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Abstract: This paper presents a health-aware economic Model Predictive Control (EMPC) approach
for the Prognostics and Health Management (PHM) of generalized flow-based networks. The pro-
posed approach consists of the integration of the network reliability model obtained from a Bayesian
network in the control model. The controller is then able to optimally manage the supply taking into
consideration the distribution of the control effort, to extend the life of the actuators by delaying the
network reliability decay as much as possible. It also considers an optimal inventory replenishment
policy based on a desired risk acceptability level, leading to the availability of safety stocks for
unexpected excess demand in networks. The proposed implementation is illustrated with a real
case study corresponding to an aggregate model of the Drinking Water transport Network (DWN)
of Barcelona.

Keywords: flow-based networks; drinking water transport networks; model predictive control;
prognostics and health management; Bayesian model; operation and management; economic cost;
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1. Introduction

The management of flow-based networks is an interesting and increasing research
subject owing to the fact that there are uncertain and complex systems with an important
economic, environmental, and social impact. The use of control strategies that take into
account the system health by monitoring their components reliability is necessary to
guarantee a quality service, while minimizing the fault appearance and reducing the
operational costs. However, the random behaviour of the network demands and the
variability on the prices of the electricity (which directly influences the actuators operation
costs) are critical characteristics when trying to control this type of system in real-time.

To deal with this problem, several approaches have been proposed from the research
community. Most of them employ a Model Predictive Control (MPC) approach, due to
the fact that it suitably fits with the need to take into account the demand forecasts to
sufficiently fill the different reservoirs on time. This control strategy is based on solving
a finite time-horizon optimization problem, given some future predictions, in order to
minimize some considered control objectives and satisfy the set of constraints, including
the system model and physical/operational limitations.

However, for managing water systems, MPC is not implemented in a classical way
due to there being no reference volume to be tracked [1]. Instead of this, the standard MPC
forces the system to follow a setpoint, but it does not guarantee the economic efficiency of
the system evolution toward this setpoint, and this is just the general aim in the operation
of several industrial processes: the reduction of costs associated to the energy consumption.

For this purpose, there exists a systematic method to optimize the cost of a system
management: the Economic MPC (EMPC) [2]. However, there is a well-known problem

Water 2022, 14, 1538. https://doi.org/10.3390/w14101538 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14101538
https://doi.org/10.3390/w14101538
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-6364-6429
https://doi.org/10.3390/w14101538
https://www.mdpi.com/journal/water
http://www.mdpi.com/2073-4441/14/10/1538?type=check_update&version=1


Water 2022, 14, 1538 2 of 15

related with this strategy, which is the aim of obtaining a family of optimal setpoints
considering economic efficiency rather than aiming the controlled system to reach a certain
setpoint [2]. Nevertheless, different approaches were suggested to enhance this concept,
such as in Karimi Pour et al. [3], where they implemented an LPV-MPC controller based
on a single-layer economic optimization problem with dynamic constraints, including pre-
determined safety levels to deal with the demand uncertainty. In Grosso et al. [4], where
they also deal with an MPC based on a single-layer economic optimization problem with
dynamic constraints to cope with the components degradation awareness and safety stock
availability to satisfy non-stationary flow demands. In Karimi Pour et al. [5], where they
proposed a health-aware LPV-MPC by using a chance-constraints approach of the reliability
model. In Gokdere et al. [6], where the actuator lifespan is included as an additional goal
parameterized in the linear quadratic optimal controller to reduce the cost of maintenance.
Or in Pereira et al. [7], where it introduces an MPC strategy based on distributing the loads
among redundant actuators, also with the use of constraints to ensure that the accumulated
degradation of the actuators will not achieve an unsafe level within a prediction horizon.

Despite this, the reliability is the system’s (or component) ability to perform its in-
tended functions. In a Drinking Water transport Network (DWN) case, some conditions
that would mainly influence it are: the capacity and the quality of the water accessible
at the sources, as well as the pump/pipe failure rates [8,9]. Moreover, it is characterised
according to the interdependence topology based on the network layout, given by the
specific combination of the involved components. Subsequently, the system reliability leads
to a nonlinear mathematical model when considering the control input.

