
A∞ persistent homology estimates detailed topology

from pointcloud datasets

Francisco Belch́ı1 , Anastasios Stefanou2

Contents

1. Introduction 2

2. Persistence and functoriality 4

3. Transferred A∞-coalgebras on H∗(X) 10

4. A∞ persistent homology: topological estimation and stability 13

Acknowledgements 24

References 25

Abstract

Let X be a closed subspace of a metric space M . It is well known that, under mild hypotheses,

one can estimate the Betti numbers of X from a finite set P ⊂ M of points approximating X. In

this paper, we show that one can also use P to estimate much more detailed topological properties

of X. We achieve this by proving the stability of A∞-persistent homology. In its most general case,

this stability means that given a continuous function f : Y −→ R on a topological space Y , small

perturbations in the function f imply at most small perturbations in the family of A∞-barcodes.

This work can be viewed as a proof of the stability of cup-product and generalised-Massey-products

persistence.

The technical key of this paper consists of figuring out a setting which makes A∞-persistence

functorial.
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Llorens i Artigas 4-6, 08028 Barcelona, Spain
2 stefanou.3@osu.edu

Mathematical Biosciences Institute; Department of Mathematics

The Ohio State University

1

https://orcid.org/0000-0001-5863-3343


Keywords— Persistent homology, persistent cohomology, bottleneck distance, interleaving

distance, stability, functoriality, applied algebraic topology, Topological Data Analysis (TDA),

topological estimation, geometric estimation, A∞-persistence, A∞ persistent homology, A∞-

coalgebra, A∞-algebra, Betti numbers, cup product, Massey products, linking number, loop

spaces, formal spaces.

1. Introduction

Persistent homology (in the sense of [13, 24]) is a topological technique used to extract

global structural information from datasets which may be high dimensional and contain noise.

About a decade ago, two results set the foundations of persistent homology as a robust

mathematical theory. First, the structural theorem [13, §3] explained how the homology of a

sequence of nested topological spaces can be split into simple pieces forming a barcode or a

persistence diagram. Secondly, the stability theorem [17, Main Thm.] showed that small per-

turbations in the input sequence can produce at most small perturbations in the corresponding

barcode.

These two milestones justified the use of barcodes as a meaningful characteristic which

is robust to noise. They also provided the formalism to show that in order to estimate the

homology groups of a closed subspace X of a metric space, in theory it is enough to have a

sufficiently good finite sample P of X [17, Homology Inference Theorem]. To that end, one

would only need to compute the barcode of the following sequence of nested spaces: for any

given radius r, consider the union Pr of the balls of radius r centered at each point in P .

Then, as r grows, so does the union Pr.

Persistent homology has been successfully applied to fields such as medicine [1,6], sensor

networks coverage [21] and molecular modelling [27,38], among many others. However, per-

sistent homology computes information only at the level of homology groups. Intuitively, this

means that persistent homology cares about the number of connected components, tunnels,

voids and higher-dimensional holes of objects, and this information is not always enough. For

instance, work on signal processing [37] and image texture representation [12] shows that

point clouds whose shapes are related to tori T and Klein bottles K arise naturally from data.

With coefficients in the finite field of two elements Z2 = {0, 1}, homology groups do not dis-

tinguish T from K, nor from a space as simple as a wedge of spheres S1 ∨ S2 ∨ S1, but the

fundamental group does, and so does the cohomology ring. It was then natural to enhance per-

sistent homology with the discriminatory power of the fundamental group or the cohomology

ring. Persistence approaches to the fundamental group can be found in [9,15,26], and the cup

product is dealt with within the theory of A∞ persistent homology, or A∞-persistence [4,5],

for short. Beyond that, in order to use cohomology to detect that the Borromean rings are
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non-trivially linked, the cup product is not enough, and ternary operations like Massey prod-

ucts are needed. Information at this ternary and n-ary level in general is included as well in

the computations of A∞ persistent homology. Indeed, A∞-persistence provides a whole family

of barcodes, and morally, the level-2 barcode describes cohomology classes which persistently

cannot be expressed as a cup product, the level-3 barcode describes cohomology classes which

persistently cannot be expressed as a triple Massey product and so on. Recently, the notion

of A∞-persistence has received much attention, with several authors investigating interesting

alternative approaches to the one followed in this paper [28,29].

Recent advances in generalizing the structure theorem [16,18,32] and in categorifying the

stability theorem [10,22] allow one to prove that a given version of persistence (such as A∞

persistent homology) has a barcode decomposition and is stable, provided it is functorial. The

issue is that A∞ persistent homology is not functorial in general [3, Thm. 3.1]. Therefore, a big

challenge consists of finding a non-trivial context in which we can guarantee the functoriality

of A∞-persistence. The main contribution of this work is the identification of one such context.

Specifically, we introduce the category Topn (Def. 4.1) and show that A∞ persistent homology

is functorial within this category (Thm. 4.3). Additionally, we illustrate that this is the largest

category of its form (in a sense made explicit in Rmk. 4.4) for which such functoriality should

be expected.

A crucial part of this paper is therefore devoted to proving the functoriality of A∞ persis-

tent homology (Thm. 4.3). From this, we then deduce that the barcodes from A∞ persistent

homology are robust to small perturbations of the input (Cor. 4.8 and Cor. 4.10), and that

one can extrapolate A∞ information of a metric space from a finite point-set approximation

(Cor. 4.12).

This paper is organized as follows: In §2, we recall the basics of persistent homology and

state the formal results we will use in §4 to study the stability of A∞ persistent homology. In

§3, we collect all definitions and properties we need to know about A∞-structures in order to

understand the theory of A∞ persistent homology. All results in §4 are stated in terms of the

category Topn we define in Def. 4.1. The main theorem of the paper proves the functoriality

of A∞ persistent homology (Thm. 4.3). Rmk. 4.4 and Ex. 4.5 illustrates that Topn is large

enough in a particular sense. As a first corollary of Thm. 4.3, we provide a new structure

theorem for A∞ persistent homology for a case left aside to date (Cor. 4.6). To illustrate

the higher discriminatory power of A∞ persistent homology over classical persistence, Ex.

4.7 exhibits two persistent spaces X∗, Y∗ with the same persistent homology barcodes but

different A∞ barcodes. This toy example also shows how cup product persistence is part of

A∞-persistence. We finish §4 with three important applications of the functoriality Thm. 4.3

- namely, we show that A∞ persistent homology is stable with respect to perturbations in the

3



input function (Cor. 4.8) and perturbations in the input space (Cor. 4.10), and that we can

recover A∞ information of a metric space from a finite point sample (Cor. 4.12).

Note that when we focus on the second operation ∆2 on an A∞-coalgebra (such as in Ex.

4.7), or equivalently, on the cup product on an A∞-algebra on cohomology, then all results in

this paper hold without the need to restrict to the category Topn ⊆ Top and instead, we can

work directly with the category of topological spaces Top. In particular, this paper proves

the stability of the persistence of cup product with minimal restrictions.

