0
}

.
Then,

i) E is the set of equilibria of the EDM-rPDM system.
ii) If

(
x(t),µ(t),λŨ(t)

)
∈ E , then x(t) ∈ NE (f).

iii) E is nonempty and compact.
iv) E is asymptotically stable.

Proof: i) From [1, Theorem 7.2.9], we conclude that
V1 (x(t),µ(t)) = 0 ⇔ x(t) ∈ arg maxy∈∆ y>p(t). Thus,
from Lemma 3, V1 (x(t),µ(t)) = 0⇔ ẋ(t) = 0n. Similarly,
from (4a) it holds that V2

(
x(t),µ(t),λŨ(t)

)
= 0 if and only

if µ̇(t) = 0Nd and λ̇Ũ(t) = 0Nd−d.
ii) From i) and Lemmas 3 and 6-ii), we conclude that(

x(t),µ(t),λŨ(t)
)
∈ E ⇒ x(t) ∈ arg maxy∈∆ y>p(t)

with p(t) = f (x(t)). Therefore, from Lemma 1,(
x(t),µ(t),λŨ(t)

)
∈ E ⇒ x(t) ∈ NE (f).

iii) First, we prove the nonemptiness of E . From Lemma 1,
NE (f) 6= ∅. Thus, pick an arbitrary x∗ ∈ NE (f). Now, con-
sider the rPDM under the constant input x(t) = x∗, for all
t ≥ 0. From Lemma 5, it holds that such an rPDM converges
exponentially to

(
µ∗,λ∗

Ũ

)
with µ∗ = (1/N) (1N ⊗Cx∗).

By construction,
(
x∗,µ∗,λ∗

Ũ

)
∈ E , and thus E 6= ∅.

Now, we prove the compactness of E . First, note that from
the definition of E it follows that E is the preimage of the
closed set {0} under the continuous map V (·). Hence, E is
closed. On the other hand, to prove the boundedness of E ,
pick an arbitrary

(
x∗,µ∗,λ∗

Ũ

)
∈ E . By the definition of E ,

x∗ ∈ ∆ and so x∗ is bounded, i.e., ‖x∗‖2 <∞. In contrast,

from i) and Lemma 4,
[

µ∗

λ∗
Ũ

]
= −A−1

r Brx
∗. Therefore,

since x∗ is bounded, it holds that µ∗ and λ∗
Ũ

are bounded
as well. Since the considered

(
x∗,µ∗,λ∗

Ũ

)
∈ E is arbitrary,

we conclude that E must be bounded.
iv) From i), it follows that V (·) is a valid Lyapunov

function candidate to analyze the stability properties of E
[19, Corollary 4.7]. Throughout, let x , x(t), µ , µ(t),
and λŨ , λŨ(t), for all t ≥ 0, and let V1 , V1(x,µ), and

P k
ij ,

∫ pk
j−p

k
i

0
[σ]+dσ, for all i, j ∈ Sk and all k ∈ P . Then,

∂V1

∂xzs
=
∑
j∈Sz

P z
sj +

∑
j∈Sz

∑
i∈Sz

xzi
[
pzj − pzi

]
+

(
∂pzj
∂xzs
− ∂pzi
∂xzs

)
=
∑
j∈Sz

P z
sj +

∑
j∈Sz

ẋzj
∂pzj
∂xzs

, [using (1)],

for all s ∈ Sz and all z ∈ P . Similarly, by letting
µz
a be the a-th entry of µz , for all a = 1, 2, . . . , d,

it follows that ∂V1/∂µ
z
a =

∑
j∈Sz ẋzj∂p

z
j/∂µ

z
a. Hence,

∇xV1 = Γ + (Dg(x))
>

ẋ and ∇µV1 = −NEẋ. Here, Γ =

col
(∑

j∈S1 P 1
1j ,
∑

j∈S1 P 1
2j , . . . ,

∑
j∈SN PN

nN j

)
∈ Rn, and

Dg(x) ∈ Rn×n is the Jacobian matrix of g(·) at x. On the
other hand, let V2 , V2

(
x,µ,λŨ

)
, and note that

∇xV2 = NB>r

[
Ar

[
µ
λŨ

]
+ Brx

]
,

∇µV2 = N

[
−INd − L⊗ Id(

Ũ>L
)
⊗ Id

]> [
Ar

[
µ
λŨ

]
+ Brx

]
,

∇λŨ
V2 = N

[
−
(
L>Ũ

)
⊗ Id

0(Nd−d)×(Nd−d)

]> [
Ar

[
µ
λŨ

]
+ Brx

]
.