In the literature, how the control affects the system health is considered by adding a
damage index in the goals of the optimization-based control and by adjusting the trade-off
between optimal operation and damage mitigation by weight tuning [10], or by defining
constraints involving the actuators’ reliabilities [8]. However, considering the reliability at
the components level and not at the system level is the main drawback of these previous
methods, as it implies a high computational cost. In addition, the existing gradient-based
numerical algorithms do not certify that the obtained solution corresponds to the global
one, because of the non-convexity of the associated optimization problem. This problem
could be overcome by transforming the nonlinear optimization problem into a quadratic
problem through a linearisation method.

The main contribution of this paper is to integrate a Bayesian network reliability model
of a generalized flow-based network into the common economic MPC used in these cases
and evaluate it together with the optimal inventory replenishment conditions. Thus, the
system reliability obtained from the Bayesian inference is an online event-oriented perfor-
mance criterion that measures the probability that all demands will be fully met within
a given horizon from the available stock in time, under normal and adverse conditions.
In addition, the method, instead of considering the reliability of all components, basically
relies on the degradation of the actuators, which are the network components most exposed
to stress when applying the control actions.

From this point on, the design of the proposed approach will be contextualized on a
DWN, but it is important to note that the approach is generalized, and can be implemented
in an analogous manner for other flow-based network cases as, e.g., power networks. The
paper is structured as follows: Section 2 presents the EMPC of DWN. Section 3 describes
the inclusion of the health-aware objective in the EMPC. Section 4 illustrates the proposed
approach in an aggregate model of the Barcelona DWN. Finally, Section 5 draws the main
conclusions and suggests future research topics.

Notation: R, R+, Rn, Rm×n represent the set of real numbers, of non-negative
real numbers, of column real vectors of length n and of m by n real matrices, respectively.
Similarly, I+ presents the set of non-negative integer numbers including zero. The operator
⊕ denotes the direct matrix sum. ‖.‖ is the matrix spectral norm and ||.||2 is the squared
2-norm. The superscript > represents the transpose of a vector/matrix and operators
<,≤,=,>,≥ represents element-wise vector relations.
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2. EMPC for DWN

As mentioned above, the proposed approach is based on an Economic MPC. The
following subsections introduce the model of a DWN as the control-oriented one, and the
designed optimization problem for the EMPC.

2.1. Control-Oriented Model

The control-oriented model to implement the MPC is expressed in discrete-time state-
space system considering a flow-based modelling approach. The dynamics of the storage
devices for all time instant k ∈ Z≥0 lead to the following state equation

x(k + 1) = Ax(k) + Bu(k) + Bdd(k), (1)

where x ∈ Rnx are the volumes and nx the number of storage devices on the network.
The vector u ∈ Rnu represent the control inputs associated to the flow rates through the
actuators of the network, being nu the total number of them. The vector d ∈ Rnd represents
the disturbances corresponding to the consumer water demands, being nd the total number
of them. A ∈ Rnx×nx , B ∈ Rnx×nu and Bd ∈ Rnx×nd are the system time-invariant matrices
that depend on the network topology.

Furthermore, the system is subject to some constraints. First of all, it is subject to the
flow-mass balance relations in the nodes (being nn the total number of them), leading to
static equation for each node formulated in a matrix form as follows

0 = Euu(k) + Edd(k), (2)

where Eu ∈ Rnn×nu and Ed ∈ Rnn×nd are the time-invariant matrices that depend on the
network junctions connections.

Besides, a DWN is subject to the physical inputs and states constraints, provided by
convex and closed polytopic sets defined as:

x(k) ∈ X := {x ∈ Rnx |Gx ≤ g}, (3)

u(k) ∈ U := {u ∈ Rnu |Hu ≤ h}, (4)

where G ∈ Rnx×nx , g ∈ Rnx , H ∈ Rnu×nu , and h ∈ Rnu are matrices collecting the system
constraints.