Notation Throughout the text, we will work over a fixed field F. We will usually omit the field

from the notation. E.g., we will denote by H∗(X) the singular homology of X with coefficients

in F.

We will present the results of this paper in terms of homology, but everything works as well

for cohomology and for reduced (co)homology.

2. Persistence and functoriality

Let

K0
� � // K1

� � // · · · � � // KN (2.1)

be a finite sequence of nested topological spaces. In the context of persistence, sequences like

this arise as sublevel sets of functions of the form f : M −→ R, for some metric space M ; for

instance, by specifying

Ki := f−1(−∞, i].

To give a more concrete example, given a closed subspace X of M , if one defines the

distance function

dX : M → R, y 7→ d(y,X),

then the sequence given by Ki := (dX)−1(−∞, i] can be interpreted as a thickening of X.

Let us fix a particular homology degree of interest, p ≥ 0 and assume that all these nested

spaces have finite-dimensional homology groups, i.e., dimFHp(Ki) < ∞, for all 0 ≤ i ≤ N .

We learned from [13] that we can decompose the pth homology of the sequence (2.1) in simple

pieces that can be represented in what is called a barcode or a persistence diagram. We now

recall the formalism behind this in a higher level of generality which we will need later on.

Notation R will denote the poset (R,≤) of real numbers. Vect will denote the category of

F-vector spaces and linear maps, and Top will denote the category of topological spaces and

continuous maps.

We will use the notation P for any poset (P ,≤), i.e. any category whose objects are the

elements of P, and such that given two objects x, y ∈ P, there is exactly one arrow x → y if

x ≤ y and no arrow x→ y, otherwise.
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Definition 2.1. Let C be any category. A generalized persistence module (valued in

C) is a functor of the form F : R→ C. When the category C is understood by the context, we

call F a generalized persistence module or GPM for short. A morphisms between GPMs is a

natural transformation between these functors. In this way, the collection of all GPMs forms

a functor category CR which we call a GPM-category. The GPM-categories we focus on are

TopR and VectR, whose objects are called persistence spaces and persistence modules,

respectively.

A persistence module V ∈ VectR is pointwise finite dimensional (p.f.d.) if

dimF V(t) <∞ for every t ∈ R.

Definition 2.2. For a pair of continuous maps f : X −→ R, g : Y −→ R, let us define

the distance

d∞(f, g) = inf
Φ
||f − g ◦ Φ||∞ (2.2)

where Φ ranges over all homeomorphisms of the form Φ : X → Y . We set d∞(f, g) =∞ if X

and Y are not homeomorphic.

The collection of all real-valued continuous functions forms a slice category (Top ↓ R)

which is equipped with the distance given in Def. 2.2. These functions are commonly used to

construct persistence spaces via the sublevel-set filtration construction S.

Definition 2.3. The sublevel-set filtration functor S : (Top ↓ R) −→ TopR assigns

to each continuous f : X → R the persistence space S(f) : R→ Top, t 7→ f−1(−∞, t].

Fix an integer p ≥ 0. Consider the singular homology functor Hp : Top → Vect, X 7→
Hp(X) that assigns to each space its pth homology group with coefficients in the field F.

Definition 2.4. The post composition functor Hp ◦ − : TopR → VectR assigns to each

persistence space X∗ : R −→ Top, t 7→ Xt, the persistence module HpX∗ : R −→ Vect,

t 7→ Hp(Xt). HpX∗ is called the persistent pth homology of X∗. Analogously, the post

composition functor HpS ◦ − : (Top ↓ R) → VectR assigns to each continuous function

f : X → R, the persistence module HpS(f) : R −→ Vect, t 7→ Hp(f
−1(−∞, t]). HpS(f) is

called the sublevel-set persistent pth homology of f : X → R.

There is a natural way of splitting a persistence module into elementary pieces called

interval persistence modules:

Definition 2.5. Given an interval I ⊆ R ∪ {+∞}, the interval persistence module

C(I) ∈ VectR is given by

C(I)(t) =

F if t ∈ I

0 otherwise.
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C(I)[s ≤ t] =

IdF if s, t ∈ I

0 otherwise.

Theorem 2.6. (Structure theorem of persistence modules [18]) Every p.f.d. per-

sistence module V ∈ VectR decomposes uniquely (up to isomorphism) into interval persistence

modules C(I),

V ∼=
⊕

I∈B(V)

C(I),

where B(V) is a multiset ( i.e., a set of objects with multiplicities) of intervals of the form

[a, b) or (−∞, b) for some a ∈ R, b ∈ R ∪ {+∞}. This B(V) is called the barcode of V.

In particular, the persistence module V := HpX∗ ∈ VectR is uniquely determined by a

barcode, as long as dimFHp(Xt) < ∞, for all t ∈ R. In comparison, the original structure

theorem [13, §3] required this persistence module to be indexed by the integers, HpX∗ ∈
VectZ. Additionally, [13] also required there to be finitely many points r ∈ R such that, for

every sufficiently small ε > 0, the linear map HpXr−ε −→ HpXr+ε is not an isomorphism.

Each barcode has an associated persistence diagram, which is a multiset of points in the

extended plane (R ∪ {−∞})× (R ∪ {+∞}).

Definition 2.7. Given a barcodeB(V), its corresponding persistence diagramDgm(V)

consists of the following points:

• For each interval [a, b) ∈ B(V) with multiplicity k, the point of coordinates (a, b) ∈
R× (R ∪ {+∞}) is included in Dgm(V) with multiplicity k.

• For each interval (−∞, b) ∈ B(V) with multiplicity k, the point of coordinates

(−∞, b) ∈ {−∞} × (R ∪ {+∞}) is included in Dgm(V) with multiplicity k.

• For each x ∈ R, the diagonal point (x, x) ∈ R2 is included in Dgm(V) with infinite

multiplicity.

Many stability theorems are presented in terms of a pseudo-distance between barcodes or

persistence diagrams called the bottleneck distance. In order to give its definition, we use the

following notation. For any (p1, p2), (q1, q2) ∈ (R ∪ {−∞})× (R ∪ {+∞}),

||(p1, p2)− (q1, q2)||∞ := max{|p1 − q1|, |p2 − q2|},

where | · | denotes the absolute value with the convention that:

• If p2 = q2 = +∞, then |p2 − q2| := 0.

• If p1 = q1 = −∞, then |p1 − q1| := 0.

• If one, and only one, of p2, q2 is +∞, then |p2 − q2| := +∞.

• If one, and only one, of p1, q1 is −∞, then |p1 − q1| := +∞.
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We think of each point of multiplicity k in a persistence diagram as k different points, and

since all diagonal points are added with infinite multiplicity, there are always infinitely many

bijections between any given pair of persistence diagrams.

Definition 2.8. The bottleneck distance dB between two barcodes B(V) and B(W)

(or between their associated persistence diagrams Dgm(V) and Dgm(W)) is defined as

dB(B(V), B(W)) = dB(Dgm(V), Dgm(W)) := inf
γ

sup
x
||x− γ(x)||∞,

where x runs over all points in Dgm(V) and γ runs over all bijections γ : Dgm(V) −→
Dgm(W).