Therefore, from (4) it holds that: ∇xV2 = NE>µ̇, ∇µV2 =

−N (INd + L⊗ Id)
>
µ̇ + N

((
Ũ>L

)
⊗ Id

)>
λ̇Ũ, and

∇λŨ
V2 = −N

((
L>Ũ

)
⊗ Id

)>
µ̇. Thus,

dV

dt
= ∇xV

>ẋ +∇µV
>µ̇ +∇λŨ

V >λ̇Ũ

= Γ>ẋ + ẋ>Dg(x)ẋ−N µ̇>µ̇−N µ̇> (L⊗ Id) µ̇.

Here, we have used the facts that µ̇>Eẋ = ẋ>E>µ̇, and
that λ̇

>
Ũ

((
Ũ>L

)
⊗ Id

)
µ̇ = µ̇>

((
L>Ũ

)
⊗ Id

)
λ̇Ũ.

Now, following the same analysis as in [1, Theorem
7.2.9] or [17, Theorem 1], it is straightforward to show
that Γ>ẋ ≤ 0, for all t ≥ 0, and that Γ>ẋ = 0 if and
only if ẋ = 0n (c.f., Lemma 3). On the other hand, due
to Standing Assumption 1-ii) and [1, Theorem 3.3.1], it
follows that ẋ>Dg(x)ẋ ≤ 0, for all t ≥ 0. In addition,
it is clear that −N µ̇>µ̇ ≤ 0, for all t ≥ 0, and −N µ̇>µ̇ =
0 ⇔ µ̇ = 0Nd. Finally, due to Standing Assumption 2,
it follows that −N µ̇> (L⊗ Id) µ̇ ≤ 0, for all t ≥ 0, and
−N µ̇> (L⊗ Id) µ̇ = 0⇔ µ̇ ∈ span (1Nd). Putting all these
facts together, we conclude that dV/dt ≤ 0, for all t ≥ 0, and
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Fig. 2. Simulation of the allocation game. Without loss of generality, in
all cases we let xk

i (0) = mk/nk , and µk(0) = λk(0) = 0d, for all
i ∈ Sk and all k ∈ P . Moreover, the key performance index (KPI) is taken
as KPI(t) = ‖x(t)− x∗‖2 / ‖x(0)− x∗‖2, where x∗ is the NE of G.

therefore E is stable in the sense of Lyapunov. Furthermore,
note that dV/dt = 0⇔ (x,µ,λŨ) ∈ R, with

R =

{
(x,µ,λŨ) ∈ ∆× RNd × RNd−d :

ẋ = 0n,
µ̇ = 0Nd

}
.

Moreover, E is the largest invariant set of the EDM-rPDM
system within R. To see the latter, let I ⊆ R be the largest
invariant set of the EDM-rPDM system within R, and let
T = I\E . Now, suppose that T 6= ∅. Then, there exists some
point (x(t),µ(t),λŨ(t)) ∈ T such that ẋ(t) = 0n, µ̇(t) =

0Nd, and λ̇Ũ(t) 6= 0Nd−d, for all t ≥ 0. Consequently, from
(4a), at such a point limt→∞

∥∥λŨ(t)
∥∥

2
= ∞, which is a

contradiction of Lemma 6-i). Hence, T must be the empty set
and I = E . Therefore, from LaSalle’s Theorem [19, Theorem
3.3], we conclude that E is asymptotically stable.

Proposition 1 and Remark 1 lead to the desired result.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we validate our theoretical results through
some numerical simulations regarding the allocation game of
Example 2. Without loss of generality, we consider the setup
described in Section I with N = 10, d = 7, nk = d, mk = 1,
and Ck = Id, for all k ∈ P . Moreover, we set ψ̄k

(
xk
)

=

−xk>Q̄kxk − h̄k>xk, where Q̄k ∈ Rnk×nk

is a random
symmetric and positive definite matrix with elements within
[−1, 1], and h̄k ∈ Rnk

is a random vector with elements
within [−2, 2], for all k ∈ P . Finally, we randomly sample
the elements of J̄ ∈ Rd from [−5, 5]. Using Lemma 1, it can
be shown that, in this case, the game G has a unique NE.

In Fig. 2, we depict the simulation of the EDM-PDM
system for the considered allocation game under two com-
munication digraphs with unitary weights, a directed cycle,
and a clockwise directed regular ring lattice of degree 4
(RRL4). In addition, for the sake of comparison, we also
simulate the EDM under a centralized oracle-like payoff
provider with full-decision information (this corresponds to
the conventional framework of [1]). Clearly, in all cases the
EDM effectively converges to the unique NE of the allocation
game G.

V. CONCLUDING REMARKS

This paper has formulated a novel approach for distributed
Nash equilibrium seeking in a class of contractive population

games under partial-decision information and directed time-
invariant communication networks. Using Lyapunov stability
theory, we have provided sufficient conditions to guarantee
the asymptotic stability of the set of Nash equilibria of the
underlying game. Moreover, the theoretical results have been
validated through numerical simulations of an allocation
game. Future work should extend the results to more general
games and evolutionary dynamics, as well as to time-varying
networks.
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