Concerning the operation of the considered flow-based networks, it is assumed that
the demands in d(k) and the states in x(k) are measurable at each time instant k ∈ Z≥0;
while the pair (A, B) is stabilizable.

2.2. Optimization Problem Formulation

As the MPC requires some criteria to obtain the control actions, an optimization
problem must be defined. Then, the control aim is to minimize a convex stage cost function
J : Z≥0 ×X×U −→ R≥0, which could include any functional relation with the system
operation. Therefore, the control goal can be expressed as a convex multi-objective cost
function to minimize. In this case, the objective terms considered to manage the flow-based
network are:

• Economic objective: the economical costs that involve the flow transport while pro-
viding the demanded volume should be minimized. This cost function corresponds to:

`e(k) , α(k)TWeu(k) (5)

where α(k) , (α1 + α2(k)) ∈ Rnu is the price per volume unit, including the fixed
costs α1 ∈ Rnu related to the supply flow and the variable costs α2(k) ∈ Rnu related to
the time-varying electricity associated cost. We is a diagonal positive definite matrix
that is used as a weight to prioritize the terms in the complete objective function.
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• Safety objective: the storage devices should guarantee some safety volume to deal
with unexpected variations in the demand. This goal can be formulated as follows:

`s(k) ,
{
‖x(k)− xs‖2 i f x(k) ≤ xs

0 otherwise
(6)

where xs indicates the storage safety volume. However, this piecewise linear formu-
lation can be avoided by considering that the safety cost function can be expressed
through a soft constraint by using a slack variable ξ like:

x(k) ≥ xs − ξ(k) (7)

and also being introduced as an objective term to retain feasibility of the optimization
problem:

`s(k) , ξT(k)Wsξ(k) (8)

where Ws is a diagonal positive definite matrix that is used as a weight to prioritize
the terms in the complete objective function.

• Smoothness objective: to avoid overloads in the pipes, and preserve the network
components lifetime, the actuators are managed based on smooth control actions.
To achieve this smoothing effect, the variation of the control actions among two
consecutive time instants is penalized as follows:

`∆u(k) , ∆u(k)TW∆u∆u(k) (9)

where ∆u(k) , u(k)− u(k− 1), and W∆u is a diagonal positive definite matrix that is
used as a weight to prioritize the terms in the complete objective function.

Thus, the following multi-objective cost function to be minimized in the prediction
horizon Np can be formulated as:

J =
Np

∑
i=0

(`e(i|k) + `s(i|k) + `∆u(i|k)) (10)

Finally, to assure the feasibility of the obtained control actions, the cost function must
be subject to the system constraints introduced in Section 2.1, as well as to the one related
with the safety objective. So, at each time instant, the following optimization problem is
solved online:

min
u(k),x(k),ξ(k)

J(u(k), x(k), ξ(k)) (11)

subject to:

x(i + 1|k) = Ax(i|k) + Bu(i|k) + Bdd(i|k), i = 0, · · · , Np − 1

0 = Euu(i|k) + Edd(k), i = 0, · · · , Np − 1

u(i|k) ∈ U, i = 0, · · · , Np − 1

ξ(i|k) ≥ 0, i = 0, · · · , Np

x(0|k) = x(k),

x(i|k) ∈ X, i = 1, · · · , Np

x(i|k) ≥ xs − ξ(i|k), i = 1, · · · , Np

The sequences of optimal control actions u∗(k) = {u(i|k)}i∈Z[0,Np−1]
, states x∗(k) =

{x(i|k)}i∈Z[1,Np ]
, and safety levels ξ∗(k) = {ξ(i|k)}i∈Z[1,Np ]

are computed on-line, solving
this optimization problem using the receding horizon philosophy [11]. That is, this problem
is solved at the current time instant k by using x(0|k) as the initial condition that is obtained
from measurements/state estimation at a time instant k. Then, the first value u∗(0|k) of
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the optimal input sequence u∗(k) is applied to the system. This procedure is repeated
successively for the next time instants.