See [32, §3.1] for a definition of the bottleneck distance in terms of matchings and see [31]

to learn how to efficiently compute the bottleneck distance.

Example 2.9. Let V and W be the persistence modules given by the following bar-

codes: B(V) = {[1, 6), [9, 10)}, B(W) = {[2, 6.8)}. The bottleneck distance dB(B(V), B(W))

can be computed as max{x, y, z}, where x, y, z are those distances shown in Fig. 1. Hence,

dB(B(V), B(W)) = max{1, 0.8, 0.5} = 1.

In order to state the classical stability theorem for barcodes, we need one last concept.

Definition 2.10. Given a continuous function f : X −→ R, its homological critical

values of degree p are those points t ∈ R such that, for every sufficiently small ε > 0, the

linear map HpXt−ε −→ HpXt+ε is not an isomorphism.

Theorem 2.11. (Stability of persistent homology [17, Main Thm.]) Let p ≥ 0

be an integer, let X be a triangulable space and let f, g : X −→ R be continuous func-

tions with finitely many homological critical values of degree p. If the persistence modules

HpS(f), HpS(g) : R −→ Vect are p.f.d., then the bottleneck distance between the barcodes of

f and g is bounded above by the supremum distance between the functions:

dB(B(HpS(f)), B(HpS(g))) ≤ ||f − g||∞.

Thm. 2.11 guarantees that slight changes in the input function can only result in slight

changes in the corresponding barcodes. Although this is considered the most classical stability

result, it must be acknowledged that earlier work by the Italian team of M. d’Amico et al.

obtained similar results for degree 0 homology [19].

We now recall the rest of the tools we need on the categorification of stability, which will

help us prove that A∞ persistent homology is stable (see §4). For that purpose, we will need to

make some extra assumptions, but at the same time, we will also drop two of the assumptions
7
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Figure 1. Illustration of the bottleneck distance. The two intervals in the barcode B(V) =

{[1, 6), [9, 10)} are shown in white and the interval of the barcode B(W) = {[2, 6.8)} is shown

in black. Therefore, dB(B(V), B(W)) = max{x, y, z} = max{1, 0.8, 0.5} = 1. Indeed, the

bottleneck distance dB(B(V), B(W)) can be interpreted as the minimum amount one has to

enlarge or shrink the ends of the intervals in B(V) in order to obtain the intervals in B(W).

Just as we assumed every persistence diagram to contain each diagonal point with infinite

multiplicity, here we can think of each barcode as having each interval of the form [a, a) = ∅,
for a ∈ R, with infinite multiplicity. This allows the trick of shrinking both ends of an interval

by half of its length to make it disappear and the trick of enlarging both ends of an empty

interval [a, a) to form an interval [a− ε, a+ ε).

in Thm. 2.11 – namely, the triangulability of X, and the finiteness condition on the number

of homological critical points.

We first loot at interleavings between functors, which provide us with a tool to compare

persistence modules and to compare persistence spaces as well.

Definition 2.12. [14] Two GPMs F,G : R → C are ε-interleaved, for ε ≥ 0, if there

exists a pair of natural transformations ϕt : F(t)→ G(t+ ε), t ∈ R and ψt : G(t)→ F(t+ ε),

t ∈ R such that the following diagrams commute

F(t) G(t)

G(t+ ε) F(t+ ε)

F(t+ 2ε) G(t+ 2ε).

F[t≤t+2ε]

ϕt

ψt

G[t≤t+2ε]

ψt+ε

ϕt+ε

The interleaving distance between F and G is then defined as

dI(F,G) := inf{ε ≥ 0 | F,G are ε-interleaved}.
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If F and G are not ε-interleaved for any ε, we set dI(F,G) =∞.

In a way, the interleaving distance dI(F,G) measures how far the GPMs F and G are

from being isomorphic. For instance, if two GPMs F and G are 0-interleaved, it means that

they are isomorphic.

Example 2.13. Let V and W be the persistence modules in Ex. 2.9 given by the following

barcodes: B(V) = {[1, 6), [9, 10)}, B(W) = {[2, 6.8)}. The interleaving distance dI(V,W)

cannot be smaller than 1, since for every ε < 1, the diagram on the left is not commutative

(the values of this diagram are made explicit in the diagram next to it):

V(1) F

W(1 + ε) 0

V(1 + 2ε) F

V[1≤1+2ε]

ϕ1

1F

0

ψ1+ε 0

Notice, though, that for ε = 1, the following diagram is commutative:

V(1) F

W(2) F

V(3) F

V[1≤3]

ϕ1

1F

1F

ψ2 1F

It is straightforward to check that, indeed, dI(V,W) = 1.

Theorem 2.14. [10, Thm. 3.21] The interleaving distance dI on a GPM-category CR is

an extended pseudometric on the class of generalized persistence modules.

It is no coincidence that the distances computed in Ex. 2.9 and Ex. 2.13 are the same.

Indeed, there is a deep relation between p.f.d. persistence modules and their barcodes known

as the isometry theorem.

Theorem 2.15. (Isometry Theorem [14, 32]) The interleaving distance of a pair of

p.f.d. persistence modules V,W ∈ V ectR is equal to the bottleneck distance of their associated

barcodes, i.e.

dI(V,W) = dB(B(V), B(W)).

F. Chazal et al. [14] proved that dI(V,W) ≥ dB(B(V), B(W)), and more recently, M.

Lesnick [32] proved the converse inequality.
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As Thm. 2.11 illustrates, the study of the bottleneck distance dB and its generalizations

is of central importance to TDA. Thm. 2.15 allows us to prove useful results concerning dB

by understanding the interleaving distance.

We next state some results we will use on the interleaving distance. We start by recalling

that some functors can be viewed as non-expansive maps:

Theorem 2.16. [10, Cor. of Thm. 3.16] Let H : C → D be a functor between arbitrary

categories C,D. Then the functor H◦− : CR → DR, F 7→ HF, defined by post-composing with

H, is 1-Lipschitz. That is, for any two GPMs F,G : R→ C, we have

dI(HF,HG) ≤ dI(F,G).

By Thm. 2.16, the persistent pth homology Hp ◦ − forms a 1-Lipschitz map with respect

to the interleaving distance. That is, for any pair of persistence spaces X∗ : R→ Top, t 7→ Xt

and Y∗ : R→ Top, t 7→ Yt we have

dI(HpX∗, HpY∗) ≤ dI(X∗, Y∗).

Theorem 2.17. [14] (The sublevel-set functor is non-expansive) The sublevel-set

filtration map S : (Top ↓ R) −→ TopR is 1-Lipschitz, i.e., if f : X −→ R and g : Y −→ R are

continuous, then

dI(S(f),S(g)) ≤ d∞(f, g).

3. Transferred A∞-coalgebras on H∗(X)

One can extract topological information of a space from the structure of its homology. To

do this beyond the Betti numbers, one can study the relationship between homology classes.

