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ABSTRACT
In this work, we propose a gesture-based language to allow humans
to interact with robots using their body in a natural way. We have
created a new gesture detection model using neural networks and
a new dataset of humans making a collection of body gestures to
train this architecture. Furthermore, we compare body gesture com-
munication with other communication channels to demonstrate
the importance of adding this knowledge to robots. The presented
approach is validated in diverse simulations and real-life experi-
ments with non-trained volunteers. This attains promising results
and establishes that it is a valuable framework for social robotic
applications, such as human robot collaboration or human-robot
interaction.

CCS CONCEPTS
• Human-centered computing→ Gestural input; • Comput-
ing methodologies→ Machine learning; • Computer systems
organization → Embedded systems; Redundancy; Robotics; •
Networks → Network reliability;
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1 INTRODUCTION
Finding natural and new efficient communication channels is essen-
tial in Human-Robot Interaction (HRI). If we take a look at the way
humans communicate with each other, we see that about 70% of
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Figure 1: (©Javier Laplaza) By raising the left arm, the human
is able to tell the IVO robot to turn to the left side.

the communication is non-verbal communication [12]. Moreover,
when humans want to communicate with other agents with whom
they do not share a common spoken language –foreigners, babies
or animals– most of the communication is non-verbal [2, 5].

When it comes to communication with robots, it is possible to
establish a set of gestures to communicate certain ideas in a similar
way that gesture language works between humans. But, similarly
to gesture language, this approach requires that both agents know
which gestures compose the language and what meaning each
gesture has. Furthermore, previous attempts of creating such body
language with robots are generally designed by people used to
working with robots. We argue that such kinds of languages cannot
be expected to find success when robots face humans with no
previous experience with robots.

This inspired us to seek a natural way for humans to commu-
nicate with robots using gestures. Our goal is to create a natural
gesture dictionary and explore how humans rate gesture based
communication versus other communication channels.

To achieve this, we first collected a dataset using human volun-
teers making a set of communication gestures. Then, we create a
gesture detection model to allow the robot to identify human ges-
tures. Finally, we wanted to study how convenient using gestures is
for communication. To do so, we carried out several experiments us-
ing non-trained volunteers and the IVO robot [8], see Fig.1, in order
to compare gesture based communication to other communication
channels.
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2 RELATEDWORK
Most of the literature related to gesture detection focuses on hand
gesture detection. Great examples of this are [1, 4] and [16]. Touch-
less interaction methods that will not use sound or speech for the
communication need to somehow sense the human body’s position.

Some work on full body gesture communication focus on identi-
fying where the human is pointing at to identify a specific object
or region, one example of this being [13]. Other works focus on
identifying emotions expressed by the body posture, such as [11].
Moreover, Some gestures are very restricted to specific tasks, in [7]
the approach is to detect whether a human is willing to collabo-
rate or not during a hand-over operation according to his gestural
expression.

The work proposed in [10] is similar to our approach, but they
use the relative position of hands and faces to define poses. More
importantly, they use UAV as the platform to interact, which has dif-
ferent dynamics than ground robots and also a different perspective
of humans when using a camera.

Another similar work is presented in [3], focusing in optical flow
techniques used in order to extract features of the human body.

Finally, in [15] a set of gestures are proposed for HRI operations.
While this research is very similar to our approach, in our work
we focus on allowing very general gestures instead of defining
them beforehand. Also, we study how human volunteers rate the
interaction with the robot using gestures.

3 MODEL ARCHITECTURE
In order to properly identify different body gestures, we created a
model that consists of a neural network classifier using the body
joint positions as input paramaters and returning a gesture class
probability as output.

Although the model input are body joint positions, the pipeline
inputs are videos. In the work presented in this paper, the temporal
component has been omitted and only the last frame of each video
is used as input. This means that we only take into account static
gestures, since the skeleton position during these gestures don’t
change.

MediaPipe [9] was used to extract the full body skeleton from
the image frames, obtaining a 3D skeleton from an RGB image. This
model predicts the location of 33 pose landmarks, each following
the (𝑥,𝑦, 𝑧, 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦) structure that will be used as our Classifier
input.