3. Reliability-Aware Economic MPC Using Bayesian Network Approach

As discussed in the introduction, the main contribution of this work is to integrate
the information about system health in the MPC controller by using a Bayesian model and
considering that the actuators are the only components that are affected by the degrada-
tion. A continuous evaluation of their states can then be performed to check the overall
system reliability.

3.1. Bayesian Model

Before introducing the Bayesian Model (BM), it would be convenient to review what
Bayesian probability and Bayes’ theorem stands for. The first basically consists of an
interpretation of the probability, in such a way that instead of frequency or propensity
of some phenomenon, probability is interpreted as a degree of belief in an event, like
quantifying a reasonable expectation. The second is a probability theory used to deal with
Bayesian statistics, which describes a conditional probability for an event based on some
data, such as prior information or beliefs about the event. Thus, a Bayesian Model is a
very useful statistical model to manage the inference of complex systems with conditional
dependencies, and to compute the reliability of any event on them. In addition, they
are usually represented by an acyclic directed graph, which easily shows the parental
relationships between the relevant system components.

In this work, a BM is aimed to be used for the reliability evaluation of the flow-based
network, but only considering the actuators as components with considerable reliability
influence. In order to lighten the computation of the proposed approach, and consequently,
make it able to compute larger systems, a BM is evaluated for each demand independently.
Once the reliabilities of all the demands are obtained, the global system reliability is
calculated. Figure 1 shows a graph example of the BM for a single demand, from a simple
network example illustrated in Figure 2.

Figure 1. Single demand Bayesian Model graph.
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Figure 2. Simple network example.

Then, to integrate the BM in the MPC, an equivalent interpretation of the implied
inference is required. This reinterpretation starts by finding the minimal paths from all the
available sources, and, as indicated, by only taking into account the actuators involved in
them. The pure parents are considered to be these actuators, corresponding to the first light
blue nodes column of Figure 1. These are observable evidences, required to perform the
conditional probabilities for the subsequent children (the next graph columns of Figure 1),
which are, respectively:

1. All paths leading to the relevant demand, whose reliabilities lie on the series multi-
plication of the actuators’ reliabilties involved in each one, which means the direct
product of these probabilities: P = ∏n

i=0 Pi, implying that all of them must be opera-
tive to make the path feasible.
In the network example of Figure 1 this is represented with the nodes corresponding
to the available paths in the second purple nodes column. The parents for each one
are the actuators involved in each path, and they are the same ones whose reliabilities
will be multiplied to obtain each path’s one;

2. All sources with access to provide the relevant demand. In this case, the reliability for
each one is the parallel multiplication of the reliabilities of those paths that provide
supply from the relevant source, which means the complementary product of all
the complementaries of these probabilities: P = 1−∏n

i=0 1− Pi, implying that one
feasible path is enough to make the source available.
In the network example of Figure 1, this is represented by the nodes corresponding
to the available sources in the third light green nodes column. The parents for each
one are the paths supplying from each source, and they are the same ones whose
reliabilities will be computed to obtain each source’s one;

3. Finally, there is the relevant demand, whose reliability is also a parallel multiplication
of the available sources, implying that one available source is enough to provide the
supply. In this case, it corresponds to the last column with a single red node of the
graph example of Figure 1, and all the sources are the parents to perform the relevant
reliability calculation.

Afterwards, once the reliabilities of all the demands are computed separately, the
reliability for the global system is evaluated as well as a series multiplication of all the
demands, implying that all of them must be provided to satisfy the system.

3.2. Individual Reliability

To characterize the evolution of the reliability with time, many types of distributions
can be found in the literature. The most commonly used ones are normal, log-normal, expo-
nential, and Weibull distributions [12]. In this work, the exponential function is considered.