For instance, a torus T = S1 × S1 and a wedge of spheres S1 ∨ S2 ∨ S1 have the same Betti

numbers but their homology classes are related in very different ways. On the one hand, T
is a surface of revolution whose generatrix curve is a circumference which creates non-trivial

homology. This hints some relation between entities of dimension 1 (the curve) and 2 (the

surface), which, in terms of cohomology, can be explained as follows: choosing an appropriate

basis of the cohomologyH∗(T), the generator ofH2(T) is the cup product of the two generators

of H1(T). In contrast, the generatrix of a sphere S2 does not produce non-trivial homology

in S1 ∨ S2 ∨ S1. In terms of cohomology, the generator of H2(S1 ∨ S2 ∨ S1) is nobody’s cup

product, and the cup product of the 2 generators of H1(S1 ∨ S2 ∨ S1) is 0, regardless of the

chosen basis of H∗(S1 ∨ S2 ∨ S1). A∞-structures contain all the information provided by the

cup product and much more. For instance, there are links which cannot be distinguished by

the cup product alone, but which can be distinguished using A∞-structures [34], [4, §3]. Later
10



in this section, we will mention more examples of spaces for which the A∞-structure provide

much more detailed topological information.

In this section, we list some basic notions and notation we will need to understand the

meaning of A∞ persistent homology and its stability. We will restrict ourselves to A∞-

coalgebra structures on graded vector spaces only, although they can be defined in more

general contexts.

Definition 3.1. An A∞-coalgebra structure {∆n}n≥1 on a graded vector space C is a

family of maps

∆n : C −→ C⊗n

of degree n− 2 such that, for all n ≥ 1, the following Stasheff identity holds:

SI(n) :
n∑
i=1

n−i∑
j=0

(−1)i+j+ij
(
1⊗n−i−j ⊗∆i ⊗ 1⊗j

)
∆n−i+1 = 0.

If (C, {∆n}n≥1) is an A∞-coalgebra, the identity SI(1) states that ∆1 is a differential on C

and SI(3) states that the comultiplication ∆2 is coassociative up to the chain homotopy ∆3.

Any differential graded coalgebra (C, ∂,∆) can be viewed as an A∞-coalgebra (C, {∆n}n≥1)

by setting ∆1 = ∂,∆2 = ∆, and ∆n = 0 for all n > 2. An A∞-coalgebra (C, {∆n}n≥1) is called

minimal if ∆1 = 0.

Definition 3.2. A morphism of A∞-coalgebras

f : (C, {∆n}n≥1)→ (C ′, {∆′n}n≥1)

is a family of linear maps

f(m) : C −→ C ′
⊗m
, m ≥ 1,

of degree m− 1, such that for each i ≥ 1, the following identity holds:

MI(i) :
∑

p+q+k=i
q≥1,p,k≥0

(1⊗p ⊗∆′q ⊗ 1⊗k)f(p+k+1) =
∑

k1+···+k`=i
l,kj≥1

(f(k1) ⊗ · · · ⊗ f(k`))∆`.

We say that the morphism of A∞-coalgebras f is:

• an isomorphism if f(1) is an isomorphism (of vector spaces),

• a quasi-isomorphism if f(1) induces an isomorphism (of vector spaces) in homology.

There are some trivial A∞-coalgebra structures one can always endow a graded vector

space C with, such as the one given by ∆n = 0 for all n. We hence only consider transferred

A∞-coalgebras.
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Definition 3.3. We will say that an A∞-coalgebra (H∗(X), {∆n}n) on the homology of a

spaceX is a transferredA∞-coalgebra (induced byX) if it is minimal and quasi-isomorphic

to the A∞-coalgebra

(C∗(X), {∂,∆, 0, 0, . . .}) ,

where (C∗(X), ∂) denotes the singular chain complex of X and ∆ denotes the Alexander-

Whitney diagonal. We will drop the ‘induced by X’ from the notation when no confusion is

possible.

The dual of this notion consists of transferred A∞-algebras {µn}n on the cohomology

of X, H∗(X), where µ2 coincides with the cup product. Hence, transferred A∞-structures

encode all the information in the homology groups of X and in its cohomology algebra as

well, but there is more. For instance, T. Kadeishvili proved that under mild conditions on a

topological spaceX, any transferredA∞-algebra on its cohomology determines the cohomology

of its loop space [30, Prop. 2], H∗(ΩX), whereas the cohomology ring of X alone does not;

in [3, Thm. 1.3], one can find a way to build pairs of spaces with isomorphic homology

groups and isomorphic cohomology algebras but non-isomorphic transferred A∞-coalgebras;

in [4, §3], [34], one can find examples of links which are told apart by transfered A∞-structures,

which cannot be told apart by using the cup product alone. This can be done thanks to the

relation between Massey products and A∞-structures [11].

An immediate consequence of Definition 3.3 is that all transferred A∞-coalgebras on H∗(X)

induced by X are isomorphic. The following is a folklore result, of which one can find a proof

in [4, Cor. 3.3].

Theorem 3.4. (Homotopy invariance of dim Ker ∆m|Hp(X)) Let {∆n}n be a trans-

ferred A∞-coalgebra structure on the homology of a space X, and let us set

k(X) :=

min{n |∆n 6= 0}, if {n |∆n 6= 0} 6= ∅

+∞, otherwise.

Then, the number k(X) ∈ Z∪{+∞} and the integers dim Ker ∆m|Hp(X) (for integers m ≤ k(X)

and p ≥ 0) are independent of the choice of transferred A∞-coalgebra structure on H∗(X).

Moreover, since homotopy equivalent spaces induce isomorphic transferred A∞-coalgebras,

k(X) and every such dim Ker ∆m|Hp(X) are invariants of the homotopy type of X.

We finally recall a classical results used for computing and working with transferred A∞-

structures which we will use in the proof of the functoriality of A∞ persistent homology (Thm.

4.3).
12



Theorem 3.5. [30,33] (Homotopy Transfer Theorem) Let the following be a dia-

gram of chain complexes,

φ ;; (M,d)
π
//
(N, d)

ι
oo (3.1)

where (N, d) is a chain complex, (M,d) is a differential graded coalgebra with comultiplication

∆, and the degree 0 chain maps π and ι and the degree 1 chain homotopy φ make the following

hold: πι = idN , πφ = φι = φ2 = 0 and φ is a chain homotopy between idM and ιπ, i.e.,

φd+ dφ = ιπ − idM . Then, there is an explicit minimal A∞-coalgebra structure {∆n}n on N

with ∆2 = π⊗2∆ι and there are morphisms of A∞-coalgebras

M
Π
//
N

I

oo ,

such that Π(1) = π and I(1) = ι.

Building a diagram of the form (3.1) with M ∼= C∗(X) and N ∼= H∗(X) amounts to

building a transferred A∞-coalgebra structure on H∗(X).