The proposed neural network uses four Linear 𝑦 = 𝑥𝐴𝑇 + 𝑏

fully connected layers of size 256, 128, 64 and 8 combined with
𝑅𝑒𝐿𝑈 (𝑥) = (𝑥)+ = max(0, 𝑥) activation functions between each
layer.

The outputs from our classifier consists of a one dimensional
vector with length equal to the number of gestures to be predicted,
making each vector element the model score for each specific ges-
ture.

From this vector, a 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 layer is applied in order to normalize
the model scores and the maximum gesture probability is then
considered to be the output gesture.

For training, the user 2 was arbitrarily chosen as test dataset,
whereas the rest of the volunteers were used as training data.

Figure 2: (©Javier Laplaza) Some samples of static gestures
recorded in the dataset.

The loss function used for training is the Cross-Entropy Loss, and
the chosen optimization algorithm for this network is the ADAM
optimizer with a learning rate 𝛼 = 0.01 and 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 =

10−8 hyperparameters.

4 DATASET
Since we couldn’t find a suitable dataset for our goal, we decided
to create a dataset in our laboratory.

The main feature of our gesture based communication dictionary
is naturalness. We want everyone to be able to communicate with
the robot, not only people who are already familiar with robots.

We divide the defined gestures in two groups: static and dynamic
gestures (see Fig. 2):

• Static gestures
– Attention: Catch the robot’s attention to give him an
order.

– Right: Order the robot to turn right.
– Left: Order the robot to turn left.
– Stop: Order the robot to stop its trajectory.
– Yes: Approve a robot’s information.
– Shrug: Inform the robot that you don’t understand his
information.

– Random: Random gesture, not necessarily a communica-
tion gesture.

– Static: Human is standing still.
• Dynamic gestures
– Greeting: Greet the robot.
– Continue: Order the robot to continue its path after telling
him to stop.

– Turn-back: Order the robot to turn 180 degrees.
– No: Deny a robot’s information.
– Slowdown: Order the robot to reduce its speed.
– Come: Order the robot to reach your position.
– Back: Order the robot to move back.

As for data recording, each human volunteer was recorded using
an RGB camera. When human volunteers were asked to make a
gesture they were provided with a vague explanation of the gesture
intention. This was done to collect data that felt most natural to
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each volunteer. There was no restriction on which arms should be
moved in each gesture whatsoever. Thus, different volunteers could
make the same gesture in a very different way, using one arm or
the other, or even both of them.

Each gesture was repeated three times, first 1 meter away from
the camera, then 4 meters away and finally 6 meters away.Each
video contains information of only one gesture, and all the videos
were recorded indoors, with no body self occlusions.

Finally, we use MediaPipe [9] to extract the 3D joints of the
human in the video.

We also consider a wide range of users regarding age, gender,
education level and culture. Taking this into account, we created
our dataset thanks to 10 human volunteers, 7 men and 3 women.

5 EXPERIMENTS
In this section, we show the obtained results with our architecture
and the developed user study to demonstrate the acceptability of
the presented framework.

5.1 Model results
We train the model until it starts overfitting on the test dataset.
Then, we stop the training and check the results on the test dataset.
The results can be seen in Table 4.

The results show that the model accuracy for certain gestures
is remarkable. Specifically, attention, right, left, shrug and static
gestures rate an F1-score above 0.8. This result was expected, since
all those gestures are very different from other gestures in the
dataset.

On the other hand, there are two gestures that the model particu-
larly struggles classify: stop and yes. Again, this result was expected,
since both gestures present an overall body pose very similar, only
the hand position differs.

Finally, the random gesture has a F1-score of 0.64, which is un-
derstandable for a class that include a rich distribution of body
poses.

We created a confusion matrix (see Fig. 6) to study inter-class
miss-classifications. From this matrix, we confirm that our model
isn’t able to differentiate gestures yes and stop. Possible ways to
tackle this can be increasing model complexity or using a more
complete Mediapipe model that incorporates finger and face infor-
mation.

5.2 User Study
The results presented in the previous section demonstrate that the
robot is able to detect and recognize human natural gesture. A user
study was also conducted to determine whether the body gesture
recognition to control our robot enhances the usability and the
comfort of the robot from the point of view of the human. We
compared our method with the use of a remote controller.