The failure rate λ, an important factor in reliability definition, stands for the fraction of
the density of the stochastic lifetime to the remainder function (i.e., conditional probability).
Particularly, systems are designed to operate under different load values. According
to Jiang and Jardine [12], the load directly impacts the component failure rate. Therefore,
in order to present the assessment of system reliability, the relationship between load and
failure rate should be taken into account.
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In this paper, actuator failure rates are considered to be in function of the load of the
applied control input. The following exponential law is the most widely used relationship
to characterize the variation of the actuator fault rates with respect to the load

λi(k) = λ0
i · exp

(
βi · ui(k)

)
, i = 1, . . . , n (12)

where λ0
i represents the baseline failure rate (nominal failure rate), βi is a constant parameter

that depends on the actuator characteristics, and ui(k) is the control action at a time instant
k for the i-th actuator, being n the total number of actuators.

Accordingly to the failure rate definition, the reliability of a system or component can
be described as:

“Reliability is determined as the probability that a system (or a component) will per-
form their functioning satisfactorily for a certain period of time subject to operating
conditions.” [13]

From a mathematical point of view, reliability R(t) is defined as the probability of the
successful operation of a system in the intervening period from time 0 to time t

R(t) = P(T > t), t ≥ 0 (13)

where T is a stochastic variable that describes the time until failure. Furthermore, the
unreliability of a system (or a component) F(t) is determined as the probability that the
component or system encounters the first failure or has failed one or more times among the
time interval 0 to time t.

Considering the system (or component) is always in one of the two possible states
(operational or failed), the following relation is satisfied

F(t) + R(t) = 1 (14)

Then, the reliability of a component Ri(t), in the useful life period, can be specified at
a certain time t by exploiting the exponential function as follows

Ri(t) = exp
(
−
∫ t

0
λi(τ) dτ

)
, i = 1, . . . , n (15)

In discrete-time, Equation (15) can be rewritten as

Ri(k + 1) = Ri(k) · exp
(
− Ts · λi(k)

)
, i = 1, . . . , n (16)

where λi(k) is the failure rate at a time instant k that is acquired from the i-th component
under varying load levels ui; and Ts is the sampling time.

3.3. Overall System Reliability Modelling

The system state of health can be determined by means of the overall system reliability,
Rg(k) that can be determined from the elementary reliability components. Thus, Rg(k)
depends of the system component interconnections that can generally be modelled as a
combination of parallel and/or series configurations [14].

To add the Bayesian inference in the MPC, the developed reinterpretation of the
Bayesian model, introduced in Section 3.1, must be performed. We start by computing the
reliabilities for the multiple paths Pj subsystems as

Rpj(k) = ∏
i∈Pj

Ri(k), Pj ⊂ I j = 1, 2, . . . , np (17)

being np the total number of paths; and Pj the subset of the i-indices corresponding to the
actuators involved in each path.
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Consecutively, the paths are subdivided in new subsystems. First, according to the
demand which they provide and then according to the source from where the supply
is provided. So, to obtain the reliabilities for each source, the following computation
is performed

Rsl (k) = 1−∏
j∈Sl

(1− Rpj(k)), Sl ⊂ J l = 1, 2, . . . , ns (18)

being ns the total number of sources; and Sl the subset of the j-indices corresponding to the
paths providing from each source. To obtain the reliabilities for each demand

Rdh
(k) = 1− ∏

l∈Dh

(1− Rsl (k)), Dh ⊂ L h = 1, 2, . . . , nd (19)

being nd the total number of sources; and Dh the subset of the l-indices corresponding to
the available sources for each demand.

Finally, to infer the overall system reliability, the reliabilities of all the demands
are evaluated in series, since, as mentioned above, they must all be supplied for the
system feasibility

Rg(k) =
nd

∏
h=1

Rdh
(k) (20)

3.4. Inclusion in the Economic MPC Problem Formulation
3.4.1. Augmented System

The economic MPC formulation presented in Section 2 must be modified to include
the preservation of the actuators’ lifetime. This is achieved by adding a new term in the
MPC objective function that aims to achieve reliability maximization, and by augmenting
the system model according to the reliability model obtained using the Bayesian modelling
approach presented above. For this purpose, the reliabilities evolution over time is included
in the model in such a way that a conversion that allows computing them in a linear-like
form is needed. This conversion is based on applying logarithms, starting from rewriting
the individual actuators reliability evolution from Equation (16) as follows

log Ri(k + 1) = log Ri(k)− Ts · λi(k), i = 1, . . . , n (21)