4. A∞ persistent homology: topological estimation and stability

The barcode of Hp(X∗) from classical persistent homology recovers information only at the

level of homology groups. In contrast, the barcodes in A∞ persistent homology (which we recall

in this section) consist of partial information from A∞-(co)algebras in (co)homology, therefore

enhancing persistent homology with a greater discriminatory power. A∞ persistent homology

can be viewed as a way to relate the different bars in the classical persistence barcodes in the

following sense: we can think of persistent cohomology as producing a barcode where each

bar represents the lifespan of a cohomology class. With this information alone, we cannot

know whether these classes can consistently be expressed as a cup product, or as a Massey

product. However, the bars in the level-2 A∞-persistent cohomology barcode correspond to

cup indecomposables, the bars in level-3, to triple-Massey indecomposables, and so on.

It would therefore be desirable to have stability results for A∞ persistent homology similar

to those seen in §2 for classical persistence. The issue is that A∞ persistent homology is not

functorial in general. Indeed, [3, Thm. 3.1] illustrates that given transferred A∞-coalgebra

structures
(
H∗(X), {∆X

n }n
)
,
(
H∗(Y ), {∆Y

n }n
)

and a continuous map f : X −→ Y, the inclusion

Hp(f)(Ker ∆X
n |Hp(X)) ⊆ Ker ∆Y

n |Hp(Y ) (4.1)

does not need to hold, where Hp(f) denotes the map induced in pth homology by f . Here

we tackle the challenge of finding a non-trivial context which guarantees the functoriality of

A∞-persistence. In this section, we introduce the category Topn (Def. 4.1) and show that A∞

persistent homology is functorial within this category (Thm. 4.3). Additionally, we illustrate
13



that this is the largest category of its form (in a sense made explicit in Rmk. 4.4) for which

such functoriality should be expected. From Thm. 4.3, stability results for A∞ persistent

homology (Cor. 4.8, 4.10 and 4.12) will follow.

Definition 4.1. Let n ∈ Z ∪ {+∞}, n > 1, and let Topn denote the category whose

objects are topological spaces X such that ∆m = 0, for all m < n, where {∆m}m≥1 denotes

any transferred A∞-coalgebra structure on H∗(X), and where the morphisms are continuous

maps.

It follows from Def. 4.1 that for every integer n > 1, Top∞ ⊆ Topn+1 ⊆ Topn ⊆ Top2 =

Top are full subcategories. The higher n ∈ Z ∪ {+∞} is, the closer the objects in Topn

are to having the whole A∞-coalgebra structure on their homology fully determined by their

cohomology ring (a notion related to formality in the context of rational homotopy theory).

Given a topological space X, all the transferred A∞-coalgebra structures {∆m}m on H∗(X)

are isomorphic. The Axiom of Choice guarantees that we can fix a choice of transferred

A∞-coalgebra structure {∆m}m on H∗(X), for every X ∈ Top. For a concrete example

in a restricted scenario, let us consider filtered CW complexes, which are CW complexes

〈c0, . . . , cm〉 whose cells are ordered c0, . . . , cm so that, for all 0 ≤ i < m, 〈c0, . . . , ci〉 forms

a subcomplex of 〈c0, . . . , ci+1〉. H. Molina-Abril and P. Real [35, Alg. 1] used discrete vector

fields to create a deterministic algorithm which computes a transferred A∞-coalgebra structure

on H∗(X) for every filtered CW complex X. Once a method to build A∞-coalgebra structures

has been fixed, we can define κn,p:

Definition 4.2. Let κn,p : Topn −→ Vect be the following assignment: for every object

X in Topn, pick a particular transferred A∞-coalgebra structure {∆m}m on H∗(X) and define

κn,p(X) := Ker ∆n|Hp(X) ⊆ Hp(X).

For every morphism f : X −→ Y in Topn, define

κn,p(f) : κn,p(X) −→ κn,p(Y )

as the map

Hp(f) : Hp(X) −→ Hp(Y )

induced by f in degree-p homology, restricted to κn,p(X). Being pedantic with the notation,

this would be

κn,p(f) = Hp(f)|Ker ∆n|Hp(X)
.

Theorem 4.3. (Functoriality of κn,p) For each pair of integers n ≥ 2, p ≥ 0, the

category Topn is well defined, the assignment

κn,p : Topn −→ Vect
14



in Def. 4.2 defines a functor and the integer dimκn,p(X) does not depend on the choice of

A∞-coalgebra made in Def. 4.2.

Proof. By definition, the objects in Topn are the topological spaces X such that

min{m |∆m 6= 0} ≥ n,

where {∆m}m denotes any transferred A∞-coalgebra structure on H∗(X). Hence, Thm. 3.4

guarantees that Topn is well defined for all n ∈ Z ∪ {+∞} such that n > 1. In particular,

the property of X being in Topn does not depend on the choice of A∞-coalgebra on its

homology. Rather, it only depends on the homotopy type of X. Thm. 3.4 also guarantees

that if X ∈ Topn for some integer n > 1, then the integer dimκn,p(X) = dim Ker ∆n|Hp(X)

does not depend on the choice of A∞-coalgebra and it is indeed a homotopy invariant of X,

for all p ≥ 0.

Shifting the focus now to κn,p, the Axiom of Choice makes the assignment X 7→ κn,p(X)

well defined. To prove that the assignment

f 7→ (κn,p(f) : κn,p(X)→ κn,p(Y ))

is well defined too, is equivalent to showing that

Imκn,p(f) ⊆ κn,p(Y )

holds. For this, it suffices to show that the inclusion in (4.1), Hp(f)(Ker ∆X
n |Hp(X)) ⊆

Ker ∆Y
n |Hp(Y ), holds if f : X −→ Y denotes a morphism in Topn and {∆X

m}m and {∆Y
m}m

denote any transferred A∞-coalgebra structures on H∗(X) and H∗(Y ), respectively. To show

that (4.1) holds, notice that any continuous function f : X −→ Y induces maps of differential

graded coalgebras at the singular chain level C∗(f) : C∗(X) −→ C∗(Y ). Applying Thm. 3.5

once with M ∼= C∗(X) and once with M ∼= C∗(Y ), we can infer that C∗(f), in turn, induces

a morphism of A∞-coalgebras

{F(m)}m : (H∗(X), {∆X
n }n) −→ (H∗(Y ), {∆Y

n }n)

where F(1) = H∗(f).

The key point here is that if X, Y ∈ Topn, then the identity MI(n) in Def. 3.2 becomes

∆Y
nH∗(f) = H∗(f)⊗n∆X

n , and thus, the inclusion in (4.1) does hold.

Now that we have checked that κn,p(f) : κn,p(X) → κn,p(Y ) is well defined, notice that

κn,p(f) is the restriction of the map Hp(f), and therefore, the functoriality of κn,p follows from

that of the homology functor Hp : Top −→ Vect. �

Remark 4.4. In general, one cannot expect to find a larger category in the family

{Topm}m∈Z∪{∞},m>1 for which

κn,p : Topm −→ Vect
15



would be functorial, as explained next.

Consider we try to redefine κn,p as in Def. 4.2 but on a general Topm,

κn,p : Topm −→ Vect.

Thm. 4.3 shows that

(a) κn,p : Topm −→ Vect defines a functor, and

(b) dimκn,p(X) does not depend on the choice of A∞-coalgebra, for any X ∈ Topm,

for any values m ≥ n ≥ 2, but it does not guarantee these two properties to hold if 2 ≤ m < n.