The hypothesis we endeavored to test was as follows: “Partic-
ipants will feel more comfortable and will perceive difference be-
tween the use of body gesture recognition and the use of a remote
controller.”

We asked humans to communicate different orders to the robot,
specifically:

• Order the robot to move closer.

Figure 3: (©Javier Laplaza) Samples of gestures used by the
user: turn left (top left), look upwards (top right), look down-
wards (bottom left) and approach (bottom right).

Figure 4: (©Javier Laplaza) Precision, recall and F1-score for
every model gesture class.

• Order the robot to move away.
• Order the robot to turn to the right.
• Order the robot to turn to the left.
• Order the robot to look up.
• Order the robot to look down.

Note that even though volunteers were told what order they had
to give, they weren’t told how they should give the order, the same
way that the dataset was collected.

In the first experiment, the human had to use the natural gestures
to express to the robot what action must perform. We conducted
these experiments in a Wizard-of-Oz way, since using the gesture
detector may lead to missing some of the gestures, and it can cause
a negative impact to the user perception of gestures as a channel of
communication. The delay between the human making the gesture
and the robot following the order was around 1 second.

Then, we repeated the same experiment but this time we gave a
remote controller to the human, thus that he/she could tele-operate
the robot after some instruction. The robot started the motion as
soon as the human operated the controller.

In each case, we asked the volunteers tomake all gestures/commands
in a random order. We also chose randomly between the gesture
communication and the controller as the first experiment for each
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Figure 5: (©Javier Laplaza) Evaluation from 1 (low) to 7 (high) of the main aspects related to the robot behavior in body gesture
recognition.

Figure 6: (©Javier Laplaza) Model confussion matrix.

volunteer in order to avoid possible biases. Refer to Fig.3 to see
some samples of the gesture communication.

For the experiments, we selected 15 people (8 men, 7 women) on
the University Campus. Participants ranged in age from 19 to 50
years (M=29.5, SD=9.2).

Participants were asked to complete a variety of surveys based
on [14]. Our independent variables considered whether participants
make use of our gesture recognition or the remote control. The
main dependent variables involved participants’ perceptions of the
sociability, naturalness, security and comfort characteristics.
Each of these fields, was evaluated by every participant using a
questionnaire to fill out after the experiment based on [6].

Participants were asked to answer a questionnaire, following
their encounter with the robot in each mode of behavior. To an-
alyze their responses, we grouped the survey questions into four
scales: the first measured robot’s sociability, while the second natu-
ralness, and third and fourth evaluated the security and comfort,
respectively. Both scales surpassed the commonly used 0.7 level of
reliability (Cronbach’s alpha).

Each scale response was computed by averaging the results of the
survey questions comprising the scale. ANOVAs were run on each
scale to highlight differences between the three robot behaviors.

Below, we provide the results of comparing the two different
methods. To analyze the source of the difference, four scores were
examined: “sociability”, “naturalness”, “security” and “comfort”,
plotted in Fig. 5. For all four aspects, the evaluation score plotted in
Fig. 5, pairwise comparisonwith Bonferroni demonstrate therewere
difference between the two kind of behavior approaches, 𝑝 < 0.05.

Therefore, after analyzing these four components, we may con-
clude that if the robot is capable of understand people’s body gesture
the acceptability of the robots increases, and participants perceived
the robot as a social entity.

6 CONCLUSIONS
We created a dataset of natural gestures to communicate with a
robot. We also developed a new neural network architecture able
to classify the static gestures in the dataset. We reach high classifi-
cation accuracy (> 80%) in most of the gestures, except for gestures
that look very similar. Our future work will try to add also the
dynamic gestures to the model and decouple gestures that can be
easily confused.

The experiments we conducted yielded conclusive results. We
found that people felt their interaction with the robot was more
natural when the robot communicated through gestures. Detailed
analysis showed that these capacities improved the human’s per-
ception of the robot’s security and sociability. Finally, volunteers
perceived our robot more sociable and closer when it recognized
and understood their gestures, and the interactions were longer.

The findings presented in the previous section reinforce the
notion that the robot’s ability to understand human body gestures
is an important skill to master in order to achieve natural interaction
with people. Overall, people interacting and communicating with
the robot using natural gestures enhances the engagement between
the robot and the human.
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