This expression allows the system to actualize the parent reliabilites, but, for computa-
tion simplicity, the extra objective term should only include the whole system reliability,
computed from (20). So, to obtain the demands reliabilities using logarithms to preserve the
linear computation convenience, the Equation (19) is expanded while taking into account
the unreliability, according to (14) and leading to

Fdh
(k) = ∏

j∈Sl & l∈Dh

(
1−∏

i∈Pj

Ri(k)
)

, (22)

Then, to relate (21) with (22), the following variable change is introduced

zj(k) = 1−∏
i∈Pj

Ri(k), (23)

which, by applying logarithms, drives to

log zj(k) =
log zj(k)

log (1− zj(k))
· ∑

i∈Pj

log Ri(k), (24)

and according to (22),
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log Fdh
(k) = ∑

j∈Sl & l∈Dh

log zj(k), (25)

which is equivalent to the following expression with β j =
log zj(k)

log (1− zj(k))

log Fdh
(k) = ∑

j∈Sl & l∈Dh

(
β j · ∑

i∈Pj

log Ri(k)
)

. (26)

All in all, the structure of the augmented system is the following

xr(k + 1) = Arxr (k) + Bru(k) + Bdrd(k), (27)

where the state vector will also be augmented by including the logarithms of the demands’
unreliabilities and the logarithms of the actuators’ reliability, in order to actualize them
properly in each iteration, as follows

xr(k) = [x1(k), . . . , xnx(k), log Fd1(k), . . . , log Fdnd
(k), log R1(k), . . . , log Rn(k)]T (28)

and the system matrices corresponding to

Ar =



A 0nx×nd+n

∑s
i∈ps,l

β j(k)

0nd×nx Ind×nd
...

∑s
i∈ps,l

β j(k)

0n×nx 0n×nd In×n


,

Br =


B

0nd×n

−λi × In×n

, Bdr =


Bd

0nd×nd

0n×nd

.

(29)

However, to be able to implement the Equation (21) in the augmented system, we
should remove the exponential of the failure rate function (12); since it has the control input
in its exponent, and it does not comply with the linear computation of (27). To achieve the
required linearity, a good approach would be to approximate the exponential law to its
corresponding first order Taylor series, as follows

exp
(

βi · ui(k)
)
≈ 1 + βi · ui(k) (30)

As can be appreciated in Figure 3, for small values, the approximation fits quite
well. Taking into account that the real values of λ0

i , βi and ui(k) will lead to small values
satisfying the approximation.

Then, in terms of (12), the expression would end up being

λi(k) = λ0
i + λ0

i · βi · ui(k), i = 1, . . . , n (31)

Therefore, the influence of the failure decay can be interpreted with the resulting terms
of (31), which corresponds to a typical linear function: with a constant independent term,
which would represent the unavoidable constant degradation over time; and a proportional
term as a function of the control input, which would represent the relative degradation to
the applied control. Assuming that the constant degradation computation does not provide
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us with any further advantage, owing to it only would imply the addition of a constant
term in (27), which is removed as well to simplify the computation, (31) resulting in

λi(k) = λ0
i · βi · ui(k), i = 1, . . . , n (32)

Figure 3. Approximation comparison.

3.4.2. Simple Network Example

This subsection includes an example to validate the method with a previously il-
lustrated network (Figure 2). For this purpose, the network reliability (reliability of the
demand to be supplied) is calculated in the three different ways that this work involves. The
first one corresponds to obtain the inference by defining the Bayesian Model in a specific
syntax for a package called py− bbn, which is a Python implementation of probabilistic
and causal inference in Bayesian Belief Networks using exact inference algorithms (See
documentation for further information: https://py-bbn.readthedocs.io/ (Accessed on: 28
March 2022)). The second way corresponds to the classical statistics reinterpretation of
the BM, introduced in Section 3.1. Finally, the network reliability can also be computed
by the linear formulation integrated in the MPC, derived from the classical statistics and
discussed in the previous section. Moreover, it includes the demonstration of the expression
concerning the β j summaries in the states matrix of the augmented system, since it is not
obvious from the original Equation (26).