Actually, we should not expect to have such properties to hold for m < n in general, as

counterexamples such as Ex. 4.5 show.

In this example, we use adaptations of the definitions of Topm and κn,p so that all the A∞-

coalgebras considered in their definitions are transferred A∞-coalgebras on reduced rational

homology. With these reduced versions of Topm and κn,p, we will now recall an example for

which dimκ3,7(X) does depend on the choice of A∞-coalgebra if X ∈ Top2−Top3, failing to

satisfy property (b), and we will extend this example to exhibit a case in which

κ3,7 : Top2 −→ Vect

does not define a functor.

Example 4.5. Let us denote a wedge of a complex projective plane and a 7-sphere as

X, and let us omit the rational coefficients from the notation to simply keep H̃∗(X) :=

H̃∗(CP 2 ∨ S7;Q). Ex. 1 in [4] presents two transferred A∞-coalgebra structures {∆V
n }n and

{∆W
n }n on H̃∗(X). From the computations in [4, Ex. 1], it is clear that X ∈ Top2 − Top3.

An intuitive reason why this happens is that the cup product of the complex projective plane

is non-trivial. The A∞-structure {∆V
n }n satisfies

dim Ker ∆V
3 |H̃7(X) = dim H̃7(X) = 1,

whereas {∆W
n }n satisfies

dim Ker ∆W
3 |H̃7(X) = 0.

This directly shows an example for which dimκ3,7(X) does depend on the choice of A∞-

coalgebra if X ∈ Top2 −Top3, failing to satisfy property (b).

Let us now attach a cell to X by setting Y = X ∨ S1. Notice that the homology of X and

Y only differ in degree 1, where we have H̃1(X) = 0 and H̃1(Y ) ∼= Q. With the techniques

from [40, III.3.(6)], it is easy to see that we can extend the A∞-coalgebra
(
H̃∗(X), {∆W

n }n
)
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to a transferred A∞-coalgebra
(
H̃∗(Y ), {∆n}n

)
, by simply setting ∆n|H̃p(Y ) ≡ ∆W

n |H̃p(X) for

p 6= 1 and ∆n|H̃1(Y ) ≡ 0. In particular,

dim Ker ∆3|H̃7(Y ) = dim Ker ∆W
3 |H̃7(X) = 0.

This leads us to the following situation. Let us denote by

ι := X −→ Y

the inclusion map of X within Y . If α denotes the generator of H̃7(X) ∼= Q, then its image by

the map induced in homology, H̃7(ι)(α), generates H̃7(Y ) ∼= Q. In particular, 0 6= H̃7(ι)(α) /∈
Ker ∆3|H̃7(Y ), and therefore,

H̃7(ι)
(

Ker ∆3|H̃7(X)

)
6⊂ Ker ∆3|H̃7(Y ).

This means we cannot define κ3,7 on functions of Top2 − Top3. In particular,

κ3,7 : Top2 −→ Vect

does not define a functor.

From this moment on, we assume we have fixed a choice of a functor κn,p : Topn −→ Vect

as in Def. 4.2. We will next see how the existence of barcodes in A∞ persistent homology and

their stability follow from the functoriality of κn,p.

Corollary 4.6. (Structure theorem of A∞ persistent homology in Topn) Fix

integers p ≥ 0 and n ≥ 1. Let X∗ : R −→ Topn be a persistence space such that dimFHp(Xt) <

∞ for all t ∈ R. Then the A∞ persistent homology module κn,pX∗ decomposes uniquely (up

to isomorphism) into interval persistence modules C(I),

κn,pX∗ ∼=
⊕

I∈B(κn,pX∗)

C(I),

where B (κn,pX∗) is a multiset of intervals of the form [a, b) for some a ∈ R, b ∈ (a,+∞] ⊆
R ∪ {+∞}. We call B (κn,pX∗) the ∆n,p-barcode of X∗.

Proof. Since κn,p(Xt) is a vector subspace of Hp(Xt), we have

dimF κn,p(Xt) ≤ dimFHp(Xt) <∞

for all t ∈ R, by assumption. Hence, κn,pX∗ forms a p.f.d. persistence module and Thm. 2.6

guarantees that we can uniquely decompose it as a direct sum of interval persistence modules.

�
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The barcode decomposition result in Cor. 4.6 deals with persistence spaces of the form

X∗ : R −→ Topn. An analogous theorem was proved in [4] for persistence spaces X∗ : Z −→ C
indexed by the integers and valued in a category C potentially larger than Topn (Topn ⊂ C ⊂
Top). When the considered persistence spaces have the form X∗ : Z −→ Top, the inclusion

in (4.1) fails. This stops the analogue of κn,p(X∗) from forming a persistence module, and one

needs to resort to zigzag modules. The structure and interpretation of the corresponding A∞

persistence zigzag modules was studied in detail in [3].

To state and prove the rest of the results in this paper, we will fix the following notation

and assumptions:

Assumptions All the sublevel sets of a real-valued functions f : X −→ R, have finite-

dimensional pth homology, i.e., dimFHp (f−1[−∞, t)) <∞.

Notation • dB denotes the bottleneck distance (Def. 2.8).

• d∞ denotes the l∞ distance in (2.2).

• || · ||∞ denotes the supremum norm.

• Bn,p(f) := B (κn,pS(f)) denotes the ∆n,p-barcode of the sublevel-set filtration of a

continuous real-valued function f : X −→ R.

• dX : M −→ R denotes the real-valued function defined by dX(y) = d(y,X), for all

y ∈M , given any closed subspace X of a metric space (M,d).

• X+δ denotes the (open) δ-thickening of X,
(
dX
)−1

(−∞, δ) , for δ > 0.

• X+δ] denotes the (closed) δ-thickening of X,
(
dX
)−1

(−∞, δ] , for δ ≥ 0.

• Bn,p(X) denotes the barcode Bn,p(d
X).

As we will mention after Cor. 4.10, Bn,p(X) can be interpreted as the ∆n,p-barcode of the

Čech-complex filtration of X.

Let us start with a toy example in which two persistent spaces result in the same barcode

within classical persistent homology but result in barcodes at an infinite bottleneck distance

away from each other within A∞ persistent homology. This example illustrates the superior

discriminatory power of A∞ persistent homology and helps understanding what the barcodes

in A∞-persistence encode.

Example 4.7. Let us work with reduced homology. We start by defining the category

T̃op as the analogue of Topn (Def. 4.1) in this setting: for n ∈ Z ∪ {+∞}, n > 1, let T̃opn

denote the category whose objects are topological spaces X such that ∆m = 0, for all m < n,

where {∆m}m≥1 denotes any transferred A∞-coalgebra structure on the reduced homology

H̃∗(X;F), and where the morphisms are continuous maps.
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Let X∗, Y∗ be two persistence spaces consisting of thickeniing filtrations of two point clouds

P and Q, in the sense that

Xt := P+t] and Yt := Q+t], for all t ∈ R.