The example network is very simple, with only one demand, two sources, two tanks,
and five actuators, leading up to three feasible paths:

1. A1 −→ A4
2. A2 −→ A5
3. A2 −→ A3 −→ A4

Then, for the linear formulation, the mathematical procedure would start by computing
each of the β j for each path. For this, the actuators’ reliabilities are involved (correspondence:
Ai =⇒ Ri). Once they are computed, they should be multiplied by the sum of the logarithms
of the reliabilities of the same actuators involved added together, obtaining the following
expanded expression (where Fd1 stands for the unreliability of the unique demand),

log Fd1(k) = β1 · (log R1(k) + log R4(k)) + β2 · (log R2(k) + log R5(k))

+ β3 · (log R2(k) + log R3(k) + log R4(k))
(33)

It is easy to realise the possibility of the expression rewriting by taking advantage
of the commutative properties of addition and multiplication to get the logarithms of the
actuators’ reliabilities as the common factors, instead of the β j. So, the following equation
is equivalent to (33), and it is the one implemented in the augmented system.

log Fd1(k) = log R1(k) · β1 + log R2(k) · (β2 + β3) + log R3(k) · β3

+ log R4(k) · (β1 + β3) + log R5(k) · β2
(34)

https://py-bbn.readthedocs.io/
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Finally, considering R1 = R2 = R3 = R and R4 = R5 = 1, the results for different
cases are included in the next table.

As can be seen from Table 1, the results from the classical statistics and the linear
formulation are exactly the same, which makes sense since the latter is derived from the
former. Furthermore, the results obtained by the Bayesian Networks Python package are
almost the same, so the method is hereby validated. However, it differs a bit, and even
increases the difference when the reliability takes lower values. This may happen due to
the algorithms implemented in the library.

Table 1. Results comparison.

Rd1

R Bayesian Networks Classical Reliability Proposed Approach

0.9 0.99 0.9981 0.9981
0.8 0.96 0.9856 0.9856
0.6 0.84 0.8976 0.8976

3.4.3. Optimization Problem

Regarding the objective function, the economic MPC formulation presented in (10) is
modified by adding the next term:

`r(k) , Wr · log Fg(k), (35)

where Wr is a positive scalar used as a weight to prioritize the terms in the complete
objective function. Leading the following new multi-objective cost function to be minimized
in the prediction horizon Np:

Jr =
Np

∑
i=1

(`e(i|k) + `s(i|k) + `∆u(i|k) + `r(i|k)) (36)

To assure the feasibility of the obtained control actions, the cost function must be subject
to the system constraints introduced in Section 2.1, as well as to the one related with the safety
objective. So, at each time instant, the following optimization problem is solved online:

min
u(k),xr(k),ξ(k)

Jr(u(k), xr(k), ξ(k)) (37)

subject to:

xr(i + 1|k) = Arxr(i|k) + Bru(i|k) + Bdrd(i|k), i = 0, · · · , Np − 1

0 = Euu(i|k) + Edd(k), i = 0, · · · , Np − 1

u(i|k) ∈ U, i = 0, · · · , Np − 1

ξ(i|k) ≥ 0, i = 0, · · · , Np

xr(0|k) = xr(k),

x(i|k) ∈ X, i = 1, · · · , Np

x(i|k) ≥ xs − ξ(i|k), i = 1, · · · , Np

3.4.4. Control Scheme

The scheme of Figure 4 uses blocks to represents the different parts involved in the
control system, and where the signals come from. As can be seen, the states come from two
different blocks: one represents the plant of the real network, from where the tanks levels
would be obtained by sensors;, while the other represents the computed dynamic Bayesian
network, which recalculates the reliabilities given the actual control action.
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Figure 4. Control scheme.