Assume that P and Q are sampled from a torus T and a wedge of spheres S2 ∨ S1 ∨ S1,

respectively, in such a way that the non-trivial degree 2 homology of the persistence spaces

appears at time t0 and vanishes at time t1 in both cases, i.e.,

H2(Xt) = H2(Yt) = 0, for all t ∈ (−∞, t0) ∪ [t1,+∞)

and so that the homotopy types of the steps in-between are known:

Xt ' T and Yt ' S2 ∨ S1 ∨ S1, for all t ∈ [t0, t1).

where all connecting maps are homotopic to the identity. Denote by Bp(X∗) and Bp(Y∗) the

barcodes describing the evolution of H̃p(Xt) and H̃p(Yt), respectively. Recall that

H̃p(T) ∼= H̃p(S2 ∨ S1 ∨ S1) ∼=


F2, p = 1

F, p = 2

0, p 6= 1, 2.

In particular, both B2(X∗) and B2(Y∗) consist of a single interval [t0, t1). Hence,

dB (B2(X∗), B2(Y∗)) = 0,

and classical persistence in degree 2 does not tell the two point clouds apart.

Now let us also denote by α∗ and β∗ the two generators of H̃1(T) and let γ∗ be the generator

of H̃2(T). It is well known that we can choose these cohomology generators so that the cup

product relates them via the equality α∗ ^ β∗ = γ∗. Dually, if we denote by α and β the two

generators of H̃1(T) and let γ be the generator of H̃2(T), then

∆γ = α⊗ β.

Hence, any transferred A∞-coalgebra
(
H̃∗(T), {∆n}n

)
will have

∆2(γ) 6= 0, (4.2)

and thus

Xt ∈ T̃ op2 \ T̃ op3,

for all t ∈ [t0, t1). Therefore, as long as we only compare ∆n,p-barcodes of X∗ for n ≤ 2, we

can guarantee that stability results such as Cor. 4.8 hold. Denote by B2,2(X∗) and B2,2(Y∗)

the ∆2,2-barcode describing the evolution of Ker ∆2|H̃2(Xt)
and Ker ∆2|H̃2(Yt)

, respectively. Eq.

(4.2) shows that

Ker ∆2|H̃2(Xt)
= 0 ( H̃2(Xt),
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for all t ∈ [t0, t1). Hence, B2,2(X∗) is empty - it consists of no intervals.

On the other hand, using the same reasoning on S2∨S1∨S1, any transferred A∞-coalgebra(
H̃∗(S2 ∨ S1 ∨ S1), {∆n}n

)
will have ∆2 = 0, which is,

Ker ∆2|H̃2(Yt)
= H̃2(Yt),

for all t ∈ [t0, t1). Hence, B2,2(Y∗) = B2(Y∗) still consists of a single interval [t0, t1) and we

conclude that

dB (B2,2(X∗), B2,2(Y∗)) =
t1 − t0

2
.

The more the degree 2 homology persist in the filtrations (i.e., the greater the difference

t1 − t0 is), the greater the bottleneck distance between the A∞-persistence barcodes B2,2(X∗)

and B2,2(Y∗) is too.

We now prove the first result on the stability of A∞ persistent homology by providing a

generalization of Thm. 2.11.

Corollary 4.8. (Stability of A∞ persistent homology for functions) Let n > 0

be an integer and let f : X −→ R and g : Y −→ R be two continuous maps. Assume that all

sublevel-sets of f and g are in Topn. Then, for all p ≥ 0, the bottleneck distance between the

∆n,p-barcodes of f and g is bounded above by the l∞ distance between the functions:

dB (Bn,p(f), Bn,p(g)) ≤ d∞(f, g).

In particular, if X = Y , then

dB (Bn,p(f), Bn,p(g)) ≤ ||f − g||∞.

Proof. The assumption of each f−1[−∞, t) being in Topn turns the sublevel-set filtration

of f into a persistence space of the form S(f) : R −→ Topn. Since κn,p is a functor (Thm. 4.3)

and dimFHp (f−1[−∞, t)) < ∞ for all t by assumption, the composition κn,pS(f) is a p.f.d.

persistence module. Thm. 2.6 guarantees the existence and uniqueness of the ∆n,p-barcode

Bn,p(f) := B (κn,pS(f)). The same holds for g, and Thm. 2.15 then shows that

dB (B (κn,pS(f)) , B (κn,pS(g))) ≤ dI (κn,pS(f), κn,pS(g)) ,

where dI denotes the interleaving distance. We then use Thm. 2.16 to exploit the functoriality

of κn,p and conclude that

dI (κn,pS(f), κn,pS(g)) ≤ dI (S(f),S(g)) .

Thm. 2.17 asserts that the sublevet-set functor is 1-Lipschitz. Hence:

dI (S(f),S(g)) ≤ d∞(f, g).
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These 3 inequalities together show that

dB (Bn,p(f), Bn,p(g)) ≤ d∞(f, g).

In particular, if X = Y , then, since the identity Φ: X −→ Y is a homeomorphism,

d∞(f, g) ≤ ||f − g||∞,

and the second claim in Cor. 4.8 holds as well. �

Definition 4.9. The Hausdorff distance between two non-empty subsets X, Y of a

metric space (M,d) is defined as

dH(X, Y ) = inf{δ ≥ 0 ; X ⊆ Y +δ] and Y ⊆ X+δ]}.

By definition of the Hausdorff distance dH , we have that ||dX − dY ||∞ = dH(X, Y ). This

leads to the following straightforward corollary of Cor. 4.8:

Corollary 4.10. (Stability of A∞ persistent homology for metric spaces) Let

n ≥ 1 be an integer. Let X and Y be closed subspaces of a metric space M such that the

thickenings X+τ ] and Y +τ ] are in Topn for all τ ≥ 0. Then, for all p ≥ 0, the bottleneck

distance between the ∆n,p-barcodes Bn,p(X) and Bn,p(Y ) is bounded above by the Hausdorff

distance between the spaces X and Y :

dB(Bn,p(X), Bn,p(Y )) ≤ dH(X, Y ).

The condition X+τ ], Y +τ ] ∈ Topn for all τ ≥ 0 is equivalent to assuming all sublevel sets

of dX and dY to be in Topn. Hence, Cor. 4.10 follows directly from applying Cor. 4.8 to

f = dX , g = dY .

For computational purposes, one tends to work with simplicial or cubical complexes. Let

X be a finite subset of a metric space (M,d). For any ε > 0, the Čech complex Čε(X) is

a simplicial complex defined as the nerve of the set of open balls of radius ε centered at all

points in X1. The Nerve Lemma [8, Corollary 3 in Section 9] shows that Čε(X) is homotopy

equivalent to the sublevel set X+ε =
(
dX
)−1

(−∞, ε), provided that all intersections of balls are

either empty or contractible. Hence, Cor. 4.10 can be interpreted as a result on the stability

of the A∞ persistent homology of the Čech-complex filtration.

We finally come to extrapolating topological properties of a closed subspace X of a metric

space M from a finite set P of points which may have been inaccurately sampled from X.

For smooth manifolds X in low dimensions, some methods [2, 23, 36] can reconstruct X

from P so that one can estimate the Betti numbers of X. V. Robins [39], V. de Silva and

G. Carlsson [20] started estimating these Betti numbers via persistent homology instead.

1Note that Čε(X) is sometimes defined using the radius ε/2.
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One of the advantages of this approach is that it can be used for smooth and non-smooth

spaces X of all dimensions, and it avoids having to choose an optimal thickening amount

which may sometimes be impossible to find. Later on, stability would play a crucial role in

this homology estimation task [7, 17, 25]. F. Chazal and A. Lieutier [15] were the first to

estimate topological information of X not captured by the homology groups. Namely, they

approximated the fundamental group π1(X). More on fundamental group of point clouds can

be found in [9]. The current work goes further in this direction by showing that we can also

estimate A∞ information of X, as we will see in Cor. 4.12.

We now define an analogous concept to that of homological critical value (Def. 2.10) for

A∞-structures.

Definition 4.11. Given a continuous map f : X −→ R whose sublevel sets are in Topn

and a functor κn,p defined as in Def. 4.2, we say that a real number a ∈ R is a ∆n,p critical

value of f if the map

κn,pS(f)(a− ε) −→ κn,pS(f)(a+ ε)

induced in homology by the inclusion

f−1(−∞, a− ε] ↪−→ f−1(−∞, a+ ε]

is not an isomorphism for all sufficiently small ε > 0. We then define the ∆n,p feature size of

X, denoted by ∆n,pfs(X), as the infimum over all positive ∆n,p critical values of the distance

function dX .

Just as the homological feature size used in [17], the ∆n,p feature size depends not only

on the topology of X, but also on its geometry.

Given n, p and a functor κn,p defined as in Def. 4.2, the following result computes A∞-

information of a δ-thickening of X via the A∞ persistent homology of P , where we can think

of P as a finite approximation to X.

Corollary 4.12. (A∞ inference) Let X,P be closed subspaces of a metric space M

such that the thickenings X+τ ] and P+τ ] are in Topn for all τ ≥ 0. Let ε > 0 be a real

number with dH(X,P ) < ε < ∆n,pfs(X)

4
. For all sufficiently small δ > 0, the topological

invariant dimκn,p(X
+δ) coincides with the number of intervals in the ∆n,p-barcode Bn,p(P )

which contain the interval [ε, 3ε].

The lower bound on ε appearing in Cor. 4.12 describes how accurately P approximates

X. The better P approximates X, the smaller dH(X,P ) is. The upper bound on ε appearing

in Cor. 4.12, ∆n,pfs(X)

4
, depends on the metrics of X and M .
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The proof of Cor. 4.12 is basically that of [17, Homology Inference Theorem], changing

the persistent homology functor by the A∞ persistent homology functor κn,p. We include the

proof anyway for the sake of completeness.

Proof. Let f, g : M −→ R be continuous maps whose sublevel sets are all in Topn. Let

us define

Fi := κn,p
(
f−1(−∞, i]

)
= κn,pS (f) (i) and Gi := κn,p

(
g−1(−∞, i]

)
= κn,pS (g) (i)

for all i ∈ R. Since κn,p is functorial (Thm. 4.3), we can consider the map

κn,p
(
f−1(−∞, i] ↪−→ f−1(−∞, j]

)
for any real numbers i < j, which we will denote by f ji : Fi −→ Fj. Define gji : Gi −→ Gj

analogously. Finally, let us set

F j
i := Im f ji and Gj

i := Im gji .

This way, dimF j
i and dimGj

i are precisely the number of intervals which contain [i, j) in the

A∞-barcodes Bn,p(f) and Bn,p(g), respectively. If f = dX or f = dP , we will denote F j
i by Xj

i

or P j
i , respectively.

If ||f − g||∞ < ε, then f−1(−∞, i] ⊆ g−1(−∞, i + ε] for all i ∈ R. By the functoriality of

κn,p (Thm. 4.3), this inclusion induces a map ϕi : Fi −→ Gi+ε. Exchanging f and g, we also

have a map ψi : Gi −→ Fi+ε. We can fit these maps into the following diagram:

Fi−ε
fj+εi−ε
//

ϕi−ε

��

Fj+ε

Gi
gji

// Gj

ψj

OO

Since all maps in the diagram are induced by inclusions, the diagram commutes, for any reals

i < j. Some diagram chasing shows that

F j+ε
i−ε ⊆ ψj

(
Gj
i

)
,

and hence

dimF j+ε
i−ε ≤ dimGj

i . (4.3)

Now set f = dX , g = dP , i = ε+ δ and j = 3ε+ δ. Since ||dX − dP ||∞ = dH(X,P ) and we

assumed the dH(X,P ) < ε and that all sublevel sets of dX and dP are in Topn, we can use

(4.3) and rewrite it as

dimX4ε+δ
δ ≤ dimP 3ε+δ

ε+δ . (4.4)
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Analogously, letting f = dP , g = dX and i = j = 2ε+ δ, (4.3) yields

dimP 3ε+δ
ε+δ ≤ dimX2ε+δ

2ε+δ . (4.5)

Choosing δ small enough so that 4ε + δ < ∆n,pfs(X), there are no ∆n,p critical values

of dX in [δ, 4ε + δ]. In particular, dimX4ε+δ
δ = dimX2ε+δ

2ε+δ , and the inequalities in (4.4) and

(4.5) becomes equalities. Again, since there are no ∆n,p critical values of dX in [δ, 4ε + δ],

dimX4ε+δ
δ = dimXδ

δ = dimκn,p(X
+δ).

Since ε > 0, dimP 3ε+δ
ε+δ = dimP 3ε

ε for every δ > 0 small enough. Therefore, for sufficiently

small δ > 0,

dimκn,p(X
+δ) = dimP 3ε+δ

ε+δ = dimP 3ε
ε ,

concluding the proof. �

Actually, the proof of Cor. 4.12 clearly shows that we do not need to assume that all

sublevel sets of dX and dP are in Topn. Rather, it is enough to assume that X+τ ] ∈ Topn for

all τ ≤ 4ε+ δ and that P+τ ] ∈ Topn for all τ ≤ 3ε+ δ.

In most real world situations and for small enough values of δ > 0, X is a retract of X+δ and

therefore the homotopy types of X and X+δ coincide. Thus, we can see Cor. 4.12 as estimating

topological properties of X from a (possibly finite) closed subset P ⊆M approximating X.

Note that when we focus on the second operation ∆2 on an A∞-coalgebra (H∗(X), {∆n}n)

(such as in Ex. 4.7), or equivalently, on the cup product in cohomology (which is the second

operation µ2 =^ on an A∞-algebra (H∗(X), {µn}n)), then all results in this paper hold

without the need to restrict to a category Topn ⊆ Top for n > 2 and instead, we can work

directly with the category of topological spaces Top. In particular, this paper proves the

stability of the persistence of cup product with minimal restrictions.
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