4. Application
4.1. Case Study

To evaluate the approach proposed in Section 3, a part of the Barcelona DWN, pre-
sented in Ocampo-Martínez et al. [15], is used as the case study. This network, correspond-
ing to the one in Figure 5, includes nine sources, consisting of five underground and four
surface sources, which currently provide an inflow of about 2 m3/s. It is composed of
17 tanks, 12 nodes, 25 demands, and 61 actuators (valves and pumps).

Figure 5. Barcelona drinking water network.

Following the steps of the mentioned section, the network can be simplified to a graph
where the nodes are the tanks/nodes and the links are the actuators (Figure 6) in order to
find the minimal paths easily. Then, the corresponding reliability computation is realised.
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Figure 6. Actuators graph from Barcelona DWN, where the graph nodes are the tanks/nodes and the
edgde nodes are the pumps/valves.

4.2. Results and Discussion

To show and assess the effect of including the reliabilities awareness to the MPC
optimization, its related weight of the relevant term in the objective function (Wr) can be
set greater than 0; otherwise, the controller would not take them into account. Besides, the
total economic cost and the final reliability of the whole system could be good indicators to
evaluate their contributions. Then, a 4 days horizon simulation of the introduced case study
was performed with some demand and cost values taken from [15]. The following figure
includes the results of the mentioned simulation considering different objective function
terms’ weights, aiming to highlight their influence. In the combinations, only two of the
weights were changing (We and Wr); the other two were fixed: W∆u = 50; Ws = 10.

Figure 7 is composed of two axes: the left one corresponds to the accumulated oper-
ational cost over time, and the functions related to this axis are those starting at 0 of the
same axis; the right one corresponds to the whole system reliability evolution over time,
and the functions related to this second axis are those starting at 1. Then, there is one pair
of functions for each combination with the same style, detailed in the figure’s legend, with
one for each axis.

Figure 7. System reliability and accumulative cost for different weights cases.
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The first observable evidence from these results, and an expected outcome, is that
taking the overall reliability into account makes the whole system reliability remain closer
to 1—otherwise it gets worse.

However, it was expected that the reliabilities integration would negatively affect
the total operational costs; but surprisingly, if the economic term weight of the objective
function is not 0, the cost remains practically the same and keeps the same trend.

Regarding the two weights modified to see their influence on the system, the economic
term weight does not seem to offer a variability on the results but rather the choice of
whether or not to optimize the production. This owes to the fact that, until it was disabled
by a null weight, the trend was the same, and, once disabled, the trend was held. On the
other hand, the reliability term weight seems to yield a minimal variance, but it looks like
it is restricted by the economic term, since until it was not disabled by a null weight, and
the reliability is not optimized in a considerably better way.

5. Conclusions

This paper proposes an innovative approach of a health-aware economic model pre-
dictive control (EMPC) for the management of generalized flow-based networks. The main
enhancement with respect to some existing approaches relies on the dynamic integration
of the Bayesian model of the whole system. It is included in the controller to manage the
supply, by taking into consideration the distribution of the control effort, to extend the life
of the network by delaying the reliability decay as much as possible. This is considered
in the MPC optimization problem as a new objective term, and it is implemented with an
equivalent interpretation of the Bayesian inference in a linear manner to be able to solve
the MPC.

In addition, previous related works have been considered to keep some interesting
features, such as the inclusion of an optimal inventory replenishment policy based on a
desired risk acceptability level, leading to the availability of safety stocks for unexpected
excess demand in networks.

The proposed implementation has been illustrated with a real case study correspond-
ing to a sector of the water transport network of Barcelona. Although the results have a
coherent behaviour, most likely, with other network examples, the results could become
more evident and noticeable in terms of the influence of the weights; due to it depending
intrinsically on the configuration of the network. For example, if there are multiple actu-
ators that work in parallel, and which can then be alternated to distribute the effort, the
reliability could be better preserved; otherwise, no matter how much you tune the weights,
if the network does not offer versatility, the results are rigid.

In future work, the study of predicting the system reliability of water distribution
networks by adding the consideration of the pressure model will be addressed. It will also
be interesting to implement the approach to other types of flow-based network systems,
such as power networks.
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